Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-[4-(2-Methoxyphenyl)piperazin-1-yl]-N-(pyridin-2-yl)acetamide

Chunxiong Lu* and Quanfu Jiang

Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, People's Republic of China

Correspondence e-mail: ipcom10@163.com

Received 2 December 2010; accepted 17 December 2010

Key indicators: single-crystal X-ray study; T = 143 K; mean σ (C–C) = 0.003 Å; R factor = 0.055; wR factor = 0.134; data-to-parameter ratio = 17.7.

In the title compound, $C_{18}H_{22}N_4O_2$, the piperizine ring adopts a chair conformation and the dihedral angle between the pyridine and benzene rings is $67.6 (9)^\circ$. The conformations of the attachment of the anisole and N-ethylpyridin-2-amine groups to the piperazine ring are (+)antiperiplanar. Intramolecular C-H···O and N-H···N interactions occur. In the crystal, intermolecular C-H···N hydrogen bonds are present. There are two crystallographically independent but identical molecules per asymmetric unit.

Related literature

For the use of the title compound in the synthesis of receptor imaging agents, see: Lebars et al. (1998); Zhuang et al. (1994).

Experimental

Crystal data C18H22N4O2

 $M_r = 326.40$

Triclinic, P1	
a = 11.595 (4) Å	
b = 12.382 (4) Å	
c = 14.073 (4) Å	
$\alpha = 106.228 \ (4)^{\circ}$	
$\beta = 91.767 (3)^{\circ}$	
$\gamma = 114.627 \ (2)^{\circ}$	

Data collection

Rigaku AFC10/Saturn724+
diffractometer
16957 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.055$	H atoms treated by a mixture of
$wR(F^2) = 0.134$	independent and constrained
S = 1.00	refinement
7823 reflections	$\Delta \rho_{\rm max} = 0.74 \text{ e } \text{\AA}^{-3}$
443 parameters	$\Delta \rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N3-H03···N2	0.85 (2)	2.20 (3)	2.692 (3)	117.0 (19)
$N7 - H07 \cdot \cdot \cdot N6$	0.86(2)	2.26 (3)	2.734 (3)	115.3 (19)
$C2 - H2 \cdot \cdot \cdot N8$	0.95	2.44	3.354 (3)	161
$C14 - H14 \cdots O2$	0.95	2.33	2.923 (3)	120
C20−H20···N4	0.95	2.59	3.527 (3)	168

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

This work was supported by the Natural Science Foundation of Jiangsu Province (BK2008112) and the Science Foundation of the Health Department of Jiangsu Province (H200624).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FK2033).

References

Lebars, D., Lemaire, C., Ginovart, N., Plenevaux, A., Aerts, J., Brihaye, C., Hassoun, W., Leviel, V., Mekhsian, P., Weissmann, D., Pujol, J. F., Luxen, A. & Comar, D. (1998). Nucl. Med. Biol. 25, 343-350.

Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Zhuang, Z. P., Kung, M. P. & Kung, H. F. (1994). J. Med. Chem. 37, 1406-1407.

organic compounds

V = 1738.2 (9) Å³

Mo $K\alpha$ radiation

 $0.21 \times 0.17 \times 0.09 \; \rm mm$

7823 independent reflections 4689 reflections with $I > 2\sigma(I)$

 $\mu = 0.08 \text{ mm}^{-1}$ T = 143 K

 $R_{\rm int} = 0.041$

7 - 4

Acta Cryst. (2011). E67, o223 [doi:10.1107/S1600536810053067]

2-[4-(2-Methoxyphenyl)piperazin-1-yl]-N-(pyridin-2-yl)acetamide

C. Lu and Q. Jiang

Comment

2-(4-(2-methoxyphenyl)piperazin-1-yl)-*N*-(pyridin-2-yl)acetamide, (I), is an important intermediate product in the synthesis of 131I-MPPI (Zhuang *et al.*, 1994) and 18 F-MPPF (Lebars *et al.*, 1998), serotonin(5-HT1A) receptor imaging agents (131I-MPPI = 4-(2'-methoxypheny)-1-[2'-(N-2"-pyridinyl)- *p*-131I-iodobenzamido]ethyl-piperazine and 18 F-MPPF = 4-(2'-methoxyphenyl)-1-[2'-(N-2"-pyridinyl) -*p*-18 F-fluorobenzamido]ethylpiperazine). We report here the crystal structure of (I).hydrate (Fig. 1). The molecule of (I) consists of an anisole and an *N*-ethylpyridin-2-amine arms connected to a piperazine ring. The piperazine ring adopts a chair conformation. The dihedral angle between the phenyl and pyridine rings is 67.6 (9)°. The conformations of the attachment of the anisole and *N*-ethylpyridin-2-amine groups to the piperazine ring are best described by the torsion angles of 171.99 (18)° and -174.56 (18)° for C6—N1—C7—C8 and C11—N2—C9—C10, respectively; *i.e.* they adopt +antiperiplanar conformations. The molecules show intra- and intermolecular hydrogen-bonding interactions of types N—H···N, C—H···N and C—H···O (Table 1).

