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Hydrogels, which are crosslinked polymer networks with high water contents and

rheological solid-like properties, are attractive materials for biomedical applications.

Self-healing hydrogels are particularly interesting because of their abilities to repair

the structural damages and recover the original functions, similar to the healing of

organism tissues. In addition, self-healing hydrogels with shear-thinning properties can

be potentially used as the vehicles for drug/cell delivery or the bioinks for 3D printing by

reversible sol-gel transitions. Therefore, self-healing hydrogels as biomedical materials

have received a rapidly growing attention in recent years. In this paper, synthesis

methods and repair mechanisms of self-healing hydrogels are reviewed. The biomedical

applications of self-healing hydrogels are also described, with a focus on the potential

therapeutic applications verified through in vivo experiments. The trends indicate that

self-healing hydrogels with automatically reversible crosslinks may be further designed

and developed for more advanced biomedical applications in the future.
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INTRODUCTION

Hydrogels are constructed by the crosslinked polymer networks as water-swollen gels. Hydrogels
have received significant attention as the extracellular matrix mimics for biomedical applications
because of their water-retention abilities, appropriate elasticities, and network structures (Wang
and Heilshorn, 2015). The self-healing properties, originated from phenomena of wound healing in
organisms, are used to describe materials with the ability to restore the morphology andmechanical
properties after repeated damages. The microcapsule-laden hydrogels were developed that released
healing agents at damage sites (White et al., 2001; Toohey et al., 2007). However, the irreversible
healing process and potential interference of fillers limited their applications (Bergman and Wudl,
2008; Syrett et al., 2010). Besides, many dynamic hydrogels typically relied on external stimuli,
such as high temperature, low pH, and light, to trigger dynamic crosslinks (Murphy and Wudl,
2010; Harada et al., 2014). The external stimuli would have adverse effects on the cells and living
tissues. In this review, self-healing hydrogels are referred that automatically and reversibly repair
the damages and recover the functions.

Self-healing hydrogels can be prepared through dynamic covalent bonds and non-covalent
interactions. The dynamic equilibrium between dissociation and recombination of various
interactions leads the hydrogel to heal damages and reform shapes. Commonly, dynamic covalent
bonds exhibit stable and slow dynamic equilibriums, while non-covalent interactions show
fragile and rapid dynamic equilibriums (Zou et al., 2017). With versatile mechanical properties,
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self-healing hydrogels can be manufactured with robust, shear-
thinning, or cell-adaptable properties for a broad range of
applications, such as soft robots, 3D printing, and drug/cell
delivery. In this review paper, we will take a detailed look at
the current synthesis and biomedical applications of self-healing
hydrogels. Firstly, various advanced strategies are introduced
about the preparations and the mechanisms of self-healing
hydrogels. Subsequently, biomedical applications of the self-
healing hydrogels are described, especially, the ones that have
been evaluated by animal models.

SELF-HEALING MECHANISMS

Self-healing hydrogels have been synthesized based on different
chemistries and mechanisms as shown in Figure 1, including
dynamic covalent bonds, non-covalent interactions, and multi-
mechanism interactions. Each will be elaborated below.

Dynamic Covalent Bonding
Dynamic covalent chemistry, including imine formation,
boronate ester complexation, catechol-iron coordination, Diels-
Alder reaction, and disulfide exchange, is widely applied in the
formation of self-healing hydrogel. Dynamic covalent bonds
exhibit the stronger but slower dynamic equilibrium compared
to non-covalent interactions.

