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ABSTRACT Sulfated glycosaminoglycans (GAGs) are distributed in consistent and distinctive 
patterns between the cell surface and the growth medium of haemopoietically active long- 
term bone marrow cultures. Heparan sulfate is the main cell surface component and chon- 
droit in sulfate is the major sulfated species in the medium. When the cultures are supplemented 
with /Y-D-xylosides a significant increase in chondroi t in sulfate synthesis is observed but no 
stimulation of heparan sulfate synthesis occurs. The chondroi t in sulfate accumulates in the 
culture medium in/~-D-xyloside-treated cultures but the composit ion of sulfated GAGs in cell- 
surface derived material is unaffected. ,8-D-xylosides also stimulate the production of haemo- 
poietic cells wi thout  any apparent alteration in the adherent stromal cells of the marrow 
cultures. Equivalent increases are obtained in cells at all stages of development so that a 
fivefold increase in plur ipotent stem cells (CFU-S) is matched by fivefold increase in the 
granulocyte-macrophage progenitors (GM-CFC) and in mature granulocytes. The stimulation 
persists for many weeks in fl-D-xyloside-treated cultures. These results indicate that the sulfated 
GAGs may play an important role in the regulation of haemopoiesis. 

The prolonged maintenance of haemopoiesis only occurs in 
association with the appropriate cellular environment in vivo 
(1, 2). The long-term production of haemopoietic cells in 
culture also depends on the formation of an adherent layer of 
bone marrow-derived stromal ceils (3, 4) similar in structure 
and organization to the corresponding haemopoietic environ- 
ment of  normal bone marrow (5, 6). Duplication of the hae- 
mopoietic defects of genetically anaemic mice strains SI/S1 d 
and W/W ~ in long-term cultures (7) supports the proposition 
that adherent stromal cells are required for haemopoiesis in 
vitro. Within the adherent layers of  long-term cultures the self- 
renewal of pluripotent stem ceils (CFU-S) occurs for up to 20 
wk and haemopoietic cells in all stages of  development can be 
detected (8, 9, 10). These include the whole range of haemo- 
poietic progenitor cells, e.g., the granulocyte/macrophage pro- 
genitor cell (GM-CFC) and certain mature cell types (11). 
Furthermore, in all aspects so far studied, the haemopoietic 
cells produced are identical to their in vivo counterparts (12). 

Although the cellular environment is evidently a prerequisite 
for haemopoietic activity, the question remains whether it 
fulfills a directive or permissive role. Our approach to this 

problem has been to use the stromal cell-dependent long-term 
bone marrow cultures to investigate various aspects of cell-to- 
cell interactions and the importance of diffusible regulatory 
molecules in haemopoietic cell development (12). As part of 
these studies we have been investigating a class of polysaccha- 
ride molecules which are components of  the extracellular ma- 
trix and the external cell surface membrane. These are the 
sulfated glycosaminoglycans (GAGs) which normally exist in 
association with proteins in the form of proteoglycan (13). The 
GAGs are present in largest quantities in connective tissues, in 
which they are essential for the physical properties of elasticity 
and compressibility (14). However, their functions extend be- 
yond those of structural elements, and changes in GAG pro- 
duction and distribution during discrete phases of morphogen- 
esis and organ regeneration are closely correlated with events 
such as cellular migration and differentiation (15). Sulfated 
GAGs, particularly heparan sulfate, are widely distributed in 
cell surface membranes where they may play an important role 
in cellular recognition (16). Thus, these complex molecules are 
candidates for influencing haemopoietic cell development. 

Sulfated GAGs have been identified in haemopoietic tissue 
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but their functions remain obscure (17, 18, 19). There are no 
data available on GAGs in bone marrow cultures. In the 
present study we have determined the structure and distribution 
of GAGs in the adherent layer and in the spent medium of 
haemopoietically active marrow cultures and, in an attempt to 
assess the physiological role of GAGs, we have evaluated the 
effects on haemopoiesis of fl-o-xylosides, agents known to 
stimulate sulfated GAG synthesis in a variety of other cell 
types (20-22). 