Experimental

The title compound was synthesized according to the method reported in the literature (Zhuang *et al.*, 1994) and crystallized from a mixed solvent composed of acetone and water (1:1); colourless block-shaped crystals were obtained after several days.

Refinement

The amino H atoms were located in a difference Fourier map and refined with N—H distance restrained to 0.85 Å. Positional parameters of all the H atoms bonded to C atoms were calculated geometrically and were allowed to ride on the C atoms to which they were bonded, with C—H distances of 0.95Å (CH), 0.98Å (CH₃) or 0.99Å (CH₂), and with U_{iso} (H) =1.2 or 1.5 (methyl) U_{eq} of the parent atoms.

Figures

Fig. 1. A view of the title compound with the atomic numbering scheme with displacement ellipsoids drawn at the 50% probability level.

2-[4-(2-Methoxyphenyl)piperazin-1-yl]-N-(pyridin-2-yl)acetamide

Crystal data C₁₈H₂₂N₄O₂

Z = 4

$M_r = 326.40$	F(000) = 696
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.247 \ {\rm Mg \ m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 11.595 (4) Å	Cell parameters from 3991 reflections
b = 12.382 (4) Å	$\theta = 3.0-27.5^{\circ}$
c = 14.073 (4) Å	$\mu = 0.08 \text{ mm}^{-1}$
$\alpha = 106.228 \ (4)^{\circ}$	T = 143 K
$\beta = 91.767 \ (3)^{\circ}$	Prism, colourless
$\gamma = 114.627 \ (2)^{\circ}$	$0.21\times0.17\times0.09~mm$
$V = 1738.2 (9) \text{ Å}^3$	