The imine (or referred as Schiff base) is a compound with a
carbon-nitrogen double bond formed by nucleophilic attack of
amine to aldehyde or ketone. A number of self-healing hydrogels
have been developed by aliphatic Schiff bases (Lü et al., 2015;
Zhu, D. et al., 2017; Huang et al., 2018) or aromatic Schiff bases
(Karimi and Khodadadi, 2016; Qu et al., 2017), in which aromatic
Schiff bases show higher stability to maintain the mechanical
properties compared to aliphatic Schiff bases (Zhang et al., 2011).
Zhang et al. synthesized a dibenzaldehyde-terminated telechelic
poly(ethylene glycol), namely difunctionalized PEG (DF-PEG),
to form self-healing hydrogel through aromatic Schiff bases
between benzaldehyde groups of DF-PEG and amino groups
of chitosan (Zhang et al., 2011). The hydrogels were prepared
rapidly under mild conditions at 20◦Cwithin 60 s, and they could
be degraded by acidic pH, amino acids, vitamin B6 derivatives,
and enzymes. The hydrogels were developed for 3D cell culture
and cell delivery due to their cytocompatibility and injectability
(Yang et al., 2012; Li et al., 2017; Zhang, Y. L. et al., 2017).
Acylhydrazone and oxime are derivatives of imine with great
stability, which have also been developed to synthesize the self-
healing hydrogels (Deng et al., 2010; Grover et al., 2012; Lin
et al., 2013; Mukherjee et al., 2015). For example, the self-healing
hydrogel was prepared by adding oxidized sodium alginate
into the mixture of N-carboxyethyl chitosan and adipic acid
dihydrazide via dynamic imine and acylhydrazone bonds (Wei
et al., 2015).

The reversible boronate ester bond is formed by complexation
of boronic acid and diol, and its stability is dependent on
pH-value and glucose concentration. Boronic acid and its
derivatives, such as phenylboronic acid or phenylboronic acid-
incorporated polymers, have been widely developed to prepare
self-healing hydrogels. Yesilyurt et al. mixed phenylboronic acid

and diol-modified poly(ethylene glycol) to form self-healing
hydrogel that exhibited pH-responsive tunable mechanical
properties, and glucose-responsive size-dependent release of
proteins (Yesilyurt et al., 2016). The hydrogel was cytocompatible
in vitro, and it showed a typical foreign body reaction in
vivo without chronic inflammation. He et al. prepared self-
healing hydrogel via complexation of a catechol-modified
polymer and 1,3-benzenediboronic acid, which demonstrated
high stability under alkaline conditions and low stability under
acidic conditions (He et al., 2011). Another self-healing hydrogel
was fabricated using the mixture of poly(ethylene glycol)
diacrylate, dithiothreitol, and borax via permanent thiol-ene
Michael addition and dynamic borax diol complexation in one-
pot approach (He et al., 2015). The hydrogel can be injected with
cells to form branched tubular channels for vascularization in
vitro and easily removed by immersion in cell culture medium
(Tseng et al., 2017).

The reversible coordinate bond between catechol and
iron has been developed to prepare self-healing hydrogels.
The reversibility of catechol-iron coordination bond can be
controlled by adjusting pH conditions (Krogsgaard et al., 2013).
When the environmental pH is raised from acidic to basic values,
a rapidly self-healing hydrogel with high strength may form.
Li et al. incorporated iron oxide (Fe3O4) nanoparticles with
the catechol-modified polymers to form a self-healing hydrogel
via reversible coordination bonds at the nanoparticle surface
(Li et al., 2016). Self-healing hydrogel based on catechol-Fe3O4

nanoparticles structures exhibited magnetic properties and solid-
like mechanics, in comparison with the fluid-like hydrogel by
catechol-Fe(III) crosslinking.

The disulfide exchange provides dynamic covalent bonds
to form self-healing hydrogels, which are sensitive to pH or
redox potential (Wei, Z. et al., 2014). Recently, 1,2-dithiolane-
functionalized polymers were synthesized to form self-healing
hydrogels with rapid sol-gel transition via the disulfide exchange
between the 1,2-dithiolane and dithiols (Barcan et al., 2015; Yu
et al., 2017; Zhang andWaymouth, 2017). The disulfide exchange
of 1,2-dithiolane can reform under neutral or weakly alkaline
conditions, which can be further controlled by temperature.

Another important dynamic covalent chemistry in self-
healing hydrogels is the thermally reversible Diels-Alder reaction
(Liu and Chuo, 2013; Zhao et al., 2016; Shao et al., 2017).
However, the biomedical applications of Diels-Alder reaction are
limited because Diels-Alder bonds need a high temperature and a
long duration to cleave and reform for self-healing properties. In
recent reports, Diels-Alder chemistry was developed to form self-
healing hydrogels combining with other reversible interactions,
such as electrostatic interaction (Banerjee and Singha, 2017;
Ghanian et al., 2018), coordination bond (Li et al., 2018a), imine
bond (Li et al., 2018b), and acylhydrazone bond (Yu et al., 2015).