MATERIALS AND METHODS 

Establishing Long-term Bone Marrow Cultures: Long-term 
bone marrow cultures were established from 8- to 12-wk-old BDF~ (DBA/2 x 
C57BI/6)F~ donors. Femora were removed from the donors, and the marrow 
cells were flushed into Fischer's medium (Gibco Ltd) supplemented with horse 
serum (20% final concentration) (Flow Labs, U. K.), using 1 femur per 10 ml of 
growth medium (3, 23). The marrow suspension was prepared in batches of 100 
ml, and 10 ml aliquots were dispensed into 25 cm 2 base tissue culture flasks 
(Sterilin). The cultures were gassed with 5% CO2 in air and incubated at 33°C. 
They were fed weekly by removing half the growth medium and replacing it with 
fresh medium. Before feeding, the cultures were gently agitated to uniformly 
suspend the nonadherent cells, and the harvested cells were counted and assayed 
for CFU-S and GM-CFC content. Occasionally, the cultures were sacrificed to 
determine the CFU-S and GM-CFC content of the adherent layer. The growth 
medium was decanted and the adherent layer gently rinsed with 3-5 ml of 
Fischer's medium. The wash was discarded and the adherent cells were scraped 
off the base of the flask with a silicone rubber policeman into 5 ml of Fischer's 
medium, and a single-cell suspension obtained by repeated aspiration through a 
pipette. 

f l -o -Xy los ides :  A stock solution of 10-2M, p-nitrophenyl-,8-D-xylopyr- 
anoside (Koch-Light Lab Ltd) was prepared in Fischer's medium and filtered 
through a 0.22 ,uM filter. The growth medium was supplemented with the 
appropriate concentration of fl-D-xyloside when the cultures were established 
and at every feed. 

CFU-S Assa y: CFU-S were assayed according to the method of  Till and 
McCulloch (24). Groups of 8-10 recipient BDF~ mice received a dose of 850R 12 
MeV electron irradiation and on the same day were injected (i.v.) with 5-8 x 104 
marrow ceils harvested from long-term cultures. The mice were killed 8 d later, 
and the spleens were removed and fixed in Bouin's solution before counting the 
spleen colonies. 

Granulocyte/Macrophage Progenitor Cell Assay: The gran- 
ulocyte/macrophage colony-forming ceils (GM-CFC) were assayed according to 
a modified procedure of  the technique of Bradley and Metcalf (25). 3-5 x 104 
cultured bone marrow ceils per ml were suspended in Fischer's medium supple- 
mented with horse serum (20% vol/vol), WEHI-3B conditioned medium (15% 
vol/vol) (as the source of colony stimulating factor) and 0.3% agar (final concen- 
tration) (Difco). Triplicate 1 ml aliquots of the cell suspension were plated into 
35-ram petri dishes and incubated at 37°C in a humidified atmosphere of 5% 
CO._, in air. After 7 d, aggregates of more than 50 cells were scored as colonies. 

Tritiated Thymidine Suicide Assay: The :'H-TdR suicide assay 
(26) was used to measure the percentage of the CFU-S population in the S-phase 
of the cell cycle. Cells harvested from long-term bone marrow cultures were 
adjusted to a concentration of 5-30 x l0 '~ cells/ml in Fischer's medium. :*H-TdR 
(specific activity 15 Ci/mmole, Amersham International) was added to one of  
duplicate l-ml aliquots of the cell suspension to give a final concentration of 200 
/tCi/ml, and an equal volume of Fischer's medium was added to the other 
aliquots. The ceils were incubated for 30 min at 37°C. After the incubation, the 
cells were placed on ice, diluted to the appropriate concentration, and an equal 
number of cells incubated with or without 3HTdR were assayed for CFU-S. 
Detailed analysis of the statistical treatment using this technique has been 
reported elsewhere (27). 