Data collection

Rigaku AFC10/Saturn724+ diffractometer	4689 reflections with $I > 2\sigma(I)$
Radiation source: Rotating Anode	$R_{\rm int} = 0.041$
graphite	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$
Detector resolution: 28.5714 pixels mm ⁻¹	$h = -15 \rightarrow 15$
ϕ and ω scans	$k = -16 \rightarrow 12$
16957 measured reflections	$l = -18 \rightarrow 18$
7823 independent reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.055$	Hydrogen site location: difmap and geom
$wR(F^2) = 0.134$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.00	$w = 1/[\sigma^2(F_o^2) + (0.0569P)^2 + 0.168P]$ where $P = (F_o^2 + 2F_c^2)/3$
7823 reflections	$(\Delta/\sigma)_{\text{max}} = 0.001$
443 parameters	$\Delta \rho_{max} = 0.74 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.19 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	-0.16031 (14)	0.19320 (13)	0.60110 (10)	0.0318 (4)
02	0.26509 (14)	0.03711 (15)	0.17233 (10)	0.0389 (4)
N1	0.04151 (16)	0.31688 (15)	0.51774 (11)	0.0248 (4)
N2	0.15938 (16)	0.22961 (16)	0.35729 (11)	0.0264 (4)
N3	0.35747 (16)	0.17050 (17)	0.33185 (12)	0.0260 (4)
N4	0.54677 (16)	0.24391 (16)	0.43628 (12)	0.0290 (4)
C1	-0.0797 (2)	0.31511 (19)	0.65726 (14)	0.0263 (4)
C2	-0.0993 (2)	0.3747 (2)	0.75015 (14)	0.0304 (5)
H2	-0.1719	0.3312	0.7774	0.037*
C3	-0.0128 (2)	0.4982 (2)	0.80355 (16)	0.0371 (5)
H3	-0.0263	0.5386	0.8673	0.044*
C4	0.0919 (2)	0.5616 (2)	0.76425 (16)	0.0388 (6)
H4	0.1507	0.6459	0.8005	0.047*
C5	0.1115 (2)	0.5019 (2)	0.67106 (15)	0.0330 (5)
Н5	0.1846	0.5461	0.6446	0.040*
C6	0.02656 (19)	0.37892 (19)	0.61564 (13)	0.0254 (4)
C7	0.0808 (2)	0.2177 (2)	0.51565 (14)	0.0291 (5)
H7A	0.0225	0.1601	0.5484	0.035*
H7B	0.1693	0.2557	0.5533	0.035*
C8	0.0760 (2)	0.14470 (19)	0.40775 (14)	0.0297 (5)
H8A	0.1047	0.0796	0.4070	0.036*
H8B	-0.0136	0.1023	0.3713	0.036*
С9	0.1161 (2)	0.3261 (2)	0.35931 (14)	0.0310 (5)
H9A	0.0260	0.2858	0.3243	0.037*
H9B	0.1705	0.3827	0.3240	0.037*
C10	0.1254 (2)	0.4008 (2)	0.46679 (14)	0.0304 (5)
H10A	0.2155	0.4413	0.5018	0.036*
H10B	0.0987	0.4675	0.4684	0.036*
C11	0.1642 (2)	0.1621 (2)	0.25557 (13)	0.0297 (5)
H11A	0.1808	0.2184	0.2144	0.036*
H11B	0.0788	0.0898	0.2263	0.036*
C12	0.26561 (19)	0.11417 (19)	0.24878 (14)	0.0270 (5)
C13	0.47825 (19)	0.17094 (19)	0.34499 (14)	0.0244 (4)
C14	0.5227 (2)	0.1054 (2)	0.27087 (15)	0.0326 (5)
H14	0.4697	0.0520	0.2078	0.039*
C15	0.6471 (2)	0.1202 (2)	0.29197 (16)	0.0367 (5)
H15	0.6816	0.0783	0.2425	0.044*
C16	0.7206 (2)	0.1964 (2)	0.38561 (16)	0.0346 (5)
H16	0.8062	0.2084	0.4015	0.042*
C17	0.6659 (2)	0.2542 (2)	0.45484 (16)	0.0336 (5)
H17	0.7153	0.3045	0.5197	0.040*
C18	-0.2720 (2)	0.1297 (2)	0.64012 (17)	0.0411 (6)
H18A	-0.2460	0.1235	0.7045	0.062*
H18B	-0.3236	0.0453	0.5926	0.062*
H18C	-0.3234	0.1767	0.6500	0.062*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H03	0.345 (2)	0.224 (2)	0.3780 (15)	0.036 (7)*
O3	0.31024 (14)	0.19997 (13)	0.69524 (10)	0.0328 (4)
O4	-0.20714 (14)	0.09195 (14)	1.08091 (10)	0.0364 (4)
N5	0.27157 (15)	0.34038 (15)	0.86559 (11)	0.0247 (4)
N6	0.07490 (15)	0.27036 (16)	0.98664 (11)	0.0258 (4)
N7	-0.17632 (17)	0.22583 (16)	0.99004 (12)	0.0261 (4)
N8	-0.31000 (17)	0.26615 (17)	0.89803 (12)	0.0318 (4)
C19	0.37328 (19)	0.3275 (2)	0.71544 (14)	0.0278 (5)
C20	0.4550 (2)	0.3846 (2)	0.65566 (15)	0.0341 (5)
H20	0.4689	0.3348	0.5965	0.041*
C21	0.5165 (2)	0.5145 (2)	0.68257 (17)	0.0442 (6)
H21	0.5720	0.5534	0.6414	0.053*
C22	0.4978 (2)	0.5871 (2)	0.76827 (18)	0.0459 (6)
H22	0.5411	0.6760	0.7869	0.055*
C23	0.4155 (2)	0.5301 (2)	0.82765 (16)	0.0362 (5)
H23	0.4025	0.5812	0.8865	0.043*
C24	0.35148 (19)	0.4006 (2)	0.80341 (14)	0.0266 (5)
C25	0.13434 (19)	0.26517 (19)	0.82010 (14)	0.0276 (5)
H25A	0.1261	0.2088	0.7520	0.033*
H25B	0.0960	0.3215	0.8139	0.033*
C26	0.0632 (2)	0.1882 (2)	0.88466 (14)	0.0301 (5)
H26A	-0.0288	0.1382	0.8539	0.036*
H26B	0.0991	0.1293	0.8883	0.036*
C27	0.21204 (19)	0.3438 (2)	1.03070 (14)	0.0302 (5)
H27A	0.2496	0.2865	1.0353	0.036*
H27B	0.2215	0.3994	1.0994	0.036*
C28	0.2834 (2)	0.4222 (2)	0.96688 (14)	0.0311 (5)
H28A	0.2471	0.4808	0.9634	0.037*