Non-covalent Interactions
Self-healing hydrogels can be produced through non-covalent
interactions, such as hydrogen bond, electrostatic interaction,
and hydrophobic interaction. The non-covalent interactions are
less stable and more sensitive to environmental conditions (such
as pH and temperature) compared to covalent interactions.
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FIGURE 1 | Self-healing chemistries and mechanisms for various self-healing hydrogels, including dynamic covalent bonds, non-covalent interactions, and

multi-mechanism interactions.

However, robust self-healing hydrogels can still form based on
non-covalent interactions via special manufacturing procedures
or nano- and micro-structures.

The hydrogen bonding is an attractive interaction between
the hydrogen atoms and electronegative atoms, in which the
hydrogen atom is bound to a high electronegative atom, such
as nitrogen, oxygen, and fluorine. The polyvinyl alcohol-based
self-healing hydrogels were developed using the freezing/thawing
method via hydrogen bonding (Zhang et al., 2012; Zhang, Z.
et al., 2017). Moreover, hydrogen bonding-based self-healing
hydrogels were frequently reported with incorporations of
various chemical moieties, such as 2-ureido-4-pyrimidone (UPy)
moieties (Cui and del Campo, 2012; Dankers et al., 2012;
Cui et al., 2013; Bastings et al., 2014; Chirila et al., 2014;
Hou et al., 2015; Zhang et al., 2016), nucleobase moieties
(Ye et al., 2017), deferoxamine moieties (Xu et al., 2017),
and gallol moieties (Shin and Lee, 2017). In a recent work,
the cytosine- and guanosine-modified hyaluronic acid (HA)
formed self-healing hydrogel by Watson-Crick base pairing
between the nucleobases through hydrogen bonding (Ye et al.,
2017). The hydrogel exhibited pH-stimulated sol-gel transition
where the hydrogel exhibited gel state in pH 6–8 and sol
state in pH < 6 or > 8. In another example, Shin and
Lee synthesized gallol-conjugated HA and added a gallol-
rich crosslinker (i.e., oligo-epigallocatechin gallate) to form a

shear-thinning and self-healing hydrogel based on extensive
hydrogen bonds of gallol-gallol and gallol-HA (Shin and Lee,
2017). The hydrogel was resistant to enzymatic degradation
by protein (i.e., hyaluronidase) immobilization through non-
covalent interactions between gallols and proteins.

Hydrophobic interactions occur as a consequence of
aggregative hydrophobes in aqueous media. In many cases of
self-healing hydrogels based on hydrophobic interactions, the
surfactant micelles (Gulyuz and Okay, 2015; Liu, Y. et al., 2018)
or liposomes (Rao et al., 2011; Hao et al., 2013) are employed as
crosslinking points to construct the polymer chains comprising
both hydrophilic and hydrophobic monomers. For example, the
self-healing hydrogel could form via micellar copolymerization
of hydrophobic monomer stearyl methacrylate and hydrophilic
monomer acrylamide in the aqueous solution of sodium dodecyl
sulfate (SDS) micelles (Tuncaboylu et al., 2011, 2012a,b). In
these cases, the addition of salt into aqueous SDS solutions leads
to micellar growth and solubilization of hydrophobes within
SDS micelles. The hydrogel containing SDS micelles with the
time-dependent dynamic moduli exhibited high elongation
ratio and good self-healing ability, while after extraction of
SDS, the hydrogel with time-independent dynamic moduli
showed high mechanical strength and no self-healing ability.
Self-healing hydrogel can also be prepared based on surfactant-
free hydrophobic associations via solvent evaporation of an
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aqueous polymer solution above a critical polymer concentration
(Owusu-Nkwantabisah et al., 2017).

