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Abstract: Aconitum chasmanthum Stapf ex Holmes, an essential and critically endangered medicinal
plant from Kashmir Himalayas, was studied for its antioxidant and antifungal properties. The
shade-dried powdered rhizome was extracted sequentially with hexane, ethyl acetate, and methanol.
These subsequent fractions were evaluated for total phenolic content (TPC); total flavonoid content
(TFC); antioxidant assays, such as 1,1-diphenyl 1-2-picryl-hydrazyl (DPPH); ferric-reducing antioxi-
dant power (FRAP); superoxide radical scavenging (SOR); hydroxyl radical scavenging (OH) and
antifungal activity using the poisoned food technique. Highest TPC (5.26 ± 0.01 mg/g) and TFC
(2.92 ± 0.04 mg/g) were reported from methanolic extracts. The highest values of radical scavenging
activities were also observed in methanolic extracts with IC50 values of 163.71 ± 2.69 µg/mL in
DPPH, 173.69 ± 4.91 µg/mL in SOR and 159.64 ± 2.43 µg/mL in OH. The chemical profile of ethyl
acetate extract was tested using HR-LCMS. Methanolic extracts also showed a promising inhibi-
tion against Aspergillus niger (66.18 ± 1.03), Aspergillus flavus (78.91 ± 1.19) and Penicillium notatum
(83.14 ± 0.97) at a 15% culture filtrate concentration with minimum inhibitory concentration (MIC)
values of 230 µg/mL, 200 µg/mL and 190 µg/mL, respectively. Overall, the methanolic fractions
showed significant biological potential, and its pure isolates might be used to construct a potential
new medicinal source.

Keywords: antioxidant assays; IC50 value; phytochemical analysis; antifungal activity; extraction;
MIC value
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1. Introduction

From the dawn of human history, plants and their products have been employed
as natural medicines, nutritional supplements and medications [1]. Traditional medicine
is still utilised by 60–80 percent of the world’s population to treat common ailments [2].
The major reasons for utilizing folk medicine as a medical service source are accessibility,
affordability and cultural beliefs [3,4]. Because of their medicinal and nutritional properties,
as well as their large supply of phytochemical compounds, plants have been shown to be
absolutely crucial. Plant species, variety, extraction and/or processing procedures, and the
growing environment all influence the efficacy of natural antioxidants derived from plants.

Total phenolics, antioxidant activity, anticancer activity and enzyme inhibition of
Indian medicinal and aromatic plant extracts or pure compounds isolated from them are
being tested by different methods. The comparison of the pharmacological activity of phy-
tochemical components isolated from plants is becoming increasingly popular [5]. Because
of their advantageous pharmacological action, economic feasibility and low toxicity, plant
medicinal capabilities have been examined in the wake of contemporary systematic break-
throughs throughout the world [6]. Flavonoids, phenolics, sterols, alkaloids, carotenoids
and glucosinolates are only a few of the antioxidant-containing bioactive compounds found
in plants [7].

Aconitum chasmanthum Stapf ex Holmes (Ranunculaceae), a critically endangered and
well-known medicinal plant, is widely utilised in traditional and folk remedies across
Southeast Asia [8]. Raw rhizomes are harvested from high-altitude alpine and subalpine
meadows in the Western Himalayas. After being mitigated, rhizomes are used in several
Ayurvedic formulations and homoeopathic systems of medicine, and have been sold under
the name ‘Vatsanabha’ since ancient times. Its rhizomes have antifungal, insecticidal and
antibacterial properties [9], and have been used to treat pain and inflammation, as an
appetizer [10], as an antirheumatic [11], as an ointment for the treatment of abscesses and
boils [12], to treat heart disease [13,14], fever, coughs, asthma and snake bites [14]; and as a
antidiarrhoeal, anodyne, anti-inflammatory, antidiabetic, neurasthenic, astringent, and to
treat tonsillitis and colds [15,16].

An antioxidant is a chemical that slows down or stops the oxidation of a substrate
at low doses. Antioxidant chemicals act by a number of chemical mechanisms, such
as hydrogen atom transfer (HAT), single electron transfer (SET) and transition metal
chelation [17,18]. Antioxidants serve a physiological role by protecting cell structures from
damage caused by free radicals in chemical reactions. According to an increasing amount of
data, free radicals play a critical role in many essential physiological activities and oxidative
stress may play a part in the etiology of prevalent illnesses, including atherosclerosis,
chronic renal failure and diabetes mellitus

A billion individuals, more or less, have grave fungal diseases of the skin, nails and
hair; nearly a billion people have significant fungal illnesses that affect their lives or are
lethal; and another billion have severe fungal infections that have a significant impact on
their lives or are deadly [19]. The gravity of infections varies, ranging from symptomless
infections of the skin to fatal systemic infections. Furthermore, the death rate related to
fungal illness is >1.6 million, which is comparable to tuberculosis and >3 times higher than
malaria [20]. The key factors of differences in occurrence and frequency of fungal illness
throughout the globe include socioeconomic, geo-ecological and the growing figure of
at-risk inhabitants.

Aspergilli have always been a part of humans’ surroundings, but it was not until the
middle of the nineteenth century that they were identified as active participants in decay
processes, sources of animal and human illness or fermenting organisms able to produce
valuable primary metabolites [21]. Infections with Aspergillus spp. result in high sickness
and mortality [22]. Aspergillus fumigatus, Aspergillus terreus and Aspergillus flavus are the
most common sources of infection. A. niger is less frequently connected with invasive
illness [22]. Otomycosis [23], dermatological and respiratory illness [24] have all been linked
to A. niger. There have been few reports of A. niger pneumonia. Infections caused by
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A. niger are uncommon in people with hematological disorders but are the most prevalent
cause of otomycosis in immunocompetent individuals [25,26]. According to recent figures,
30 lakh cases of chronic respiratory infections, 2.23 lakh cases of cryptococcal meningitis
complicating HIV/AIDS, 70,000 cases of invasive candidiasis, 2.5 lakh cases of invasive
aspergillosis, 5 lakh cases of Pneumocystis jirovecii pneumonia, 1 lakh cases of disseminated
histoplasmosis and more than 1 billion cases of fungal asthma occur each year [19,27,28].