H28B	0.3753	0.4723	0.9977	0.037*
C29	0.0039 (2)	0.1977 (2)	1.04953 (14)	0.0296 (5)
H29A	0.0444	0.2460	1.1206	0.036*
H29B	0.0133	0.1189	1.0326	0.036*
C30	-0.1381(2)	0.16446 (19)	1.04003 (14)	0.0264 (5)
C31	-0.30054 (19)	0.21492 (19)	0.96784 (13)	0.0250 (4)
C32	-0.4019 (2)	0.15893 (19)	1.01496 (15)	0.0300 (5)
H32	-0.3907	0.1248	1.0652	0.036*
C33	-0.5194 (2)	0.1543 (2)	0.98670 (16)	0.0346 (5)
H33	-0.5907	0.1163	1.0174	0.042*
C34	-0.5328 (2)	0.2049 (2)	0.91386 (16)	0.0362 (5)
H34	-0.6130	0.2019	0.8929	0.043*
C35	-0.4262 (2)	0.2599 (2)	0.87240 (16)	0.0369 (5)
H35	-0.4350	0.2956	0.8227	0.044*
C36	0.3320 (2)	0.1232 (2)	0.60821 (16)	0.0408 (6)
H36A	0.3084	0.1408	0.5487	0.061*
H36B	0.2793	0.0346	0.6007	0.061*
H36C	0.4231	0.1414	0.6154	0.061*
H07	-0.118 (2)	0.271 (2)	0.9629 (15)	0.032 (6)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0284 (8)	0.0330 (8)	0.0296 (7)	0.0089 (7)	0.0087 (6)	0.0107 (6)
02	0.0337 (9)	0.0433 (10)	0.0289 (8)	0.0161 (8)	0.0021 (6)	-0.0025 (7)
N1	0.0269 (9)	0.0278 (9)	0.0236 (8)	0.0136 (8)	0.0063 (7)	0.0114 (7)
N2	0.0258 (9)	0.0322 (10)	0.0233 (8)	0.0134 (8)	0.0046 (7)	0.0109 (7)
N3	0.0252 (10)	0.0298 (10)	0.0227 (9)	0.0137 (8)	0.0045 (7)	0.0054 (8)
N4	0.0278 (10)	0.0306 (10)	0.0279 (9)	0.0126 (8)	0.0011 (7)	0.0095 (7)
C1	0.0273 (11)	0.0306 (11)	0.0258 (10)	0.0162 (9)	0.0028 (8)	0.0110 (9)
C2	0.0292 (12)	0.0393 (13)	0.0298 (11)	0.0185 (10)	0.0089 (9)	0.0154 (10)
C3	0.0426 (14)	0.0390 (14)	0.0304 (11)	0.0226 (12)	0.0086 (10)	0.0049 (10)
C4	0.0404 (14)	0.0320 (13)	0.0383 (12)	0.0153 (11)	0.0069 (10)	0.0043 (10)
C5	0.0297 (12)	0.0317 (12)	0.0349 (11)	0.0107 (10)	0.0081 (9)	0.0112 (10)
C6	0.0261 (11)	0.0331 (12)	0.0231 (10)	0.0164 (10)	0.0049 (8)	0.0124 (9)
C7	0.0319 (12)	0.0320 (12)	0.0301 (11)	0.0170 (10)	0.0083 (9)	0.0150 (9)
C8	0.0297 (12)	0.0288 (12)	0.0326 (11)	0.0142 (10)	0.0073 (9)	0.0106 (9)
С9	0.0313 (12)	0.0395 (13)	0.0329 (11)	0.0193 (11)	0.0105 (9)	0.0209 (10)
C10	0.0325 (12)	0.0290 (12)	0.0327 (11)	0.0143 (10)	0.0105 (9)	0.0129 (9)
C11	0.0234 (11)	0.0397 (13)	0.0245 (10)	0.0133 (10)	0.0015 (8)	0.0099 (9)
C12	0.0247 (11)	0.0288 (11)	0.0235 (10)	0.0075 (9)	0.0052 (8)	0.0093 (9)
C13	0.0235 (11)	0.0261 (11)	0.0254 (10)	0.0093 (9)	0.0068 (8)	0.0131 (8)
C14	0.0313 (12)	0.0410 (13)	0.0283 (11)	0.0180 (11)	0.0073 (9)	0.0117 (10)
C15	0.0353 (13)	0.0464 (15)	0.0371 (12)	0.0232 (12)	0.0140 (10)	0.0171 (11)
C16	0.0243 (12)	0.0376 (13)	0.0461 (13)	0.0123 (10)	0.0074 (9)	0.0214 (11)
C17	0.0289 (12)	0.0350 (12)	0.0346 (11)	0.0116 (10)	-0.0006 (9)	0.0127 (10)
C18	0.0376 (14)	0.0358 (14)	0.0423 (13)	0.0059 (11)	0.0162 (10)	0.0166 (11)
O3	0.0421 (10)	0.0291 (8)	0.0297 (8)	0.0180 (7)	0.0115 (6)	0.0088 (6)
O4	0.0331 (9)	0.0422 (9)	0.0377 (8)	0.0140 (8)	0.0107 (7)	0.0224 (7)
N5	0.0219 (9)	0.0281 (9)	0.0215 (8)	0.0093 (8)	0.0031 (6)	0.0070 (7)
N6	0.0203 (9)	0.0317 (10)	0.0236 (8)	0.0092 (8)	0.0041 (6)	0.0096 (7)
N7	0.0221 (9)	0.0293 (10)	0.0272 (9)	0.0091 (8)	0.0068 (7)	0.0129 (8)
N8	0.0339 (11)	0.0384 (11)	0.0279 (9)	0.0182 (9)	0.0064 (7)	0.0142 (8)
C19	0.0257 (11)	0.0303 (12)	0.0288 (10)	0.0139 (10)	0.0020 (8)	0.0095 (9)
C20	0.0315 (13)	0.0424 (14)	0.0299 (11)	0.0162 (11)	0.0085 (9)	0.0137 (10)
C21	0.0377 (15)	0.0455 (15)	0.0464 (14)	0.0100 (12)	0.0181 (11)	0.0225 (12)
C22	0.0468 (16)	0.0318 (13)	0.0498 (14)	0.0065 (12)	0.0155 (12)	0.0160 (11)
C23	0.0349 (13)	0.0293 (12)	0.0390 (12)	0.0093 (10)	0.0092 (10)	0.0105 (10)
C24	0.0210 (11)	0.0314 (12)	0.0272 (10)	0.0107 (9)	0.0042 (8)	0.0105 (9)
C25	0.0241 (11)	0.0309 (12)	0.0243 (10)	0.0096 (9)	0.0012 (8)	0.0082 (9)
C26	0.0259 (11)	0.0326 (12)	0.0266 (10)	0.0091 (10)	0.0025 (8)	0.0082 (9)
C27	0.0231 (11)	0.0389 (13)	0.0250 (10)	0.0128 (10)	0.0013 (8)	0.0070 (9)
C28	0.0237 (11)	0.0328 (12)	0.0284 (10)	0.0081 (10)	0.0036 (8)	0.0049 (9)
C29	0.0286 (12)	0.0370 (13)	0.0270 (10)	0.0166 (10)	0.0047 (8)	0.0125 (9)
C30	0.0297 (12)	0.0265 (11)	0.0215 (9)	0.0112 (10)	0.0046 (8)	0.0075 (8)
C31	0.0238 (11)	0.0255 (11)	0.0235 (9)	0.0112 (9)	0.0025 (8)	0.0043 (8)
C32	0.0270 (12)	0.0296 (12)	0.0321 (11)	0.0109 (10)	0.0077 (9)	0.0105 (9)