Self-healing hydrogels can form through reversible
electrostatic interactions occurring in charged polymers
and ions (Wei et al., 2013; Wei, H. et al., 2014), polyelectrolytes
(Huang et al., 2014; Luo et al., 2015; Ren et al., 2016; Li, J. et al.,
2017), polyampholytes (Ihsan et al., 2013; Sun et al., 2013), and
zwitterionic fusions (Bai et al., 2014). For example, self-healing
hydrogel was synthesized through reversible polyelectrolyte
complexes of alginate and 2-hydroxypropyltrimethyl ammonium
chloride chitosan (Ren et al., 2016). The two polymers were
mixed to form self-healing hydrogel at charge neutrality followed
by precipitation for 12 h. In addition to self-healing ability,
the hydrogel exhibited shear-thinning property, high adhesive
behavior, and cytocompatibility. Meanwhile, the polyampholytes
can form self-healing hydrogels with tunable mechanical
properties via electrostatic interactions between randomly
dispersed cationic and anionic repeating groups in polymers
(Sun et al., 2013). In analogy to double-network hydrogels,
the tough polyampholyte hydrogels contained ionic strong
bonds and weak bonds to maintain the shapes and enhance the
shock absorbance and self-healing abilities, respectively. Besides,
the more hydrophobic polyampholyte hydrogels exhibited
the robust and poor self-healing properties, whereas the less
hydrophobic polyampholyte hydrogels exhibited the soft and
good self-healing properties (Sun et al., 2013).

Multi-mechanism Interactions
Supramolecular chemistry is widely applied to prepare self-
healing hydrogels through various non-covalent interactions,
such as host–guest interaction and protein–ligand recognition.
In addition, hybrids of non-covalent interactions and/or
permanent/dynamic covalent bonds were developed to prepare
self-healing hydrogels for rapid recovery, long-term stability,
high mechanical property, and/or multi-responsive behavior.

Host–guest interactions occur when two or more chemical
species assemble via non-covalent interactions, such as van
der Waals force, hydrogen bond, electrostatic interaction,
and hydrophobic interaction. In host–guest chemistry, the
macrocyclic host moiety is inserted inside the guest moiety to
form a unique structure of the inclusion complexation. Host–
guest interactions are used popularly to prepare the self-healing
hydrogels, and many such hydrogels rely on external stimuli,
such as temperature (Zheng et al., 2012), light (Yamaguchi et al.,
2012), pH (Zheng et al., 2013), and redox potentials (Nakahata
et al., 2011; Miyamae et al., 2015), to trigger the healing process.
Meanwhile, host–guest hydrogels have also been developed to
recover themselves without the need of external stimuli (Appel
et al., 2012; Kakuta et al., 2013; Rodell et al., 2013; McKee
et al., 2014). For example, the self-healing HA hydrogel was
prepared based on the host–guest interactions of β-cyclodextrin-
modified HA (host macromer) and adamantane-modified HA
(guest macromer) (Rodell et al., 2013). The hydrogels exhibited
shear-thinning property and rapid recovery at 25◦C.

Catechol and gallol are polyphenolic moieties commonly
distributed in organisms as important functional groups, which
can form various covalent and non-covalent bonds, such

as Michael addition or Schiff base reaction with thiol and
amine, coordination bonds with metals, hydrogen bonds, and
aromatic interactions (Lee et al., 2007; Sileika et al., 2013).
Li et al. developed a novel self-healing hydrogel by self-
assembly of an ABA tri-block copolymer through the catechol-
mediated hydrogen bonding and aromatic interaction, where the
catechol-functionalized poly(N-isopropylacrylamide) (PNIPAM)
and poly(ethylene oxide) (PEO) were each selected as A
and B blocks for synthesis (Li et al., 2015). The hydrogel
exhibited a thermo-responsive sol-gel transition and recovered
its mechanical properties after repeated damages owing to
PNIPAMmoiety and catechol-mediated interaction, respectively.
Moreover, Birkedal and coworkers prepared a self-healing and
pH-responsive hydrogel using tannic acid (TA), metal ions,
and polyallylamine (PAA) in one step (Krogsgaard et al.,
2014a). Below pH 8, the hydrogel was crosslinked mostly by
reversible hydrogen bonds, covalent crosslinks between TA
and PAA, and coordination bonds between TA and iron ion;
while above pH 8, irreversible bonds predominantly enhanced
the gel modulus and hindered self-healing. Likewise, self-
healing hydrogels were developed based on interactions between
3,4-dihydroxyphenylalanine-modified PAA (DOPA-PAA) and
metal ions [such as Al(III), Ga(III), In(III), and Fe(III) ions;
(Krogsgaard et al., 2014b)].