A. flavus is a kind of mycotoxigenic fungus capable of producing B aflatoxins. Second
only to A. fumigatus, A. flavus is the leading source of human invasive aspergillosis. It is also
the most common Aspergillus species to infect insects [29], and it may cause illnesses
in economically significant crops, such as maize and peanuts, as well as create strong
mycotoxins. A. flavus is a saprophyte that lives in soils all over the world and causes
illnesses on a variety of major agricultural crops, including maize (spike rot), peanuts
(yellow mold) and cottonseed during the harvest [15,30]. Both animals and humans are
infected by the fungus, either through tainted feed (aflatoxicosis or pancreatic cancer) or
invasive growth (aspergillosis), which is frequently deadly in vulnerable people [16]. A
broad variety of plant products, including fruits, such as grapes, degrade and decompose
rapidly after harvest due to Penicillium spp. [31,32]. A broad range of fruits, including
grapes, are susceptible to assault by these fungi, which produce mycotoxins, particularly
when they are stored. A wide variety of toxic mycotoxins and carcinogenic chemicals, such
as citrinin and patulin (as well as others), are generated by Penicillium species [33,34].

Conventional pesticides and fungicides used in agriculture have been linked to a
number of environmental and human health issues [35]; resistant strains of plant dis-
eases may be developed or already exist due to widespread usage of chemical treatments.
Pesticide residues may be discovered in the product of organically grown plants; thus,
producers have a moral obligation to minimize the use of pesticides. A new approach to
controlling and curing plant diseases is therefore required [36]. To compete with current
strategies against plant diseases and pests, these approaches must be effective, safe for the
environment and people and economically profitable.

As a result of this research, in the last several decades, the antimicrobial and antifungal
properties of various extracts and their ingredients, such as essential oils, have been studied
and attention is focused on the use of these natural materials in alternative plant-protection
measures [37].

The purpose of this study is to look into the phytochemical profile, antioxidant and an-
tifungal properties of Aconitum chasmanthum, a threatened species endemic to the Kashmir
Himalayan region.

2. Materials and Methods
2.1. Collection of Plant Material

In September 2020 (flowering season), the whole species (5 plants) of A. chasmanthum
was obtained from Razdhan pass (Bandipora), Jammu and Kashmir, India (34◦33′46.7′′ E
and 74◦37′76.7′′ N, 3423 m asl). The specimen was identified and validated at the Centre of
Biodiversity and Taxonomy, Department of Botany, University of Kashmir. A herbarium
specimen was deposited at Kashmir University Herbarium under Voucher Specimen No.
2939-(KASH).

2.2. Chemicals

For phytochemical extraction, hexane, ethyl acetate and methanol were utilized as
solvents. All of the solvents were purchased from Sigma Aldrich, Pvt. Ltd. in Mumbai,
India. Folin–Ciocalteu’s phenol reagent (2N), sodium carbonate (Na2CO3), 2,4,6-tripyridyl-
s-triazine (TPTZ), Phenazine methosulphate (PMS) were all purchased Sigma Aldrich, Pvt.
Ltd. in Mumbai, India. Gallic acid, aluminum chloride (AlCl3), rutin, DPPH, sodium
acetate (CH3COONa), Tris-HCl, nicotinamide adenine dinucleotide (NADH), nitro blue
tetrazolium (NBT), salicylic acid, ethanol, ferrous sulphate (FeSO4), hydrogen peroxide
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(H2O2), Sabouraud’s dextrose broth (SDB) and potato dextrose agar (PDA) were purchased
from Hi-Media, India.

2.3. Cold Extraction of Wild Rhizomes of A. chasmanthum

Considering its critically endangered status, wild rhizomes (5 g), stem, leaves and
flowers were cleaned and cut into tiny pieces, then shade-dried at ambient temperature
before being processed into powder with a mechanical grinder. The rhizome powder was
then sequentially extracted using a series of solvents, including hexane, ethyl acetate and
methanol, over a period of 48 h, with occasional shaking and using intermittent heating
over a water bath at their respective boiling temperatures. Whatman filter paper No. 1 was
used to filter the extracts. The filtrate was collected and concentrated in a water bath, with
the leftovers being discarded. The dried extracts were labeled and kept in glass vials at
4 ◦C for subsequent testing.

2.4. Qualitative Phytochemical Analysis

The subsequent fractions obtained with hexane, ethyl acetate and methanol were qualita-
tively analyzed for secondary metabolites, such as phenolics, alkaloids, glycosides, tannins,
flavonoids, terpenes, saponins and steroids, using conventional procedures [38–41].

2.5. Identification of Bioactive Molecules by Liquid Chromatography Coupled with High-Resolution
Mass Spectrometry

The rhizome of A. chasmanthum is, medicinally, an important part of the plant, a rich
source of diterpenoid alkaloids and the only part of the plant used in traditional medicines.
Therefore, High-Resolution Liquid Chromatography and Mass Spectrometry (HR-LCMS)
analysis, antifungal and antioxidant analyses of the rhizome extract only were conducted.
HR-LCMS analysis was performed on the ethyl acetate extract. A Sophisticated Analytical
Instrument Facility (SAIF), IIT Bombay, Powai, Mumbai, India, was used for the HR-LCMS
of the samples. A chemical fingerprint of the plant extract was prepared by high-resolution
liquid chromatography and mass spectrometry model-1290 Infinity ultra-high performance
liquid chromatography (UHPLC) System, 1260 infinity Nano HPLC with Chipcube, 6550
iFunnel Q-TOFs (Agilent technologies, Santa Clara, CA, USA), having specification of
direct infusion mass analysis (MS, MS/MS) with ESI positive mode and negative mode
ionizations. The mass range of 50 to 3200 amu was specified for the acquisition procedure,
having a mass accuracy of less than 1 ppm, with a scanning rate of each spectrum per
second. The analysis was performed in ESI positive and negativemode ionizations.

2.6. Total Phenolic Content (TPC)

The TPC of various extracts of wild rhizomes was assessed by using a modified spec-
trophotometric approach of Singleton et al. [42]. The phenolic composition was identified
by the change in color of the Folin–Ciocalteu reagent from yellow to blue. Folin’s reagent
(2N) was incubated with plant extract (1 mg/mL) in the presence of 4 mL of 20% Na2CO3.
The mixture was kept at an ambient temperature for 20 min. Light absorbance of samples
was measured at 765 nm. The samples were prepared in triplicate and the mean value
absorbance was determined. The gallic acid standard curve was used to determine the
amount of phenols in the extracts, and the results were expressed in mg gallic acid equiv-
alent (GAE) per gram of plant extract from the calibration curve, y = 0.0917x + 0.0631,
R2 = 0.9978.