Radiolabeling and Harvesting of Sulfated GAG Produced 
by Bone Marrow Cultures: The detailed procedure for the radiolabel- 
ing and harvesting of sulfated GAGs  is described by Gallagher et al. (16). Briefly, 
the GAGs  were biosynthetically radiolabeled with 5 #Ci/ml [:~H]glucosamine and 
10/zCi/ml Nad*'~SO4. The isotopes were added to the growth medium and after 
48-72 h the growth medium was decanted and centrifuged at 800 g for l0 min. 
The supernatant (spent medium) was retained. The adherent layer was then 
treated with 0.05% (wt/vol) trypsin in phosphate-buffered saline, pH 7.2, for 20 
rain at 37°C. The trypsinized material was centrifuged at 800 g for 10 rain and 
the supernatant and a wash of the penet were pooled to yield the adherent layer 
trypsin extract. Glycosaminoglycans present in the spent medium and the adher- 

ent trypsin extract were separated by NaCI gradient elution from DEAE ion 
exchange chromatography. Five bone marrow cultures were used for each group. 

Radiolabeled fractions corresponding to sulfated glycosaminoglycans were 
pooled, dialyzed against water, and concentrated by rotary evaporation and 
freeze drying. Material designated as chondroitin sulfate was completely degraded 
to disaccharides by chondroitinase ABC and had an electrophoretic mobility 
identical to that of a commercial preparation of chondroitin sulfate. Heparan 
sulfate was identified as material sensitive to extensive depolymerization by 
nitrous acid (28) in which the ~sS-label was found in the scission products by gel 
chromatography and high voltage electrophoresis as either free sulfate (derived 
from N-sulfated residues in the original polysaccharide chain) or O-sulfate groups 
associated with di- and tetrasaccharide fragments. Full details of the heparan 
sulfate fine structure will be published elsewhere. 

RESULTS 

Effect of  p-Ni t ropheny l -  fl- D-Xyloside on the 
Biosynthesis o f  GAGs in Long-term Bone 
Marrow Cultures 

Long-term bone marrow cultures were established and fed 
weekly with growth medium containing 5 × 10 -4 M p-nitro- 
phenyl-fl-D-xyloside. After 5 wk the cultures were labeled for 
48 h with [aH]glucosamine and Na235SO4. The spent medium 
and a trypsin-extract of  the adherent layer were then harvested 
and the glycosaminoglycans were separated by DEAE ion 
exchange chromatography (Fig. 1). 
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FIGURE I Influence of fl-D-xyloside on sulfated-GAGs produced 
by mouse bone marrow cultures. Mouse bone marrow cultures were 
established and maintained in 5 x 10 -4 M p-nitrophenyl-fl-D-xylo- 
side. After 5 wk these cultures and controls were incubated for 48 
h with [aH]giucosamine and Na2aSSO4. GAGs in the growth me- 
dium ( ) and in a trypsin extract of the adherent layer (---)  were 
fractionated by NaCl-gradient elution from DEAE-cellulose. Panel a, 
GAGs from xyloside-treated cultures, panel /9 GAGs from control 
cultures. For simplicity, only the [a~S]sulfate elution profiles are 
shown. Note the different DPM axes in panels a ( x l 0  -4) and b 
(Xl0 -a) for the medium-derived GAGs which indicate the enhanced 
sulfated GAG synthesis in the xyloside-treated cultures (panel a). 
Over the portion of the chromatogram shown the NaCl gradient 
was linear from 0.25 to 0.65 M. 