Dupin and coworkers reported for the first time the formation
of self-healing hydrogels using gold(I) ions-crosslinked thiol-
terminated PEG via metallophilic attractive forces (Casuso
et al., 2014). The hydrogel exhibited cytocompatibility and
mimicked the synovial fluid of the human joint in rheological
properties under physiological conditions. Afterward, a series
of self-healing hydrogels with tunable mechanical properties
were prepared using HAuCl4 (or AgNO3) and 4-arm thiol-
terminated polyethylene glycol [(PEGSH)4] in different ratios
based on metal(I)-thiolate/disulfide exchange (Casuso et al.,
2015). These hydrogels showed reversible mechanical properties
and frequency-dependent stiffness/shock-absorbing properties
at the physiological pH due to the metal(I)-thiolate/disulfide
exchange. The potential of the hydrogel as an artificial nucleus
pulposus for the intervertebral discs was demonstrated via a
bovine ex vivo model using axial compression-tension cycles
at different frequencies followed by creep experiments and
µCT analysis (Pérez-San Vicente et al., 2017). Moreover, the
hydrogels incorporating bioactive glass nanoparticles led to the
stiffer properties for bone regeneration (Gantar et al., 2016).
Meanwhile hydroxyapatite was formed after degradation of the
nanoparticles.

On the basis of dynamic acylhydrazone and disulfide bonds,
self-healing hydrogels with pH/redox dual responsive transitions
have been developed (Deng et al., 2012). The hydrogel displayed
self-healing properties in acidic and basic conditions based on the
acylhydrazone and disulfide bonds, respectively. Additionally,
acylhydrazone bonds were activated by the catalytic aniline
in neutral conditions, and disulfide bonds were responsive
to the redox conditions. Recently, the self-healing hydrogel
was prepared from the mixture carboxyethyl cellulose-graft-
dithiodipropionate dihydrazide and DF-PEG under 4-amino-
DL-phenylalanine (4a-Phe) catalysis (Yang et al., 2017). The
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gelation time of the hydrogel could be controlled by varying
the total polymer content or the 4a-Phe concentration. The
hydrogel was applied for controlled release of doxorubicin and
3D culture of L929 cells because of pH/redox responsiveness and
cytocompatibility.

BIOMEDICAL APPLICATIONS OF
SELF-HEALING HYDROGELS

Self-healing hydrogels have received increasing attentions in
biomedical applications, such as wound healing (Gaharwar et al.,
2014; Han et al., 2016; Zhao et al., 2017; Zhu, S. K. et al., 2017;
Li et al., 2018; Liu, B. et al., 2018), drug delivery (Huebsch et al.,
2014; Liu et al., 2016; Wang et al., 2016; Xing et al., 2016; Wang J.
Y. et al., 2017; Xia et al., 2017; Yavvari et al., 2017; Zhu, C. et al.,
2017; Hong et al., 2018), tissue engineering (Dankers et al., 2012;
Bastings et al., 2014; Gaffey et al., 2015; Rodell et al., 2015a,b;
Loebel et al., 2017), surface coating (Canadell et al., 2011; Yoon
et al., 2011; Yang et al., 2015), 3D printing (Highley et al., 2015;
Darabi et al., 2017; Loebel et al., 2017; Wang et al., 2018), and soft
robot (Shi et al., 2015; Darabi et al., 2017; Han et al., 2017; Liu, B.
et al., 2018; Liu et al., 2018). In these cases, dibenzaldehyde-based,
UPy-based, catechol-based, and host–guest-based self-healing
hydrogels are highlighted due to many evaluations of in vivo
experiments. As summarized in Table 1, some animal models
have been used to verify the biocompatibility and efficacy of
self-healing hydrogels. Besides the biocompatibility, self-healing
hydrogels require injectability and long-term stability for drug
delivery, tissue engineering, and 3D printing; and toughness and
conductivity for soft robot.