C33 C34 C35 C36	0.0270 (12) 0.0287 (13) 0.0367 (14) 0.0558 (17)	0.0298 (12) 0.0388 (14) 0.0467 (15) 0.0380 (14)	0.0415 (12) 0.0390 (12) 0.0329 (11) 0.0356 (12)	0.0103 (10) 0.0178 (11) 0.0246 (12) 0.0285 (13)	0.0088 (9) 0.0009 (9) 0.0040 (9) 0.0134 (11)	0.0065 (10) 0.0053 (10) 0.0117 (10) 0.0094 (11)
Geometric paran	neters (Å, °)					
01 C1		1374(2)	03	C10	1 37	2(2)
01 - C1		1.374(2) 1.426(2)	03—	C19	1.37	2 (2) 7 (2)
01-01		1.420(2)	03—	C30	1.42	7(2)
02—C12 N1 C6		1.220(2) 1.433(2)	04— N5	C30	1.22	$\frac{1}{2}$
N1 = C10		1.433(2)	N5	C24	1.42	1(2)
N1—C10		1.409(2) 1.470(3)	N5	C28	1.40	4 (2) 6 (2)
N1 - C/		1.470(3)	N6	C29	1.47	(2)
N2 C8		1.438(2) 1.469(2)	N6	C27	1.40	(2)
$N_2 = C_0$		1.409(2)	N6	C27	1.40	$\frac{3}{2}$
N2-C12		1.470(3)	N0	C20	1.47	2(2)
N3-C12		1.333(2)	N7	C30	1.55	2 (3) 6 (3)
N3 H03		1.404(3)	N7	H07	0.86	(3)
NJ-1103		1.337(2)	N9	C31	1.33	(2)
N4—C17		1.337(2) 1.343(3)	N8	C35	1.55	4 (3) 8 (3)
$C_1 = C_2$		1.343(3)	C10	C20	1.34	9 (3)
C1 - C2		1.387(3)	C19-	-C20	1.50	9 (3) 4 (3)
C1 = C0		1.400(3)	C19=	-C24 -C21	1.41	4 (3) 8 (3)
С2—С3		0.9500	C20-		0.95	00
C_2 — I_1Z		1.374(3)	C20-	-1120 C22	0.95	2(3)
С3—Н3		0.9500	C21=	-022 _H21	0.95	2(3)
C3—II3		1 391 (3)	C21-	-023	1.38	7 (3)
C4—H4		0.9500	C22	_H22	0.95	, (<u>)</u>
C5-C6		1 391 (3)	C22	-C24	1 38	8 (3)
С5—H5		0.9500	C23	-H23	0.95	00
C7—C8		1 521 (3)	C25	-C26	1.51	3 (3)
С7—Н7А		0.9900	C25	–H25A	0.99	00
С7—Н7В		0.9900	C25	-H25B	0.99	00
C8—H8A		0.9900	C26-	-H26A	0.99	00
C8—H8B		0.9900	C26–	-H26B	0.99	00
C9—C10		1.510 (3)	C27-	-C28	1.51	5 (3)
С9—Н9А		0.9900	C27–	-H27A	0.99	00
С9—Н9В		0.9900	C27–	-H27B	0.99	00
C10—H10A		0.9900	C28–	-H28A	0.99	00
C10—H10B		0.9900	C28–	-H28B	0.99	00
C11—C12		1.517 (3)	C29–	-C30	1.51	3 (3)
C11—H11A		0.9900	C29–	-H29A	0.99	00
C11—H11B		0.9900	C29–	-H29B	0.99	00
C13—C14		1.386 (3)	C31–	C32	1.38	8 (3)
C14—C15		1.387 (3)	C32—	-C33	1.38	1 (3)
C14—H14		0.9500	C32—	-H32	0.95	00
C15—C16		1.386 (3)	C33–	C34	1.37	8 (3)
С15—Н15		0.9500	C33–	–Н33	0.95	00

