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Comparative transcriptome analysis reveals
gene expression differences between two
peach cultivars under saline-alkaline stress
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Abstract

Background: Saline-alkaline stress is a major abiotic stress that is harmful to plant growth worldwide. Two peach
cultivars (GF677 and Maotao) display distinct phenotypes under saline-alkaline stress. The molecular mechanism
explaining the differences between the two cultivars is still unclear.

Results: In the present study, we systematically analysed the changes in GF677 and Maotao leaves upon saline-
alkaline stress by using cytological and biochemical technologies as well as comparative transcriptome analysis.
Transmission electron microscopy (TEM) observations showed that the structure of granum was dispersive in
Maotao chloroplasts. The biochemical analysis revealed that POD activity and the contents of chlorophyll a and
chlorophyll b, as well as iron, were notably decreased in Maotao. Comparative transcriptome analysis detected 881
genes with differential expression (including 294 upregulated and 587 downregulated) under the criteria of |log2
Ratio| 2 1 and FDR <0.01. Gene ontology (GO) analysis showed that all differentially expressed genes (DEGs) were
grouped into 30 groups. MapMan annotation of DEGs showed that photosynthesis, antioxidation, ion metabolism,
and WRKY TF were activated in GF677, while cell wall degradation, secondary metabolism, starch degradation, MYB
TF, and bHLH TF were activated in Maotao. Several iron and stress-related TFs (ppa024966m, ppa010295m,
ppa0271826m, ppa002645m, ppa010846m, ppa009439m, ppa008846m, and ppa007708m) were further discussed from
a functional perspective based on the phylogenetic tree integration of other species homologues.

Conclusions: According to the cytological and molecular differences between the two cultivars, we suggest that
the integrity of chloroplast structure and the activation of photosynthesis as well as stress-related genes are crucial
for saline-alkaline resistance in GF677. The results presented in this report provide a theoretical basis for cloning
saline-alkaline tolerance genes and molecular breeding to improve saline-alkaline tolerance in peach.
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Background

Saline-alkaline stress adversely affects plant growth and
development. Based on the Food and Agriculture
Organization of the United Nations (FAO) research, at
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least 242 million hectares of saline-alkaline soils are dis-
tributed within the Eurasian Region [1].

High salt concentrations and high pH levels of saline-
alkaline soil generate reactive oxygen species (ROS),
repress photosynthesis, energy production, and lipid
metabolism, and damage the plant cell membrane and
intracellular components [2]. Upon saline-alkaline stress,
a large cluster of gene expression is reprogrammed.
Revealing the molecular mechanisms is helpful for
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saline-alkaline resistant plant breeding. In recent
decades, several key genes such as OsLOLS, Gshdz4, and
SsMT?2, have been cloned and showed notable tolerance
to saline-alkaline stress in transgenic plants [3-5].
Recently, with the rapid development of bioinformatics,
transcriptome technology has become a powerful tool
for elucidating the gene regulation of networks in many
species [6, 7]. Using RNA-Seq technology, the effects of
gene expression on saline-alkaline stress have been
widely studied in alfalfa (Medicago sativa L.), flax
(Linum usitatissinum L.), jujube (Ziziphus jujuba Mill.),
black locust (Robinia pseudoacacia L.), and Chinese
plum (Prunus salicina Lindl.), and thousands of differen-
tially expressed genes have been detected [8—11].

Peach (Prunus persica L.) is an important deciduous
fruit tree around the world. In China, the peach planting
area is more than 700 thousand hectares, and the yield
reaches more than one million tons per year [12]. The
North China Plain and Sichuan Basin, which partly
suffer from saline-alkaline stress, are the main product-
ive areas of peach planting [13, 14]. Saline-alkaline stress
inhabits peach plant growth and affects fruit develop-
ment, finally causing a reduction of in yield. GF677 (P.
amygdalus x P. persica), bred by the French Institut
National de la Recherche Agronomique (INRA) in the
1960s, has higher salt and alkali tolerance than Maotao
(P. persica) [15]. In 2017, Chen et al. identify more than
one thousand genes differentially expressed between
roots of GF677 and Maotao in response to saline-
alkaline stresses [16]. Considering leaf chlorosis usually
acts as an early symptom of this stress [17], we carried
out cytological observations and comparative transcrip-
tome analysis of GF677 and Maotao leaves under salt-
alkali stress in the present study, to elucidate the
molecular mechanism governing the salt-alkali tolerance
of GF677. These findings will provide a theoretical basis
for genetic improvement and breeding of peach under
salt-alkali stress.