Drug Delivery
Self-healing hydrogel based on host–guest interactions between
β-cyclodextrin-modified PEI and adamantane-modified PEGwas
developed for local siRNA release (Wang et al., 2018). The
modified polymers assembled with siRNA to form polyplexes,
which could improve the transfection efficiency and the viability
of cells. When injected into the myocardium, the hydrogel with
siRNA encapsulation enhanced the uptake of Cy5.5-siRNA and
maintained the silencing of GFP for 1 week in a GFP-expressing
rat.

Xing et al. reported an injectable and self-healing collagen-
gold hybrid hydrogel with adjustable mechanical properties
(Xing et al., 2016). This hydrogel was prepared through
electrostatic interaction between positively charged collagen
chains and negatively charged tetrachloroaurate ([AuCl4]

−)
ions, and further non-covalent interactions between subsequent
biomineralized gold nanoparticles and collagen. The hydrogel
was developed for localized delivery and sustained release of
the photosensitive drug. By combinatorial photothermal and
photodynamic therapies, the significantly enhanced antitumor
efficacy was demonstrated through an in vivo antitumor test
using the subcutaneous mouse model.

Self-healing hydrogels based on glycol chitosan and DF-
PEG (GC-DP) have been developed for intratumor therapy
in vivo. GC-DP hydrogel containing antitumor drug was

injected into the disease position with a steady release in situ
(Yang et al., 2017). Moreover, the ionic GC-DP hydrogel
exhibited microwave susceptibility to produce high-temperature
hyperthermia for tumor ablation (Wang J. Y. et al., 2017).
A multi-antitumor system was developed based on GC-DP
hydrogel containing doxorubicin/docetaxel-loaded poly(lactic-
co-glycolic acid) (PLGA) nanoparticles and iron oxide for
chemotherapy and magnetic hyperthermia (Xie et al., 2017). The
system showed the greater in vivo antitumor efficacy under the
alternative magnetic field compared to the hydrogel containing
doxorubicin/docetaxel-loaded PLGA nanoparticles.

Tissue Engineering
Self-healing host–guest hydrogels have been developed to
treat the myocardial infarction. The self-healing hydrogel,
formed through host–guest interactions of adamantine- and
β-cyclodextrin-modified HA, was injected into the ischemic
myocardium encapsulating endothelial progenitor cells (EPCs)
(Gaffey et al., 2015). A rodent model of acute myocardial
infarction was employed to confirm that a significant increase in
vasculogenesis was noted with the hydrogel encapsulating EPCs,
compared to the treatment of EPCs alone or hydrogel alone.
Moreover, the hydrogel was designed using adamantane/thiol-
modified HA and cyclodextrin/methacrylate-modified HA
through host–guest interaction and Michael addition (Rodell
et al., 2015a). The reversible host–guest interaction and
permanent Michael addition provided shear-thinning injection
and high retention, respectively. Epicardial injection of the
hydrogel in a rat myocardial infarction model showed significant
improvement of the outcome compared to the untreated group
and the hydrogel without Michael addition.

Self-healing hydrogels were designed as injectable carriers
for growth factors using PEG end-functionalized with four-fold
hydrogen-bonding ureidopyrimidinone (UPy) moieties. UPy-
modified PEG hydrogel incorporated with antifibrotic growth
factor was delivered in a pocket introduced under the kidney
capsule of rats (Dankers et al., 2012). The kidney capsule
was loosened from the kidney to create a small pocket. After
injection of growth factor-containing hydrogels, the number of
myofibroblasts stayed the same to the contralateral (healthy)
kidney, while significantly increased with the injection of saline
or hydrogel alone. In another example, growth factors were
delivered by UPy-modified PEG hydrogel to repair the infarcted
myocardium (Bastings et al., 2014). This pH-switchable hydrogel
could be injected through the long and narrow lumen of
the catheter mapping system, and rapidly formed a hydrogel
in contact with tissue. The growth factor-containing hydrogel
reduced scar collagen in a chronic myocardial infarction pig
model.