C16—C17	1.375 (3)	C34—C35	1.377 (3)
С16—Н16	0.9500	C34—H34	0.9500
С17—Н17	0.9500	С35—Н35	0.9500
C18—H18A	0.9800	С36—Н36А	0.9800
C18—H18B	0.9800	С36—Н36В	0.9800
C18—H18C	0.9800	С36—Н36С	0.9800
C1—O1—C18	116.84 (15)	C19—O3—C36	117.38 (16)
C6—N1—C10	114.88 (16)	C24—N5—C28	115.19 (16)
C6—N1—C7	113.42 (15)	C24—N5—C25	114.62 (15)
C10—N1—C7	110.02 (15)	C28—N5—C25	109.58 (14)
C11—N2—C8	111.99 (16)	C29—N6—C27	110.89 (15)
C11—N2—C9	112.14 (16)	C29—N6—C26	111.33 (16)
C8—N2—C9	109.09 (15)	C27—N6—C26	108.63 (15)
C12—N3—C13	129.39 (18)	C30—N7—C31	128.76 (18)
C12—N3—H03	113.4 (15)	С30—N7—H07	114.5 (15)
C13—N3—H03	116.0 (15)	C31—N7—H07	116.3 (15)
C13—N4—C17	116.92 (17)	C31—N8—C35	116.63 (18)
O1—C1—C2	123.16 (18)	O3—C19—C20	123.64 (18)
O1—C1—C6	116.37 (16)	O3—C19—C24	115.77 (17)
C2-C1-C6	120.46 (19)	C20—C19—C24	120.6 (2)
C1 - C2 - C3	120 11 (19)	$C_{21} - C_{20} - C_{19}$	119.8 (2)
C1—C2—H2	119.9	C21—C20—H20	120.1
$C_3 = C_2 = H_2$	119.9	C19—C20—H20	120.1
C4-C3-C2	120 17 (19)	$C_{22} = C_{21} = C_{20}$	120.1 120.5(2)
C4—C3—H3	119.9	$C^{22} = C^{21} = H^{21}$	119.8
C^2 — C^3 — H^3	119.9	C_{20} C_{21} H_{21}	119.8
$C_{2} = C_{3} = C_{4} = C_{5}$	119.7 (2)	$C_{20} = C_{21} = C_{23}$	119.7 (2)
$C_3 - C_4 - H_4$	120.2	$C_{21} = C_{22} = C_{23}$	120.1
C_{5} C_{4} H_{4}	120.2	C_{23} C_{22} H_{22}	120.1
C_{4}	120.2	$C_{23} - C_{22} - C_{23} - C_{24}$	120.1 121.8(2)
C4_C5_H5	110.2	$C_{22} = C_{23} = C_{24}$	121.8 (2)
C6 C5 H5	110.2	$C_{22} = C_{23} = H_{23}$	119.1
	119.2	$C_{24} = C_{23} = C_{123}$	117.50 (18)
$C_{5} = C_{6} = C_{1}$	110.02(17) 122.60(17)	$C_{23} = C_{24} = C_{13}$	117.39(18) 122.76(18)
C_{1} C_{6} N_{1}	122.09(17)	$C_{23} - C_{24} - N_{5}$	122.70(18)
$C_1 = C_0 = N_1$	119.20 (16)	N5 C25 C24	119.37(19)
N1 = C7 = U7A	110.05 (10)	N5 C25 U25A	109.92 (10)
NI = C / = H / A	109.7	$N_{3} = C_{23} = H_{23} A$	109.7
$C_{0} - C_{1} - \Pi_{A}$	109.7	C20-C25-H25A	109.7
NI = C / = H / B	109.7	N3-C25-H25B	109.7
	109.7	C26-C25-H25B	109.7
H/A - C/ - H/B	108.2	H25A-C25-H25B	108.2
N2-C8-C/	110.27 (16)	N6-C26-C25	110.55 (17)
N2—C8—H8A	109.6	N6-C26-H26A	109.5
C/C8H8A	109.6	C25—C26—H26A	109.5
$N_2 - C_8 - H_8 B$	109.6	No-C20-H26B	109.5
U/U8H8B	109.6	C25—C26—H26B	109.5
H&AC&H&B	108.1	H26A—C26—H26B	108.1
N2—C9—C10	109.63 (16)	N6—C27—C28	110.30 (16)
N2—C9—H9A	109.7	N6—C27—H27A	109.6