2.7. Total Flavonoid Content (TFC)

A spectrophotometric technique with specified modifications was used to determine
the flavonoids concentrations (Quitter et al. [43]). Each sample contained 1 mL of different
extracts (hexane, ethyl acetate and methanol) in a concentration of 1 mg/mL of 2% AlCl3
in respective solvents. The samples were kept at normal room temperature for 1 h. Then,
the samples’ absorbance was obtained at 415 nm. As a control, methanol was employed.
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Triplicates of each sample were prepared, then the mean of the absorbance for each sample
was determined. The amount of flavonoids in extracts was calculated using the rutin equiv-
alent (mg of RU/g of extract) obtained form the calibration curve, y = 0.1664x + 0.0436,
R2 = 0.9988.

2.8. Biological Activity
2.8.1. Antioxidant Assays

Different antioxidant assays were used in this work to analyze extracts of wild
A. chasmanthum rhizomes for free radical scavenging activity.

DPPH Radical Scavenging Assay

With minor changes, the technique of Braca et al. [44] was used to investigate the DPPH
radical scavenging activity of plant extracts. Different amounts of wild rhizome extract
(50–250 µg/mL) were diluted with 1 mL of 0.5 mM DPPH solution. The reaction mixture
was stirred often before being kept in the dark at room temperature for 30 minutes. After
incubation, the sample’s absorbance was determined spectrophotometrically (Shimadzu
1900i, Kyoto, Japan) against methanol at 517 nm (used as a blank). The increase in DPPH free
radical scavenging capacity was indicated by the reduction in absorbance. The percentage
of DPPH free radical inhibition was calculated using the following formula:

% inhibition =
(AC − AS)

AC
× 100

where AC signifies the absorbance of the control (without the plant extract), and As denotes
the sample’s absorbance (reaction mixture containing plant extracts). As a control, α-
tocopherol was used. The test was repeated thrice.

Ferric-Reducing Antioxidant Power (FRAP)

With minor adjustments, the FRAP test was carried out in accordance with the
technique provided by Pang et al. [45]. In a 10:1:1 ratio, 300 mM of sodium acetate
buffer solution at pH 3.6, 20 mM of ferric chloride (FeCl3) solution and 10 mM of TPTZ
(2,4,6-tripyridyl-s-triazine) solution were prepared and combined. Before use, the FRAP
reagent was pre-heated to 37 ◦C and the plant extracts were combined with a 1.9 mL FRAP
reagent. The absorbance of each sample was determined at 593 nm after a 10 min incubation
period at room temeperature. The FRAP values were computed and represented as µM of
ferrous equivalent Fe (II) per g of sample based on the dry weight of the samples. The test
was repeated thrice.

Superoxide Anion Radical Scavenging Activity (SOR)

The SOR was performed with slight modifications utilizing the Liu and Ng [46] ap-
proach. The radicals were produced in a 16 mM Tris-HCl buffer at pH 8 containing 10 mM
phenanzine methosulphate (PMS), 78 mM nicotinamide adenine dinucleotide (NADH),
50 mM nitroblue tetrazolium (NBT) and rhizome extracts at concentrations of 50 µL,
100 µL, 150 µL, 200 µL and 250 µL. To examine the reactions between NBT and SOR rad-
icals, the production of purple formazan color was measured spectrophotometrically at
560 nm. The addition of wild rhizome extract to the reaction mixture, on the other hand,
inhibits NBT reduction by quenching superoxide radicals (O2−

). The reaction mixture’s
decreased absorbance showed that it could scavenge more superoxide anion. The formula
below was used to compute the percent inhibition of SOR.

% inhibition =
(AC − AS)

AC
× 100

where AC is blank absorbance, and As is sample absorbance. BHT was employed as a
positive control. The test was repeated thrice.
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Hydroxyl Radical Scavenging (OH−)

The salicylate technique developed by Zhao et al. [47] was utilized to assess the
hydroxyl radical scavenging capacity with minor changes. A total of 1 mL plant extracts at
concentrations of 50 µL, 100 µL, 150 µL, 200 µL, and 250 µL were added to a 4 mL reaction
mixture containing 1 mL of salicylic acid dissolved in 100% ethanol (9 mM), FeSO4 (6 mM)
and H2O2 (24 mM). H2O2 was added to the mixture and incubated for 30 minutes at room
temperature to initiate the reaction. The absorbance was measured at 510 nm.

The OH radical scavenging percentage was calculated using the next equation:

% inhibition =
(AC − AS)

AC
× 100

where AC represents the absorbance of a blank (without plant extract) and As represents
the absorbance of the sample. The test was repeated thrice.

2.8.2. Antifungal Activity

The antifungal effect of various dosages of A. chasmanthum rhizome extracts (ethyl
acetate and methanol) against Aspergillus flavus, Aspergillus niger and Penicillium notatum
was tested in the current study.

Test Microorganisms

Aspergillus flavus, Aspergillus niger and Penicillium notatum were the fungi used. The
fungal strains were supplied by the Plant Pathology Laboratory (Department of Botany,
University of Kashmir). All of the strains were maintained and cultivated on the Potato
Dextrose Agar (PDA) medium.

Poisoned Food Method

Various extracts (ethyl acetate and methanol) of wild rhizomes of A. chasmanthum
were investigated for their efficacy on the inhibition of mycelial growth of pathogenic
fungus utilizing the food poisoning technique [48,49]. Extracts (1 mg/mL) were prepared
by dissolving in 1% dimethyl sulfoxide (DMSO). Plant extract concentrations of 5%, 10%
and 15% were obtained by adding an appropriate quantity of the corresponding solvent to
a standard concentration (1 mg/mL). PDA medium with various concentrations of rhizome
extracts was sterilized and put on labeled Petri plates. The above-mentioned plant extract
concentrations were combined with PDA medium and then solidified on sterilized Petri
plates in a laminar airflow setting. The Petri plates were infected after solidification by
putting 5 mm mycelial discs of the specific fungus at the center of each plate. The discs were
collected from colonies that were rapidly growing. Triplicates of each dosage were retained.
At a temperature of 24 ± 2 ◦C, the Petri plates were inspected for mycelial development
after seven days of incubation. As a control, PDA plates without rhizome extracts (1%
DMSO) were utilized and hexaconazole (1 mg/mL) was considered as the positive control.
The inhibition of growth (as percentage) caused by different treatments at various dosages
was calculated using the below equation:

% inhibition =
(C− T)

C
× 100

where C signifies the fungal colony’s average diameter (mm) in the control and T denotes
the fungal colony’s average diameter (mm) in the test.