Materials and methods

Plant materials

The field experiment was performed in the Late White
Peach Planting Base, Jianyang City, Sichuan Province
(N30°30'50.97", E104°26°35.21"). The pH of the test
soil was 8.44 and the total salt content was 0.46% [15].
Two-years-old GF677 and Maotao plantlets were
planted in the field with an inter-row spacing of 1 m x 4
m. As a control, two varieties were planted in a green-
house with normal soil (pH =7.05). Nine GF677 and
nine Maotao plantlets were selected for further experi-
ments. The leaves from each plantlet were grouped into
two parts: one for RNA isolation and another for
cytological and biochemical analysis.

Page 2 of 10

Ultrastructural observation

Each cultivar leaf sample was sliced into several sections,
and soaked in 2% glutaraldehyde overnight at 4 °C. After
rinsing with ddH,O, the samples were stained with 1%
Os0O, for 2 h. The stained samples were further washed
with ddH,O and dehydrated with acetone. The dehy-
drated samples were embedded in an epoxy resin and
then sliced into ultrathin sections for ultrastructural
observation as described by Jiang et al. [7].

Physiological parameters measurement

Chlorophyll a and b

Leaves (0.2 g) of GF677 and Maotao were homogenized
with 80% acetone. After centrifugation at 12,000 rpm for
10 min, the supernatant was transferred separately into a
clean microcentrifuge tube. The chlorophyll a and
chlorophyll b contents were measured with a spectro-
photometer (TU-1810, Beijing, China) at 663 nm and
645 nm, respectively [7].

Iron content

Leaves (0.5g) of GF677 and Maotao were washed with
ddH,O. The total Fe concentrations were determined by
inductively coupled plasma atomic emission spectros-
copy (ICP-AES; Fisons ARL Accuris, Ecublens,
Switzerland) [18].

Peroxidase activity
Leaves (0.5g) of GF677 and Maotao were homogenized
with liquid nitrogen, and peroxidase (POD) activity was
determined according to the protocol of the Peroxidase
Assay Kit (A084-3-1, Nanjing Jiancheng Bioengineering
Institute, China).

RNA extraction and transcriptome sequencing

For each cultivar, nine plantlets were randomly selected
for RNA extraction. Total RNA of each plantlet was
extracted according to the protocol of the RNAprep
Pure Plant Plus Kit (Tiangen Biotech Co., Ltd., Beijing,
China). RNA from three plantlets was equally pooled for
c¢DNA library construction and transcriptome sequen-
cing. For library preparation, mRNA was first extracted
using oligo (dT) and then broken into 200 bp segments
by adding fragmentation buffer. The first-stranded
c¢DNA was synthesized by random hexamers, and the
second-stranded cDNA was obtained by adding dNTPs
and DNA polymerase I. The purified second strand
¢DNA was finally amplified using PCR. The libraries
were sequenced on an Illumina HiSeq™ 4000 platform
(Majorbio, Shanghai, China), and all raw reads were sub-
mitted to NCBI with the accession number GSE100180.
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Sequence data assembly

Clean reads were obtained by filtering adapters, poly-N
and low-quality reads from the raw data. The reference
genome of peach (version 2.1) was downloaded from the
website https://phytozome.jgi.doe.gov/pz/portal html#!in-
fo?alias=Org_Ppersica. An index of the reference genome
was built using Bowtie v2.0.6, and all clean reads were
then mapped to the reference genome using TopHat2 (v.
2.0.9). The transcript abundance of mapped genes was
normalized by the fragments per kilobase of exon per
million fragments mapped using Cufflinks (v. 2.1.1).

Differentially expressed gene (DEG) identification and
functional annotation

Bioconductor package edgeR (v. 3.0.8) was used to iden-
tify DEGs. FDR<0.01 and |log2 ratio|>1 were the
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criteria for recognizing the significance of the gene
expression difference. For visual display the DEGs by
MapMan (version 3.6.0RC1) [19], all gene IDs were
transformed to version 1.0 format. Gene ontology (GO)
analysis of the DEGs was implemented using the GOseq
package.

gRT-PCR validation

Total RNA from the leaves of the two cultivars was
extracted as previously described. Total RNA (1 ug) was
reverse transcribed to cDNA according to the RT reagent
kit (Takara Bio Inc., Japan). The reaction mixture was
used as follows: 10 ul SYBR Green 127 Premix Ex Taq,
10ul cDNA, 0.5puM forward primer, 0.5uM reverse
primer. The amplification was performed on a Bio-Rad

.