SPOONC[R rr gt. Regulation of  Haemopoiesis in Bone-Marrow Cultures 5 1 1  



The elution profiles obtained with xyloside-treated (Fig. I a) 
and control (Fig. I b) cultures show that little difference was 
observed in the trypsin-extracted material. The first peak, 
eluting between fractions 35 and 55, was almost entirely hep- 
aran sulfate whereas the second peak (fractions 56-75) was 
mainly chondroitin sulfate. The radioactivity profile of the 
spent medium from control cultures was quite distinctive from 
that of the corresponding trypsin extract (Fig. 1 b). Chondroitin 
sulfate was the main component present in the medium of 
control cultures: the second peak (fractions 56-75) was entirely 
chondroitin sulfate, and the first broad peak (fractions 35-55) 
contained mainly chrondroitin sulfate (70%) and a smaller 
amount (30%) of  heparan sulfate. In the xyloside-treated cul- 
tures, only a single broad peak of  radioactivity was observed in 
the spent medium which was almost entirely degraded by 
chondroitinase ABC. The amount of  chondroitin sulfate in the 
medium fraction from xyloside-treated cultures was 30- to 40- 
fold greater than that found in the medium from corresponding 
control cultures (note different scales for right-hand vertical 
axes in Fig. 1). 

Effect of p-Nitrophenyl-fl-D-Xyloside on 
Haemopoiesis in Long-Term Bone 
Marrow Cultures 

Long-term bone marrow cultures were established in growth 
medium supplemented with a range of xyloside concentrations 
from 5 x 10 -5 M to 10 -3 M. The cultures were fed weekly with 
medium containing xyloside, and the harvested cells were 
counted and assayed for GM-CFC and CFU-S content. The 
results from 10 weekly assays were averaged and are shown in 
Fig. 2. There is a xyloside-mediated dose-dependent increase 
in the production of total cells, GM-CFC and CFU-S in the 
treated bone marrow cultures which is at a maximum of about 
fivefold increase at a dose of 5 x 10 -4 M xyloside. It is also 
clear from Fig. 2 that there is a remarkably consistent ratio 
between the number of total cells, GM-CFC, and CFU-S 
(300:15:1) detected in the cultures, regardless of the concentra- 
tion of xyloside used. The differential morphology of the 
suspension cells harvested from long-term cultures is not al- 
tered by the treatment with xyloside (data not shown). The 
duration of  haemopoietic activity in bone marrow cultures is 
prolonged in the treated cultures. The control cultures in the 
experiment described in Table I ceased production of CFU-S 
after 12 wk and those supplemented with 5 x 10 -5 M xyloside, 
after 15 wk. In the bone marrow treated with 5 x 10 -4 M 
xyloside, haemopoiesis declined between 18 and 21 wk (Table 
I). 

Adherent layers were occasionally sacrificed to assay the 

14 21 7 

12 18 6 

10 15 5 

8 1 2 4  

6 9 3- 

4 6 2- 

2 3 1- 

0 0 0 

512 

CFU-S content. Table II shows that, although the total cell 
and CFU-S content of an adherent layer is variable, in all cases 
assayed the number of CFU-S in the xyloside-treated cultures 
slightly exceeded that of the control adherent layers. 

Proliferative Status of CFU-S in 
Bone Marrow Cultures Treated 
with p-Nitrophenyl- fl- D-Xyloside 

The proliferative status of CFU-S in 3- to 5-wk-old bone 
marrow cultures was measured by the thymidine suicide tech- 
nique. It has previously been shown that in untreated bone 
marrow cultures the proportion of the CFU-S population in 
the S phase of the cell cycle is maximal in the 2-3 d after 
feeding, after which there is a decline to insignificant levels of 

TABLE I 

Duration of Active Haemopoiesis in Bone Marrow Cultures 

Time Total suspension cells x 
after 106 

cultures 
were in i -  Con- 5 x  10 -5 5 x 1 0  -4 

tiated trol M xyl M xy[ 

Suspension CFU-S/culture 

Con- 5 x  10 -s 5 x  10 -4 
trol M xyl M xyl 

wk 

4 1.30 3.62 7.28 518 1,289 2,427 
8 1.48 2.70 6.80 146 380 1,564 

11 2.40 2.30 7.20 162 275 1,620 
12 0.50 0.90 3.20 90 155 810 
15 0.40 0.72 4.54 10 90 448 
18 0.30 0.30 2.32 0 40 220 
21 0.10 0.10 0.10 0 0 0 

xyl: p- nit rophenyl-,8-'o-xyloside. 