MIC (Minimum Inhibitory Concentrations) of the Plant Extracts

An antifungal drug’s MIC is expressed as the lowest dose showing no growth is
visible in the wells (80–100% inhibition) when examined visually. A micro-broth dilution
procedure, as reported by Weigand et al. [50] and in accordance with the Clinical and
Laboratory Standards Institute (CLSI) methodology [51], was used to determine each
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extract’s MIC. Sabouraud’s dextrose broth (SDB) was inoculated with a fresh colony of
fungal isolates and incubated at 37 ◦C for 4 h, equating to 2 × 105 CFU (colony forming
unit) adjusted to the 0.5 McFarland standard value. The plates were cultured at 37 ◦C
for 24 to 48 hours before being checked for fungal growth to determine the MIC. After
48 h of incubation in the micro-broth dilution, the MIC values were obtained using the
lowest concentration of extract with no fungal growth. Plant extracts ranging from 150
to 300 µg/mL were employed to assess the antifungal activity of all previously identified
fungus species.

2.9. Statistical Analysis

For each experiment, the results are shown as mean ± SE (standard error). Each of the
experiments listed and compared in each table was examined in parallel studies, with statis-
tical analysis conducted separately for each test. For antioxidant testing, two-way analysis
of variance (ANOVA) with Tukey’s test of multiple comparisons was performed using
GraphPad prism 8. IC50 values were calculated using GraphPad prism 8 and MS Excel 2019
by analyzing their linear regression equation. Scatter plots demonstrating Pearson’s pair-
wise correlation matrix was prepared using R (version 3.2). Pearson correlation coefficient
and heatmap between antioxidant activity and the samples’ phenolic and flavonoid levels
were analyzed using GraphPad prism 8. Tukey’s one-way analysis of variance (ANOVA)
was used to analyze the antifungal data (SPSS 23, SPSS Inc., Chicago, IL, USA). Statistical
significance was defined at p ≤ 0.05.

3. Results
3.1. Qualitative Phytochemical Analysis

The phytochemical study of different parts of wild A. chasmanthum revealed a moderate
to a significant presence of many bioactive components, such as phenolics, alkaloids,
glycosides, tannins, flavonoids, terpenes, saponins and steroids, as indicated in Table 1.

Table 1. Qualitative phytochemical screening of Aconitum chasmanthum.

Constituents Chemical Tests
Rhizome Stem Leaves Flower

H EA M H EA M H EA M H EA M

Alkaloids

Sodium hydroxide
test

Wagner’s test
− + ++ − + ++ − + ++ − + ++

Lead acetate test
Mayer’s test − + ++ − + ++ − + ++ − + ++

Flavonoids

Keller–Kiliani test
Sodium hydroxide

test
+ + ++ + − ++ − + ++ + + ++

Fehling’s test
Lead acetate test + + ++ + − ++ − + + + + ++

Glycosides
Phenol’s test

Keller–Kiliani test + + + + + ++ + + + + + ++

Frothing/foam test
Fehling’s test − + + + + ++ + + + + + ++

Phenols Salkowski test
Phenols test + + ++ − − − − − − + + ++

Saponins LB test
Frothing/foam test + + ++ − − − − − − + + ++

Steroids

Ferric chloride test
Liebermann–

Burchard
test

+ + ++ + + + + + + + + ++
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Table 1. Cont.

Constituents Chemical Tests
Rhizome Stem Leaves Flower

H EA M H EA M H EA M H EA M

Tannin Salkowski test
FeCl3 test − + + + + + − − − + + +

Terpenoids
Sodium hydroxide

test
Salkowski test

− + + + + ++ − + + + + ++

Terpenes Salkowski’s test − − − − − − − − − + + +

Note: ‘++’ = Strong presence, ‘+’ moderate presence, and ‘−’ = absent; where H = Hexane extract; EA = Ethyl
acetate Extract; M = Methanol extract, respectively.

3.2. Phytochemical Composition

A. chasmanthum ethyl acetate extract was analysed using the HR-LCMS method, and
35 compounds were identified. Table 2 lists all of the compounds that have been identified,
together with their m/z, adduct, and precise mass, as well as the chemical class they belong.

Table 2. Bioactive compounds and their chemical class identified in A. chasmanthum ethyl acetate
extract of wild rhizome using HR-LCMS.

S. No. Ret. Time m/z Adduct Compound Name Comp. Formula Category/Class/Subclass Exact Mass

1 1.215 180.1013 (M+H)+ 2(N)-Methyl-norsalsolinol C10H13NO2 Alkaloid 179.0941

2 1.332 377.0898 (M+HCOO)− 3,3′ ,5-Trihydroxy-4′ ,7-
dimethoxyflavanone C17H16O7 Flavonoid derivative 332.0896

3 1.76 376.2468 (M+H)+ Icaceine C22H33NO4 Diterpene alkaloid 375.2395

4 1.939 470.273 (M+H)+ Dimethylaminoethylreserpilinate C26H35N3O5
Reserpilinate

derivative alkaloid 469.2659

5 2.16 197.0481 (M+H)− Syringic acid C9H10O5 Phenolic compound 198.0554

6 2.261–
2.635 454.2782 (M+H)+ Delcosine C24H39NO7 Diterpene alkaloid 453.271

7 2.319 503.1451 (M−H)− 6-Caffeoylsucrose C21H28O14 Glycoside 504.1523

8 2.536 353.0873 (M+H)− Chlorogenic acid C16H18O9 phenolic derivative 354.0945

9 3.434 378.2628 (M+H)+ Karakoline C22H35NO4 Diterpene alkaloid 377.2554

10 3.619 408.273 (M+H)+ Cammaconine C23H37NO5 Diterpene alkaloid 407.2656

11 4.658–
4.986 468.2945 (M+H)+ Browniine C25H41NO7 Diterpene alkaloid 467.2871

12 4.886 422.2891 (M+H)+ Talatizamine C24H39NO5 Diterpene 421.2819

13 4.988 480.2943 (M+H)+ Delcorine C26H41NO7 Diterpene alkaloid 479.2871

14 5.107 659.1804 (M+HCOO)− Catechin 3′ ,5-diglucoside C27H34 O Flavonoid
O-glycosides 614.18