С10—С9—Н9А	109.7	C28—C27—H27A	109.6
N2—C9—H9B	109.7	N6—C27—H27B	109.6
С10—С9—Н9В	109.7	С28—С27—Н27В	109.6
Н9А—С9—Н9В	108.2	H27A—C27—H27B	108.1
N1—C10—C9	109.40 (16)	N5—C28—C27	109.87 (17)
N1—C10—H10A	109.8	N5—C28—H28A	109.7
C9—C10—H10A	109.8	C27—C28—H28A	109.7
N1-C10-H10B	109.8	N5-C28-H28B	109.7
С9—С10—Н10В	109.8	C27—C28—H28B	109.7
H10A-C10-H10B	108.2	H28A—C28—H28B	108.2
N2-C11-C12	114.41 (16)	N6—C29—C30	115.62 (17)
N2—C11—H11A	108.7	N6—C29—H29A	108.4
C12—C11—H11A	108.7	С30—С29—Н29А	108.4
N2—C11—H11B	108.7	N6—C29—H29B	108.4
C12—C11—H11B	108.7	С30—С29—Н29В	108.4
H11A—C11—H11B	107.6	H29A—C29—H29B	107.4
O2—C12—N3	125.0 (2)	O4—C30—N7	125.2 (2)
O2—C12—C11	121.35 (18)	O4—C30—C29	119.63 (19)
N3—C12—C11	113.57 (17)	N7—C30—C29	115.06 (17)
N4—C13—C14	123.7 (2)	N8—C31—C32	123.6 (2)
N4—C13—N3	112.45 (17)	N8—C31—N7	112.81 (17)
C14—C13—N3	123.79 (18)	C32—C31—N7	123.57 (19)
C13—C14—C15	117.8 (2)	C33—C32—C31	118.1 (2)
C13—C14—H14	121.1	С33—С32—Н32	121.0
C15—C14—H14	121.1	С31—С32—Н32	121.0
C16—C15—C14	119.6 (2)	C34—C33—C32	119.7 (2)
C16—C15—H15	120.2	С34—С33—Н33	120.1
C14—C15—H15	120.2	С32—С33—Н33	120.1
C17—C16—C15	117.9 (2)	C35—C34—C33	117.9 (2)
C17—C16—H16	121.0	C35—C34—H34	121.0
C15-C16-H16	121.0	С33—С34—Н34	121.0
N4—C17—C16	124.0 (2)	N8—C35—C34	124.0 (2)
N4—C17—H17	118.0	N8—C35—H35	118.0
C16—C17—H17	118.0	С34—С35—Н35	118.0
O1—C18—H18A	109.5	O3—C36—H36A	109.5
O1-C18-H18B	109.5	O3—C36—H36B	109.5
H18A—C18—H18B	109.5	H36A—C36—H36B	109.5
O1—C18—H18C	109.5	O3—C36—H36C	109.5
H18A—C18—H18C	109.5	H36A—C36—H36C	109.5
H18B—C18—H18C	109.5	H36B—C36—H36C	109.5
C18—O1—C1—C2	3.2 (3)	C36—O3—C19—C20	0.6 (3)
C18—O1—C1—C6	-176.80 (19)	C36—O3—C19—C24	-178.73 (19)
O1—C1—C2—C3	179.3 (2)	O3—C19—C20—C21	-179.0 (2)
C6—C1—C2—C3	-0.7 (3)	C24—C19—C20—C21	0.3 (3)
C1—C2—C3—C4	0.3 (3)	C19—C20—C21—C22	0.5 (4)
C2—C3—C4—C5	-0.2 (4)	C20—C21—C22—C23	-0.9 (4)
C3—C4—C5—C6	0.6 (4)	C21—C22—C23—C24	0.6 (4)
C4—C5—C6—C1	-1.0 (3)	C22—C23—C24—C19	0.2 (3)
C4—C5—C6—N1	177.4 (2)	C22—C23—C24—N5	176.9 (2)