TABLE II 

CFU-S Content of Adherent Layers of Long-term Bone Marrow 
Cultures 

Cells per adherent CFU-S per adherent 
layer x 106 layer 

Experi- Age of 5 x 10 4 5 x 10 4 

• Cell count /cu l ture  x l 0  6 

• GM-CFC/cu l tu re  x10 3 

• CFU-S/cu l tu re  x l 0  2 

,I 
Control 5x 10 SM 5x 10-4M 

X yloside concentration 
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ment cultures Control M xyl Control M xyl 

wk 

1 4 1.6 1.4 276 350 
2 8 2.0 2.0 214 322 
3 4 4.5 6.3 810 1,197 
3 5 4.8 6.7 672 1,273 

xyl: p-n i t rophenyl - f l -D-xy los ide 
Ex. 1: Full results not  shown. 
Ex. 2: Produced results shown in Fig. 2. 
Ex. 3: Produced results shown in Fig. 3. 

FIGURE 2 The effect of p-nitrophenyl-,8-D-xylo- 
side on haemopoiesis in long-term bone marrow 
cultures. Data shown are the average of 10 weekly 
assays +_. SEM. Figures refer to the total suspension 
cells, GM-CFC and CFU-S per culture. There were 
six cultures per group. 



3H-TdR kill by 7 d postfeeding (8). These results are repeated 
in the control group shown in Fig. 3. The CFU-S from cultures 
treated with 5 x 10 -4 M xyloside follow a similar feeding- 
dependent cycle of 3H-TdR kill, but there is a considerable 
increase in the maximum percentage of CFU-S killed by 3H- 
TdR. Furthermore, a significant proportion of the CFU-S are 
maintained in the S phase 7 d postfeeding. The results of three 
assays indicated that the 3H-TdR suicide of CFU-S in the 
adherent layer was also higher in xyloside-treated cultures than 
in untreated cultures (data not shown). 

D I S C U S S I O N  

Long-term bone marrow cultures produce both heparan sulfate 
and chondroitin sulfate, the same sulfated G A G  species that 
are present in normal marrow and spleen cells in vivo (17-19). 
The pattern of distribution of the GAGs associated with the 
pericellular domain of bone marrow cultures is reproducible 
and characterized by heparan sulfate as the major sulfated 
GAG component. In contrast, chondroitin sulfate is consis- 
tently detected as the principal sulfated species in the growth 
medium, and heparan sulfate is present only in minor quanti- 
ties. Treatment of long-term cultures with xylosides led to only 
slight changes in the cell-associated heparan and chondroitin 
sulfate but gave major differences in the G A G  composition of 
the spent medium. In the latter case, a 30- to 40-fold increase 
in chondroitin sulfate occurred as a result of xyloside treatment 
and no heparan sulfate was detected. This effect agrees with 
previously published information in which xylosides were ef- 
fective at stimulating chondroitin sulfate in embryonic chick 
cartilage cultures (20, 21). The biosynthesis of chondroitin 
sulfate and heparan sulfate is initiated on a fl-xylose moiety 
linked to a serme residue in a protein core (22). fl-D-xylosides 
(derivatives of xylose which carry a substituted aglycone group 
at the carbon-1 position) act as artificial initiators of chondroi- 
tin sulfate synthesis (21, 22). Despite the theoretical feasibility 
of xylosides to act as primers for heparan sulfate synthesis, 
other studies have also shown that xylosides are poor, or 
inactive, substrates for the assembly of heparan sulfate chains 
(22, 29, 30). Thus, the dramatically elevated levels of chon- 
droitin sulfate seen in long-term culture supernatant medium 
after treatment with fl-D-xyloside were perhaps not too sur- 
prising. What is intriguing, however, is the concomitant stim- 
ulation of haemopoiesis in such cultures. The enhanced hae- 
mopoiesis occurs not only after cultures are treated with p- 
nitrophenyl-fl-D-xyloside but with other xylosides (e. g., meth- 
ylumbelliferyl-fl-D-xyloside) as well (E. Spooncer, unpublished 
observation). 