15 5.13–6.038 510.3051 (M+H)+ Germine C27H43NO8 Alkaloid 509.2977

16 5.189 355.1577 (M−H)− Gingerenone A C21H24 O5 Polyphenol 355.1577

17 5.27 491.1621 (M+HCOO)− Osmanthuside A C23H26O9 Coumaric acid esters 446.1638

18 5.407–
7.383 494.3118 (M+H)+ Zygadenine C27H43NO7 Alkaloid 493.3043

19 5.805 693.2109 (M−H)− Sucrose 1′ ,4′-(4,4′-dihydroxy-3,3′-
20dimethoxy-b-truxinate) C32H38O17 Stilbene glycoside 694.2182

20 5.815 579.1804 (M−H)− (S)-Naringenin
8-C-(2”-rhamnosylglucoside) C32H38 O17 Flavonoid glycoside 580.1874

21 5.97 545.1942 (M+CH3COO)− Haplodimerine C28H26N2O6 Quinoline alkaloid 486.1804

22 6.032 521.2094 (M−H)− Isolariciresinol
9′-O-β-D-glucoside C26H34O11 Lignan glycoside 522.2163

23 6.352 555.1701 (M−H)− 7-Dehydrologanin tetraacetate C25H32O14 Terpene 556.1776

24 7.077 521.1375 (M−H)− Sudachiin A C24H26O13 Flavonoid glycoside 522.1445

25 7.451 616.3103 (M+H)+ Hypaconitine C33H45NO10 Diterpene alkaloid 615.3031
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Table 2. Cont.

S. No. Ret. Time m/z Adduct Compound Name Comp. Formula Category/Class/Subclass Exact Mass

26 7.807 533.2579 (M−H)− 7,8-Dihydrovomifoliol
9-[rhamnosyl-(1->6)-glucoside] C25H42O12 Flavonoid glycoside 534.2651

27 8.13 630.3276 (M+H)+ Indaconitine C34H47NO10 Diterpene alkaloid 629.32

28 8.521–
11.332 630.3276 (M+H)+ Falaconitine C34H47NO10 Diterpene alkaloid 629.32

29 9.897–
11.561 630.3276 (M+H)+ Finaconitine C33H46N2O10 Diterpene alkaloid 629.32

30 12.749 535.1612 (M+HCOO)− Edulisin I C28H26O8 Furanocoumarins 490.1603

31 13.263–
14.128 639.3123 (M−H)− N1,N5,N10-Tris-trans-p-

coumaroylspermine C37H44N4O6
Coumaric acid

derivative 640.3186

32 13.913 563.4011 (M+HCOO)− Ganoderiol C C32H54O5 Triterpenoid 518.4029

33 16.648 593.2809 (M+CH3COO)− 3-Hydroxy-beta-ionol
3-[glucosyl-(1->6)-glucoside] C25H42O12 Terpene glycoside 534.2668

34 16.764 473.3327 (M−H)−
(3-β,17-α,23S)-17,23-Epoxy-

3,28,29-trihydroxy-27-norlanost-
8-en-24-one

C29H46O5 Triterpenoid 474.3399

35 19.711 597.4014 (M−H)− Idoxanthin C40H54O4
Carotenoid

(xanthophyll) 598.4063

Ethyl acetate extract of A. chasmanthum wild rhizome was dominated by alkaloids,
especially diterpenoid alkaloids, flavonoid derivative, phenolic derivative, flavonoid
O-glycosides, quinoline alkaloid, terpenes, coumaric acid derivatives, triterpenoids, ter-
pene glycoside and carotenoids. The chromatograms (Figure 1a,b) respectively showed
major peaks, indicating the presence of various bioactive compounds.

3.3. Total Phenolic Content (TPC)

The total phenolic content of the extracts of A. chasmanthum increased as follows:
methanolic extract > ethyl acetate extracts > hexane extracts. Methanolic extracts had the
maximum phenolic content in the wild rhizome, at 5.26 ± 0.01 mg GAE/g extract, whereas
the phenolic values in ethyl acetate and hexane extracts were 1.12± 0.04 mg GAE/g extract
and 0.42 ± 0.06 mg GAE/g extract, respectively.

3.4. Total Flavonoid Content (TFC)

TFC was measured as the mg/g of plant extract in rutin equivalents for various plant
extracts. The TFC of several extracts of A. chasmanthum wild rhizomes improved as follows:
methanolic extract > ethyl acetate extracts > hexane extracts. The highest flavonoid content
was 2.92 ± 0.04 mg rutin/g extract in the methanolic extract, followed by 0.24 ± 0.02 mg
rutin/g extract flavonoid in ethyl acetate and 0.11 ± 0.02 mg rutin/g extract flavonoid in
hexane extract, respectively.

3.5. Antioxidant Assays

DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging, ferric-reducing power
(FRP), superoxide anion radical scavenging and hydroxyl radical scavenging (OH−) were
used to analyze extracts of wild A. chasmanthum rhizomes for free radical scavenging effects
in this work. All of the approaches combined present a more accurate assessment of antiox-
idant capabilities, and the results show that inhibitory action was concentration-dependent.

3.5.1. DPPH Radical Scavenging Activity

The DPPH radical scavenging test revealed that various extracts had varying scav-
enging capabilities. The various extracts revealed solvent and concentration-dependent
scavenging capacities, as per the results of this experiment. Methanolic extracts had a
stronger scavenging action than other extracts, with the highest values of 65.58 ± 0.95%,
followed by ethyl acetate extract with the highest value of 59.59 ± 0.75% and hexane with
the highest inhibition of 49.99 ± 0.95% (Table 3). The IC50 values of hexane extract, ethyl
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acetate and methanol, respectively, were 263.01 ± 1.70 µg/mL, 199.50 ± 1.99 µg/mL and
163.71 ± 2.69 µg/mL (Figure 2a, Table 3).
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Table 3. DPPH free radical scavenging activity of different extracts of A. chasmanthum rhizome.