Self-healing hydrogels based on GC-DP was prepared for
tissue repairs. In the application of central nervous system (CNS)
repair, neurosphere-like progenitors showed better proliferation
and differentiation in GC-DP hydrogel, and injection of GC-
DP hydrogel combining neurospheres promoted functional
recovery in a zebrafish CNS impaired model (Tseng et al., 2015).
Moreover, the GC-DP hydrogel combining the optogenetic
method was developed as a temporal-spatial approach to treat
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TABLE 1 | Examples of self-healing hydrogels evaluated by animal models.

Self-healing mechanisms Materials Animal model evaluation References

Boronate ester bonds Alginate-boronic acid Oral administration for drug retention Hong et al., 2018

Coordination bonds Dexamethasone phosphate and Ca(II) Subcutaneous injection for drug delivery Liu et al., 2016

Coordination bonds Chitosan-catechol and Fe(III) Cancer model for drug delivery Yavvari et al., 2017

Coordination bonds and electrostatic interactions Collagen and gold Cancer model for drug delivery Xing et al., 2016

Electrostatic interactions Silicate nanoplatelets and gelatin Liver bleeding model for hemostasis Gaharwar et al., 2014

Hydrogen bonds Polyglutamic acid and lysine Skin defect model for wound healing Zhu, S. K. et al., 2017

Hydrogen bonds Ureidopyrimidinone-PEG Kidney implantation for tissue repair Dankers et al., 2012

Hydrogen bonds Ureidopyrimidinone-PEG Myocardial infarction model for tissue repair Bastings et al., 2014

Hydrogen bonds Gelatin methacrylate and tannic acid Gastric incision model for wound closure Liu, B. et al., 2018

Hydrogen bonds and aromatic interactions Polydopamine nanoparticles and

poly(N-isopropylacrylamide)

Skin defect model for wound healing Han et al., 2016

Hydrogen bonds and aromatic interactions Polydopamine, graphene oxide, and

polyacrylamide

Osteochondral defect model for tissue repair Han et al., 2017

Host-guest interactions β-Cyclodextrin-PEI and

adamantane-PEG

Myocardium injection for drug delivery Wang L. L. et al.,

2017

Host-guest interactions Adamantane/thiol-HA and

cyclodextrin/methacrylate-HA

Myocardial infarction model for tissue repair Rodell et al., 2015a

Host-guest interactions Adamantane-HA and

β-cyclodextrin-HA

Myocardial infarction model for tissue repair Gaffey et al., 2015

Host-guest interactions Adamantane-HA and

β-cyclodextrin-HA

Chronic kidney disease model for drug delivery Rodell et al., 2015b

Imine bond DF-PEG and chitosan-aniline tetramer Subcutaneous injection for cell retention Dong et al., 2016

Imine bond Chondroitin sulfate-aldehyde and

N-succinyl-chitosan

Subcutaneous injection for material

degradation

Lü et al., 2015

Imine bond DF-PEG-co-poly(glycerol sebacate)

and chitosan-polyaniline

Skin defect model for wound healing Zhao et al., 2017

Imine bond Aldehyde-xanthan and

carboxymethyl-chitosan

Abdominal wall defect model for tissue repair Huang et al., 2018

Imine bond DF-PEG and glycol chitosan Cancer model for drug delivery Xia et al., 2017

Imine bond DF-PEG-co-poly(glycerol sebacate)

and Chitosan-polyaniline

Liver bleeding model for hemostasis Zhao et al., 2017

Imine bond DF-PEG, glycol chitosan, fibrinogen,

and thrombin

Hindlimb ischemia model for tissue repair Hsieh et al., 2017

Imine bond DF-PEG and glycol chitosan Zebrafish neural injury model for tissue repair Tseng et al., 2015

Imine bond DF-PEG and glycol chitosan Zebrafish neural injury model for drug delivery Hsieh et al., 2018