Fig. 1 Phenotypes (a) and chloroplast ultrastructures (b-c) of GF677 and Maotao under salt-alkali stress. b Chloroplast ultrastructures of GF677. c
Chloroplast ultrastructures of Maotao. The scale bar was shown 1 um. GR: granum; S: starch grain; O: osmiophile globule
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Table 1 Physiological parameters of GF677 and Maotao under
saline-alkaline stress

GF677 Maotao
POD(U/(g.min)) 72376° 368.60
Chl a(mg/qg) 1.38° 0.29
Chl b(mg/g) 0.82° 0.13
Fe(%) 049° 0.25

Note: ®represent 0.01 significant difference

CEX96 real-time system. The UBQIO gene was used for
the normalization of the tested gene [20]. The primers
used in the present research are shown in Table S1.

Phylogenetic analysis

The AtR2R3-MYB and AtbHLH protein sequences were
downloaded from previous research [7]. The AtWRKY pro-
tein sequences were obtained from online databases (http://
www.arabidopsis.org/). Other species related sequences
were obtained from NCBI (Table S2). The construction of
the phylogenetic tree was performed by the online software
Multiple Sequence Alignment and iTOL [7].

Statistical analysis

All analyses in the present research were carried out at
least in triplicate. Based on the t-test, GraphPad Prism 5
was used for statistical analysis. Double stars showed a
0.01 significant difference.

Results

Cytological and physiological features of two peach
cultivars in tolerating saline-alkaline stress

There was no difference between GF677 and Maotao in
normal soil (Fig. S1). However, the phenotypes of the
two varieties differed upon saline alkaline field planting
(Fig. 1a). In contrast to GF677, the leaves of Maotao
were clear vyellowish. The TEM analysis of leaves
revealed a large structural change between the two culti-
vars. The chloroplast of GF677 had a compact granum
structure, but the structure of the granum was dispersive
in the Maotao chloroplast (Fig. 1b-c). Further chloro-
phyll determination showed that the contents of chloro-
phyll a or b in Maotao were only 22.3% or 15.9% in
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comparison with GF677. The POD enzyme activity and
Fe content decreased by 50% in Maotao (Table 1).

lllumina sequence and DEG identification

A total of 29,006,496 and 31,874,666 clean reads were
obtained in Maotao and GF677, respectively. The Q20
was more than 96.00% and the Q30 was more than
90.00%, suggesting the high quality of the clean reads. Of
all clean reads, 83.68% ~ 90.43% were mapped to the
reference genome (Table 2). To identify the gene response
to saline-alkaline stress, the criteria of FDR<0.01 and
|log2 ratio| = 1 were used as thresholds. Among the DEGs,
294 and 587 were significantly up- and downregulated
GF677 versus Maotao (Fig. 2a). In this study, the upregu-
lation represented genes highly expressed in GF677 and
downregulated showed genes highly expressed in Maotao.
To validate the expression of DEGs, 11 genes involved in
photosynthesis (ppa007547, ppa012123), carbohydrate
metabolism  (ppa007458), antioxidation (ppa027053,
ppa011202), metal transporter (ppa003097), stress
(ppa008441), polyamine biosynthesis (ppa007732), and
transcription factor (ppa007708, ppa010846, ppa016095)
were selected for the validation of DEGs, and the results
showed that their expression pattern was highly related to
the DEG data (Fig. 2b). To functionally characterize the
DEGs, GO analysis was performed. A total of 30 GO
terms were grouped, including several stress-related
terms, such as “transporter activity”, “antioxidant activity”,
“response to stimulus” (Fig. 2c¢). In the “molecular func-
tion” part, nine groups were obtained, and the “catalytic
activity” was the most abundant group. In the “cell com-
ponent” part, nine groups were obtained, and the “cell
parts” was the most abundant group. In the “biological
process” part, 12 groups were obtained, and the “meta-
bolic process” was the most abundant group (Fig. 2c).