Conc. (µg/mL) Hexane Ethyl Acetate Methanol α-tocopherol

50 12.92 ± 0.73 22.38 ± 0.42 27.99 ± 0.55 50.24 ± 1.10

100 23.42 ± 0.52 31.48 ± 0.54 39.69 ±0.44 55.67 ± 0.87

150 29.46 ± 0.54 38.28 ± 1.05 45.50 ± 0.47 61.24 ± 0.27

200 37.67 ± 0.75 50.23 ±1.42 57.48 ± 0.63 75.37 ± 0.32

250 49.99 ± 1.10 59.59 ± 0.77 65.21 ± 0.95 81.10 ± 1.16

IC50 Value 263.01 ± 1.70 µg/mL 199.5 ± 1.99 µg/mL 163.71 ± 2.69 µg/mL 118.79 ± 1.27 µg/mL

Data reported as mean ± SE of three replicates.
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3.5.2. Ferric-Reducing Antioxidant Power (FRAP)

As shown in Table 3, the reduction power of A. chasmanthum wild rhizome extracts
was concentration-dependent. The greater the sample’s reducing activity, the higher
the absorbance value. With 50–250 µg/mL, the FRAP value at 593 nm increased from
7.72 ± 0.41 to 50.26 ± 0.48 µM Fe II/g DW for hexane extract, 11.67 ± 0.88 to
54.30 ± 0.75 µM Fe II/g DW for ethyl acetate extract and 16.31 ± 0.24 to 68.64 ± 0.37 µM
Fe II/g DW for methanolic extract (Table 4). The IC50 values of hexane extract, ethyl
acetate and methanol, respectively, were 246 ± 0.56 µg/mL, 219.71 ± 0.32 µg/mL and
179.11 ± 0.73 µg/mL (Figure 2b, Table 4).

3.5.3. Superoxide Anion Radical Scavenging Activity (SOR)

The methanolic extracts at 250 µg/mL demonstrated the highest percentage inhibition
of 60.0 ± 0.21, followed by ethyl acetate 54.75 ± 1.07 and hexane 50.86 ± 0.75 (Table 5).
The IC50 values of hexane, ethyl acetate and methanol rhizome extract, respectively, were
243.54 ± 0.34 µg/mL, 192.23 ± 0.39 µg/mL and 178.33 ± 0.91 µg/mL (Figure 2c, Table 5).
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Table 4. Ferric-reducing antioxidant power (FRAP) values for A. chasmanthum rhizomes.

Conc. (µg/mL) Hexane Extract Ethyl Acetate Methanol Ascorbic Acid

50 7.72 ± 0.41 11.67 ± 0.88 16.31 ± 0.24 32.56 ± 0.10

100 16.68 ± 0.37 25.50 ± 0.96 31.41 ± 0.11 43.55 ± 0.43

150 28.65 ± 1.55 35.33 ± 0.13 42.67 ± 0.14 59.34 ± 0.96

200 41.43 ± 0.15 46.36 ± 0.62 55.54 ± 0.15 70.46 ± 0.51

250 50.26 ± 0.48 54.30 ± 0.75 68.64 ± 0.37 80.25 ± 1.27

IC50 value 246.37 ± 0.56 µg/mL 219.71 ± 0.32 µg/mL 179.11 ± 0.73 µg/mL 125.80 ± 0.63 µg/mL

Data reported as mean ± SE of three replicates.

Table 5. Superoxide radical scavenging activity of different extracts of A. chasmanthum rhizome.

Conc. (µg/mL) Hexane Ethyl Acetate Methanol BHT

50 12.59 ± 0.38 22.18 ± 0.46 26.79 ± 0.91 34.44 ± 1.31

100 22.83 ± 0.61 30.49 ± 0.89 36.11 ± 1.03 42.35 ± 0.32

150 27.96 ± 0.28 41.54 ± 0.41 46.54 ± 1.01 52.9 ± 0.92

200 39.13 ± 0.34 50.18 ± 1.03 52.46 ± 0.54 60.61 ± 0.53

250 50.86 ± 0.75 54.75 ± 1.07 60.0 ± 0.21 68.39 ± 1.72

IC50 Value 243.54 ± 0.34 µg/mL 192.23 ± 0.39 µg/mL 178.33 ± 0.91 µg/mL 122.61 ± 0.57 µg/mL

Data reported as mean ± SE of three replicates.

3.5.4. Hydroxyl Radical Scavenging (OH−) Activity

The highest percentages of OH radical reduction was shown by methanolic extract
(67.24 ± 0.49), followed by ethyl acetate (58.98 ± 0.70) and hexane extracts (51.86 ± 1.95).
The IC50 values of hexane, ethyl acetate and methanol rhizome extract, respectively, were
238.85 ± 0.23 µg/mL, 208.85 ± 0.45 µg/mL and 159.64 ± 0.42 µg/mL (Figure 2d, Table 6).

Table 6. Hydroxyl radical scavenging (OH−) activity of different extracts of A. chasmanthum rhizome.

Conc. (µg/mL) Hexane Ethyl Acetate Methanol OH−

50 6.32 ± 0.29 16.61 ± 0.70 19.21 ± 0.68 37.62 ± 0.39

100 14.01 ± 0.74 28.92 ± 0.40 34.01 ± 0.29 48.81 ± 0.85

150 23.48 ± 1.81 34.01 ± 0.29 48.01 ± 0.59 57.62 ± 0.58

200 35.02 ± 0.88 47.79 ± 1.41 57.17 ± 0.29 68.02 ± 0.49

250 51.86 ± 1.95 58.98 ± 0.70 67.24 ± 0.49 74.68 ± 0.59

IC50 value 238.85 ± 0.23 µg/mL 208.85 ± 0.45 µg/mL 159.64 ± 0.42 µg/mL 101.99 ± 0.66 µg/mL

Data reported as mean ± SE of three replicates.