Imine bond DF-PEG, glycol chitosan, fibrinogen,

and thrombin

Zebrafish embryos injection for angiogenesis Hsieh et al., 2017

neurodegenerative diseases (Hsieh et al., 2018). The hydrogel
containing bacteriorhodopsin plasmid and neural stem cells
was injected into CNS impaired zebrafish where the neural
repair was observed, particularly under green light exposure.
Besides, GC-DP hydrogel was also used to induce blood capillary
formation. With the incorporation of fibrin gel, a composite
hydrogel could form with an interpenetrating polymer network
(i.e., double network) of GC-DP and fibrin (Hsieh et al., 2017).
The hydrogel induced vascular endothelial cells to form capillary-
like structures, and injection of the hydrogel alone promoted
angiogenesis in zebrafish and rescued the blood circulation in
ischemic hindlimbs of mice.

Other Applications
Self-healing hydrogels, based on the host–guest interaction of
β-cyclodextrin- and adamantine-modified HA, were used in

the 3D printing of high-resolution structures through printing
of shearing-thinning ink hydrogel into self-healing support
hydrogel (Highley et al., 2015). Themulticellular structures could
be expediently patterned, such as printing of mesenchymal stem
cells within an ink hydrogel into a support hydrogel containing
3T3 fibroblasts. The channel-like structure was achieved by
writing the ink hydrogel into the methacrylate-modified support
hydrogel, followed by UV irradiation for secondary covalent
crosslinks of support hydrogel, followed by removal of the
physical (i.e., host–guest) ink hydrogel. Meanwhile, the self-
supporting structure was obtained by covalently crosslinking the
ink hydrogel and removing the non-covalent support hydrogel.
This system supported the patterning of multiple inks, cells, and
channels in 3D space.

A tough self-healing hydrogel was synthesized as cell
stimulators and implantable bioelectronics (Han et al., 2017). In
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the study, graphene oxide was partially converted to conductive
graphene through polydopamine reduction, and acrylamide
monomers were polymerized in situ to form the hydrogel
by interactions between graphene oxide, polydopamine,
and polyacrylamide. Meanwhile, the free catechol groups
on polydopamine imparted self-healing property and tissue
adhesion to the hydrogel via various non-covalent interactions.
The hydrogel could be used not only as an adhesive electrode
or motion sensor but also as an in vitro cell stimulator and
in vivo implantable intramuscular electrode. For example, the
hydrogel electrodes were implanted into the rabbit dorsal muscle
and connected to a signal detector using the transcutaneous
wires. The electrodes could record the electromyographic
signal when the rabbit was interfered with external
stimulation.

CONCLUSIONS

Self-healing hydrogels can be classified as robust and soft
hydrogels according to mechanical properties in biomedical
applications. Robust self-healing hydrogels are used as soft
robots (such as implantable or wearable biosensors) with
extended lifetime and mechanical performance due to repairing
of the damages or fatigues. Soft self-healing hydrogels with
shear-thinning properties are used in cell/drug delivery and
3D printing due to injection through narrow needles and
retention at target sites. To facilitate biomedical applications in
the future, self-healing hydrogels need to address several major
concerns including (1) designing self-healing hydrogels with
good biocompatibility and appropriate mechanical properties;

(2) better characterizing the self-healing properties with various
assessment tools (such as rheological measurement, mechanical
analysis, or other novel tools); (3) developing theories on self-
healing mechanisms and properties (such as chemistry, kinetics,
and thermodynamics); and (4) translation by animal experiments
and clinical trials. Moreover, because the self-healing properties
of hydrogels are mostly determined in non-physiological
environments, it would be challenging to verify that the known
self-healing properties are well-maintained in physiological
conditions such as with electrolytes, under mechanical
stress, and in the presence of material–cell interaction. In
addition, controllable biodegradability is important in self-
healing hydrogels for tissue engineering and drug delivery. In
comparison with permanent crosslinks, reversible crosslinks
are broken easily to facilitate biodegradation, while reversible
crosslinks recover the macro- and micro-scaled damages to
restrain biodegradation. Reversible equilibriums of self-healing
hydrogels should be controlled according to the various
applications, such as long-term drug release and cell-adaptable
materials.
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