Overview of metabolism processes by MapMan

To provide an overview of the DEGs at the metabolic
process level, the MapMan tool was used. It was clearly
shown that photosynthesis was upregulated in GF677, while
cell wall degradation, secondary metabolism, and starch
degradation were activated in Maotao (Fig. 3; Table S3).

Table 2 Summary of transcriptome sequencing data from leaves of GF677 (GY) and Maotao (MY) under saline-alkaline stress

Sample Raw data (GB) Clean reads Clean data ratio (%) Clean data Q20 (%) Clean data Q30 (%) Mapped genome (%) Expressed gene
GY_rep1 424 30,175,284  99.33 96.55 91.59 84.02% 21,234
GY_rep2 419 29817828 9944 96.47 9140 89.43% 22,238
GY_rep3 415 29,488,462 99.27 96.66 9191 83.68% 21,653
MY_rep1 448 31,874,666 9948 96.12 90.62 89.36% 22,365
MY_rep2 408 29,006494 9931 96.62 91.71 89.66% 22,025
MY_rep3 428 30,471,936 99.37 96.45 91.53 90.43% 20,950
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Category and verification of genes related to
antioxidation, iron metabolism, transcription factor
Antioxidation

Seven genes encoding glutathione S-transferase (GST) and
six genes encoding POD were detected in DEGs (Fig. 4a).
Of these genes, all seven GST genes and four POD genes
were highly upregulated in GF677. ppa011202m encoding a
GST and ppa027053m encoding a POD were further
confirmed by qRT-PCR (Fig. 4b).

Iron metabolism

Eight iron-related genes were detected in the present
research. Seven of them were upregulated, including two
genes (ppa013552m, ppa019605m) encoding a metal ion
transporter, one gene (ppa026143m) encoding calcium-
regulated channel protein, one gene (ppa001921m) encod-
ing an iron-sulfur cluster, one gene (ppa003816m) encoding
an inorganic ion transport, one gene (ppa003097m) encod-
ing an iron ion transmembrane transporter, and one gene
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(ppa009703m) encoding ferritin (Fig. 4a). Of these genes,
ppa003097m was further confirmed by qRT-PCR (Fig. 4b).

Transcription factor

Five genes encoding bHLH, three genes encoding MYB,
and three genes encoding WRKY were detected in this
study. Interestingly, the expression of bHLH and MYB
downregulated, in contrast to the upregulation of WRKY
(Fig. 4a). Furthermore, ppa016095m encoding a bHLH,
ppa010846m encoding an MYB, and ppa007708m encod-
ing a WRKY were confirmed by qRT-PCR (Fig. 4b).

We further constructed phylogenetic trees by integrat-
ing Arabidopsis homologues and other species functional
verification genes (Fig. 5). The results showed that for
each phylogenetic tree, the peach genes were scattered
into different clades (Fig. 5a-c).

Discussion
As a serious abiotic stress, saline-alkaline stress affects
plant growth and reduces yield. In peach, comparative

transcriptome analysis of roots of GF677 and Maotao
suggests osmotic pressure increase and redox balance
are crucial for GF677 response to saline-alkaline stresses
[16]. Leaf chlorosis usually acts as an early symptom of
this stress [10, 11]. Our previous research showed that
the photosynthetic rate was significantly higher in the
leaves of GF677 than in Maotao [21]. In the present
research, TEM analysis revealed that the chloroplast
granum structure was more intact and the content of
chlorophyll a/b was higher, in GF677, suggesting that
GF677 maintains higher photosynthesis efficiency under
saline-alkaline stress (Fig. 1b-c, Table 1). Iron is an
important ion that plays a key role in sustaining the
activity of photosynthesis-related enzymes [22, 23]. In
apple, Wang et al. [24] reported that Fe deficiency
induces significant downregulation of genes involved
in photosynthesis. In the present study, we show that
iron content is higher in GF677, which is consistent with
the upregulation of several iron and photosynthesis-
related genes.
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Saline-alkaline stress causes the accumulation of ROS,
which severely damages such cell components as DNA,
lipids, proteins, and sugars [25]. Detoxification of ROS is
the most important way in plants to weaken oxidative
harmful stress [26]. Of the ROS scavenging enzyme family,
POD and GST are the key members [27, 28]. Previous
studies have shown that these proteins usually play a
synergetic role in scavenging ROS. In cotton, Li et al
identified that the POD and GST proteins are upregulated
upon salt treatment, and both these upregulation effects
are further verified by qRT-PCR [29]. In the present
research, notably, we found that POD activity was higher
in GF677 (Table 1). This result is in accordance with the
upregulation of most POD-related genes. Additionally, we
also found that all seven GST genes were upregulated in