3.5.5. Relationship between Different Solvent Systems in Total Phenolic, Flavonoid and
Antioxidant Activity

For measuring the associations between various extracts of A. chasmanthum, Pearson’s
correlation coefficient was utilized. Comparative and correlative analyses were performed
on the results of the various antioxidant tests used in the present investigation on the
various A. chasmanthum extracts. Figure 3 depicts the relationship between the outcomes
of many antioxidant tests. The DPPH radical scavenging activity showed a weak corre-
lation with the TPC (R2 = 0.26) and TFC (R2 = 0.29). Antioxidant assays, such as FRAP
(R2 = 0.80 ***), showed a strong correlation with TPC, while SOR (R2 = 0.35), OH
(R2 = 0.39) and DPPH radical scavenging assay (R2 = 0.26) exhibited a week correlation
with TPC (Figure 3). In addition, TFC showed a good correlation with FRAP (R2 = 0.78 ***),
SOR (R2 = 0.33), OH (R2 = 0.37) and DPPH radical scavenging activity (R2 = 0.29). Figure 4
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depicts the Pearson correlations and degrees of significance for the association between
total phenolic content (TPC), total flavonoid content (TFC) and antioxidant (FRAP, DPPH,
SOR, OH) activities in different extraction solvents.
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Figure 4. Pearson correlation coefficients for total phenolic content (TPC), total flavonoid content
(TFC), and antioxidant activities 1-diphenyl 1-2-picryl-hydrazyl (DPPH), ferric-reducing antioxidant
power (FRAP), superoxide radical scavenging (SOR) and hydroxyl radical scavenging (OH−) activity
of A. chasmanthum extracts.

3.6. Antifungal Activity

The technique of poisoned food was used to test the inhibitory activity of different
doses of rhizome extracts of A. chasmanthum against Aspergillus flavus, Aspergillus niger
and Penicillium notatum, and the result is presented in Table 7. The average diameter
of test fungus colonies in poisoned food plates was much less than colony diameter in
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control plates, indicating that extracts had antifungal potential. The level of inhibition
was proportional to the concentration of extracts. The sensitivity to extracts of the fungi
examined demonstrated that increasing the concentration of plant extracts inhibited the
test fungus’s mycelial growth.

Table 7. Antifungal activity (percentage mycelial inhibition) of rhizome extracts of A. chasmanthum.

Pathogenic Fungi

% Mean Mycelial Inhibition
Negative
Control Hexaconazole

MIC
(µg/mL)Concentrations (%) of Culture Filtrate

5% 10% 15%

Aspergillus niger ME 41.16 ± 3.32 a 52.94 ± 1.46 a 66.18 ± 1.03 b 25.23 ± 1.13 a 83.76 ± 0.26 a 230
Aspergillus flavus ME 53.81 ± 1.11 b 69.36 ± 1.05 b 78.91 ± 1.19 c 15.47 ± 2.23 b 90.53 ± 1.32 b 200

Penicillium notatum ME 58.81 ± 0.76 b 71.46 ± 1.06 b 83.14 ± 0.97 bc 12.35 ± 0.73 b 95.65 ± 2.23 b 190
Aspergillus niger EAE 49.42 ± 0.99 b 49.98 ± 3.78 a 59.56 ± 3.14 a 25.23 ± 1.13 a 83.76 ± 0.26 a 250
Aspergillus flavus EAE 36.75 ± 3.72 a 65.88 ± 1.74 b 74.33 ± 0.71 bc 15.47 ± 2.23 b 90.53 ± 1.32 b 210

Penicillium notatum EAE 55.34 ± 1.06 b 69.75 ± 0.99 b 78.21 ± 1.31 bc 12.35 ± 0.73 b 95.65 ± 2.23 b 200

The data were determined for up to 7 days. The data represents the mean value ± SE (standard error) and
mean ± SE with followed by different letters within each column were judged to be statistically significant
and operational using the Tukey’s test at p ≤ 0.05. Tukey’s test shows that the mean ± SE followed by the
different letters within each column are substantially different at p ≤ 0.05. (ME: methanolic extract; EAE: ethyl
acetate extract).

The highest inhibition of mycelial development was found with a 15% concentration of
methanolic extracts (MEs) against Penicillium notatum, resulting in a 83.14 ± 0.97% (Table 7,
Figure 5C3) reduction in mycelial growth above control, while the minimum inhibition of
mycelial growth was observed with 5% ethyl acetate extract (EAE) against Aspergillus flavus
resulting in 36.75 ± 3.72 (Table 7, Figure 5B4) inhibition of mycelial growth above control.
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Figure 5. Inhibition of mycelia growth in Aspergillus niger, Aspergillus flavus and Penicillium notatum by
methanolic extract (ME) and ethyl acetate extracts (EAEs) at 5%, 10% and 15% after five days of incu-
bation. (A) Control Aspergillus niger, (B) control Aspergillus flavus and (C) control Penicillium notatum.
(A1–A3) Inhibition of mycelia growth in Aspergillus niger by 5%, 10% and 15% methanolic extracts,
respectively. (B1–B3) Inhibition of mycelia growth in Aspergillus flavus by 5%, 10% and 15% methano-
lic extracts, respectively. (C1–C3) Inhibition of mycelia growth in Penicillium notatum by 5%, 10%
and 15% methanolic extracts, respectively. (A4–A6) Inhibition of mycelia growth in Aspergillus niger
by 5%, 10% and 15% ethyl acetate extracts, respectively. (B4–B6) Inhibition of mycelia growth in
Aspergillus flavus by 5%, 10% and 15% ethyl acetate extracts, respectively, and (C4–C6) inhibition of
mycelia growth in Penicillium notatum by 5%, 10% and 15% ethyl acetate extracts, respectively.
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4. Discussion

A plant’s therapeutic value is related to its abundance of phytoconstituents [52]. They
contribute to human health in a variety of ways, including antioxidant properties, cell
differentiation effects, improved detoxification enzyme activity, DNA metabolism effects,
DNA repair maintenance, cancer cell death and cell proliferation reduction. Phytochemicals
have been ingested by cultures all over the world from time immemorial, but scientific
evidence to back this up is lacking. The study, development and marketing of functional
bioactive components and nutraceuticals are gaining popularity across the world [53].
Consumer knowledge of the link between nutrition, health and illness has led to an increase
in the intake of plant-derived bioactive components in the last two decades. Humans have
always been on the lookout for natural goods that can boost biological functioning and
help people live longer, better and fitter lives [54]. Plants are one of nature’s most valuable
treasures, with a lengthy history of traditional use as food and medicine dating back to
antiquity. The global growth in human health issues, on the other hand, has always posed
a serious challenge to medical science [53].