-178.98 (18)	O3—C19—C24—C23	178.73 (19)
1.0 (3)	C20-C19-C24-C23	-0.6 (3)
2.6 (3)	O3—C19—C24—N5	1.9 (3)
-177.39 (18)	C20-C19-C24-N5	-177.44 (19)
-18.5 (3)	C28—N5—C24—C23	-13.1 (3)
109.2 (2)	C25—N5—C24—C23	115.4 (2)
159.80 (18)	C28—N5—C24—C19	163.57 (18)
-72.5 (2)	C25—N5—C24—C19	-67.9 (2)
171.99 (16)	C24—N5—C25—C26	170.29 (17)
-57.8 (2)	C28—N5—C25—C26	-58.4 (2)
176.23 (16)	C29—N6—C26—C25	178.58 (17)
-59.0 (2)	C27—N6—C26—C25	-59.0 (2)
57.8 (2)	N5-C25-C26-N6	59.0 (2)
-174.60 (16)	C29—N6—C27—C28	-177.92 (16)
60.7 (2)	C26—N6—C27—C28	59.4 (2)
-171.08 (16)	C24—N5—C28—C27	-170.09 (17)
59.5 (2)	C25—N5—C28—C27	58.9 (2)
-61.1 (2)	N6—C27—C28—N5	-60.2 (2)
-86.9 (2)	C27—N6—C29—C30	154.65 (17)
150.02 (18)	C26—N6—C29—C30	-84.3 (2)
11.1 (3)	C31—N7—C30—O4	-4.8 (3)
-164.95 (19)	C31—N7—C30—C29	179.19 (18)
166.17 (18)	N6-C29-C30-O4	171.57 (17)
-17.6 (2)	N6-C29-C30-N7	-12.2 (2)
1.1 (3)	C35—N8—C31—C32	-1.1 (3)
-177.56 (17)	C35—N8—C31—N7	-179.91 (18)
175.9 (2)	C30—N7—C31—N8	-165.16 (19)
-2.7 (3)	C30—N7—C31—C32	16.0 (3)
-2.3 (3)	N8—C31—C32—C33	1.1 (3)
176.1 (2)	N7—C31—C32—C33	179.82 (18)
1.5 (3)	C31—C32—C33—C34	-0.2 (3)
0.5 (3)	C32—C33—C34—C35	-0.6 (3)
1.1 (3)	C31—N8—C35—C34	0.2 (3)
-1.9 (3)	C33—C34—C35—N8	0.7 (3)
	$\begin{array}{c} -178.98(18)\\ 1.0(3)\\ 2.6(3)\\ -177.39(18)\\ -18.5(3)\\ 109.2(2)\\ 159.80(18)\\ -72.5(2)\\ 171.99(16)\\ -57.8(2)\\ 176.23(16)\\ -59.0(2)\\ 57.8(2)\\ -174.60(16)\\ 60.7(2)\\ -171.08(16)\\ 59.5(2)\\ -61.1(2)\\ -86.9(2)\\ 150.02(18)\\ 11.1(3)\\ -164.95(19)\\ 166.17(18)\\ -17.6(2)\\ 1.1(3)\\ -177.56(17)\\ 175.9(2)\\ -2.7(3)\\ -2.3(3)\\ 176.1(2)\\ 1.5(3)\\ 0.5(3)\\ 1.1(3)\\ -1.9(3)\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N3—H03…N2	0.85 (2)	2.20 (3)	2.692 (3)	117.0 (19)
N7—H07…N6	0.86 (2)	2.26 (3)	2.734 (3)	115.3 (19)
C2—H2···N8	0.95	2.44	3.354 (3)	161
C7—H7A···O1	0.99	2.42	3.010 (3)	118
C14—H14···O2	0.95	2.33	2.923 (3)	120
C20—H20…N4	0.95	2.59	3.527 (3)	168
С25—Н25А…О3	0.99	2.34	2.950 (3)	119
С32—Н32…О4	0.95	2.34	2.917 (3)	118

Fig. 1