GF677 (Fig. 4). Considering that the transcript level of a
gene can largely reflect its translation state generally, we
speculate that GST and POD have a synergistic role in
scavenging ROS in GF677, which is consistent with the
previous study [16].

TFs are key regulators of gene expression and have a
variety of important functions in the plant response to
abiotic stress [30, 31]. The identification of TFs involved in
saline-alkaline stress is crucial to reveal the innate molecu-
lar mechanisms. In the present research, 11 genes related
to bHLH, MYB, and WRKY TFs were detected (Fig. 4). As
the most extensive TF class in eukaryotes, bHLH is not
only universally involved in plant growth and metabolism
but also plays an important role in plant response to stress
[32, 33]. Fan et al. [34] revealed that Ib subgroup bHLH
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genes  (AtbHLH38, AtbHLH39, AtbHLHI00, and
AtbHLHI01I) can bind the promoter of SKBI and negatively
regulate the accumulation of iron. In the present study,
two-bHLH  encoding  genes  (ppa024966m  and
ppa010295m), together with AtbHLH38, AtbHLH39,
AtbHLH100, and AtbHLH101, were grouped into a sub-
group by phylogenetic analysis (Fig. 5a). This result suggests
ppa024966m and ppa010295m may have a similar role as
Ib subgroup bHLHs, which is further confirmed by the
higher content of Fe in GF677. Babitha et al. [35] showed
that overexpression of AtbHLH17 enhances tolerance to
NaCl, mannitol and oxidative stress in transgenic lines.
Notably, ppa0271826m and ppa002645m show high
homology to AtbHLH17, suggesting their putative function
in the regulation of saline alkaline stress. MYB is one of the
largest TF families in plants [36]. The R2R3-MYB subfamily
plays a key role in diverse biological processes, especially in
response to various stresses [37, 38]. In soybean, overex-
pression of GmMYB3a negatively regulates saline-alkaline
stress-related genes [39]. In Arabidopsis, Cui et al. [40]
showed that overexpression of AtMYB20 can enhance salt
tolerance by negatively regulating type 2C serine/threonine
protein phosphatases. In the present study, the phylogenetic
tree shows that ppa010846m and ppa009439m are homolo-
gous to AtMYB20 and GmMYB3a, indicating a putative
role in the regulation of saline-alkaline stress (Fig. 5b).
WRKY is a class of TFs unique to plants that are mainly
involved in development and stress responses [41, 42]. In
Arabidopsis, overexpression of AtWRKY46, GmWRKY13
or VWWRKY11 can both positively regulate salt and drought
stress tolerance [43—45]. In Nicotiana benthamiana, over-
expression of GhWRKY41 confers transgenic plant salt and
drought stress tolerance [46]. In the present study, phylo-
genetic analysis shows that ppa008846m is highly similar to
GmWRKY13 and VVWRKY11, while ppa007708m together
with GhWRKY41 and AtWRKY46 are grouped into same
subgroup (Fig. 5c), suggesting that it exhibits a similar
function in the regulation of saline-alkaline stress.

Conclusions

In the present study, the biochemical, cytological and
transcriptome differences between GF677 and Maotao
were systematically analysed under saline-alkaline stress.
The structure of chloroplast granum was intact in GF677,
but dispersed in Maotao. Functional analysis of 881 DEGs
showed that photosynthesis was activated, whereas cell
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wall degradation, secondary metabolism, and starch deg-
radation were repressed in GF677. Based on the phylogen-
etic tree integration of other species homologues, several
stress-related TFs were further functionally discussed. We
speculate that the integrity of chloroplast structure and
the activation of photosynthesis as well as stress-related
genes, are crucial for saline-alkaline resistance in GF677.
The results described in this report provide a theoretical
basis for cloning saline-alkaline tolerance genes and
molecular breeding for improving saline-alkaline tolerance
in peach.
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