Haemopoiesis is stimulated in a dose-dependent manner and 
is reflected by equivalent increases in the number of pluripo- 
tential stem cells (CFU-S), granulocyte progenitor cells (GM- 
CFC) and their mature progeny, i. e., the balance between self- 
renewal, differentiation and maturation is unaffected by xylo- 
sides. This increase in haemopoiesis is mainly associated with 
the suspension phase of long-term cultures; little, if any, change 
occurs in haemopoiesis associated with the adherent cell layer. 
Since the suspension CFU-S are derived from CFU-S in the 
adherent layer (9), then these observations can be accommo- 
dated by the proposition that the CFU-S population increases, 
yet the proportion of  CFU-S which are diverted to differentiate 
and the degree of amplification to mature cells remain constant. 
Thus, continuous supplement of xyloside does not lead to a 
progressive stimulation but sustains a stimulatory effect at a 
constant plateau, the level of which is established in the first 
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FIGUR[ 3 The effect of p-nitrophenyl-/3-o-xyloside on CFU-S pro- 
liferation in long-term bone marrow cultures. 

few weeks of culture. These data suggest the attractive hypoth- 
esis that xyloside treatment modifies cell:cell and cell:matrix 
interactions in the adherent layer (the stromal cell environ- 
ment) in some way that renders it able to support higher levels 
of haemopoiesis than untreated adherent layers. The mecha- 
nism involved is unclear. Xylosides only altered sulfated gly- 
cosaminoglycans in the medium, not the cell-associated mate- 
rial. However, if these complex polysaccharides in some way 
regulate haemopoietic activity within the marrow stroma, then 
a high concentration of chondroitin sulfate in the overlying 
medium of  bone marrow culture could modulate such control 
processes leading to a stimulation of  CFU-S proliferation and 
to the establishment of a new, and more active, steady-state of 
haemopoiesis. Presumably, the primary effect is to modify the 
proliferative activity of the CFU-S. Indeed, this was found to 
be the case. Our data clearly show that in xyloside-treated 
cultures a higher proportion of the CFU-S were detected in the 
S phase of the cell cycle and that the duration for which a 
significant proportion of the CFU-S were in the DNA S phase 
was prolonged. Experiments are in progress to test whether this 
is mediated by the over-production of the factor which is 
known to stimulate DNA synthesis in CFU-S (32) and which 
can be produced by the adherent cells in long-term marrow 
cultures (12, 27). However, previous work has shown that 
addition of  excess CFU-S stimulatory material to long-term 
cultures did not lead to an increase in the number of CFU-S, 
although CFU-S proliferation was stimulated (12). Presum- 
ably, the "extra" CFU-S generated either died or were recruited 
into differentiation. Therefore, in addition to prolonging the 
proliferation of CFU-S, the xylosides also enable the cultures 
to support both the maintenance of CFU-S and their differ- 
entiation and proliferation. 

It is also of interest that the duration of haemopoiesis in fl- 
D-xyloside-treated cultures is more prolonged than the corre- 
sponding control cultures. To discount the possibility that the 
increase in numbers of CFU-S merely reflects an increase in 
the spleen seeding efficiency of pluripotent cells (31), we have 
also measured the seeding efficiency of CFU-S from control 
and xyloside-supplemented cultures. No significant differences 
were found (data not shown). 

In conclusion, although this work indicates an association 
between stimulation of G A G  synthesis with fl-D-xylosides and 
increased capacity of long-term cultures to maintain haemo- 
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poiesis, no "cause and effect" relationship has been formally 
established. It could be, for example, that the xylosides are 
having a role other than the stimulation of  GAG synthesis. 
However, the results presented here demonstrate that haemo- 
poiesis is enhanced in xyloside-treated long-term cultures and 
that this could have important clinical implications (maybe 
useful for facilitating haemopoietic recovery after chemother- 
apy or treatment of haemopoietic aplasias?) as well as leading 
to further experiments at the mechanistic level. In this context 
we plan to isolate and purify the GAGs from xyloside-treated 
cultures and determine the effect directly on haemopoietic cell 
development. 
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