Both extract of ethyl acetate and methanol of A. chasmanthum exhibited larger yields of
phenolic components than hexane extract. This is owing to the polarity and eluent strength
differences between hexane, ethyl acetate and methanol. For extracting compounds with a
wide range of polarity, methanol is the most effective solvent [55]. According to studies
on phenolic compounds’ biological activities, phenols serve a crucial role in antioxidant
activity by quenching free radicals, singlet oxygen (O2−) or metal ions (Fe2+) due to their
lower redox potential [56,57]. Various antioxidant investigations on plant extracts [58–60]
have found a high link between a plant’s total phenolic content and its resulting antioxidant
capabilities. Methanolic extracts had the greatest total flavonoid level, which was similar to
what had been observed in phenolic compositions. Flavonoids have biological actions, such
as free radical scavenging, metal chelating activity, cardio-protective and hepatoprotective,
anti-inflammatory and anticancer activities [61,62]. Our results show that methanolic
extracts have the highest radical scavenging effect, followed by ethyl acetate and hexane.
The kind of extracting solvent utilized has an impact on the antioxidant activity of plant
extracts. The type of extraction solvents has been shown to alter both the production of
phytochemical ingredients and, as a result, their cumulative antioxidant activity. This is
due to the vast range of chemical characteristics and polarity of phytoconstituents, which
result in varied solvent solubilities [63,64].

Qualitative phytochemical analysis of the rhizome, stem, leaves and flower extracts
revealed tannins, alkaloids, saponins, glycosides, flavonoids and steroids in the three
extracts of hexane, ethyl acetate and methanol. HR-LCMS study of the ethyl acetate plant
extract of the A. chasmanthum rhizome showed, respectively, 15 and 20 major peaks in ESI
+ve and ESI −ve modes. When comparing the high-resolution liquid chromatograms and
mass spectra of constituents with the main library, all these compounds were characterized
and probably identified. The identified compounds were mostly diterpene alkaloids [65,66],
flavonoid and terpene glycosides [67] and phenol derivatives. However, it is the first report
for A. chasmanthum for HR-LCMS/MS, and most of the identified compounds are reported
for the first time in these species.

DPPH, FRAP, SOR and OH tests were used to analyze the scavenging capacity of
radicals in A. chasmanthum wild rhizomes. As a result of our observations, the extracts’
high phenolic content was likewise linked to their high levels of radical scavenging. Ac-
cording to our results, methanolic extracts show the highest radical scavenging effect than
ethyl acetate and hexane plant extracts. The extracts of wild rhizomes showed radical
scavenging activity that was less than all standards at all concentrations, but methanolic
extracts showed scavenging activity almost comparable to standards (BHT and OH−). Our
findings are comparable to those of earlier research [68–70]; in radical scavenging tests, the
antioxidant effect of several plant extracts was investigated. The phenolic compounds in
plant extracts may be responsible for the effect. Bonding/coordination of these molecules
with free radicals in the solution may stabilize the DPPH radical or any other radical in the



Antioxidants 2022, 11, 1052 16 of 19

solution. Membrane lipids may be protected against oxidation (lipid peroxidation) caused
by peroxides generated in cells by such substances [71]. Furthermore, oxidative stress may
contribute to a variety of disorders, including diabetes. A. chasmanthum may be able to help
with difficulties that occur as a result of an overabundance of reactive oxygen species.

Chemical fungicides are frequently employed to manage fungal diseases, although
this practice has been linked to detrimental environmental effects, possible human pesticide
exposure and residue deposition on the fruits. However, the emergence of disease resistance
on a regular basis has limited the efficiency of synthetic fungicides. As a result, there
is a high desire for safer, more effective chemotherapeutic drugs [72,73]. The hunt for
natural items with innovative applications, notably, in pest management, is now highly
active. Antimicrobial plant extracts containing a range of secondary metabolites, such
as quinones, alkaloids, flavonoids, terpenoids, tannins, saponins, and glycosides, have
sparked interest in plant disease control studies [36]. Various strategies have been used
across the world to manage a severe pathogenic fungus; one key strategy is the use of plant
extracts [74–76]. Antifungal activity was measured using the poisoned food technique in
this study. By supplementing plant extracts into PDA growing medium, the antifungal
stability of methanolic and ethyl acetate plant extracts of wild rhizomes of A. chasmanthum
against fungal strains of A. niger, P. notatum and A. flavus, was assessed. The extracts
inhibited the growth of mycelia in accordance with the concentration, with varying degrees
of fungal suppression (Table 7). The extracts (ethyl acetate and methanolic) of wild rhizomes
showed lesser mycelial inhibition of all pathogenic fungi tested than positive control
(hexaconazole) at all concentrations.

Similar findings by Anwar et al. [9] wherein they observed maximum antifungal activ-
ity against most of the pathogens with ethyl acetate extracts. Ethyl acetate plant extracts of
A. violaceum showing strong antifungal activity of almost 95% and 86% against A. flavus and
A. niger [68]. Chloroform extracts from Aconitum laeve tubers have antifungal action, sup-
pressing mycelia development by 100 percent in Fusarium oxysporum and Rhizoctonia solani
at 600 µg/mL; whereas, 1200 µg/mL was shown to be effective against Bipolaris maydis and
Alternaria alternata [77]. The methanolic extracts of A. heterophyllum had higher antifungal
activity against A. niger and Alternaria solani [78].

5. Conclusions

The objective of this work was to find out the therapeutic potential of crude and
subsequent fractions extracted from the rhizome of A. chasmanthum. The ethyl acetate and
methanol fraction have the most promising antifungal, as well as prominent antioxidant,
potential. The phytochemical composition of methanolic fraction, which includes alkaloids
and has the maximum phenolic and flavonoid yield of phytochemicals, is responsible
for these actions, and also demonstrates that flavonoids and phenols have a key role in
the plant extract’s antioxidant and antifungal properties. Overall, the methanol fraction
derived from A. chasmanthum showed significant biological potential and may be formed
into different concoctions as a potential novel medicinal source.
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