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Abstract

SARS-CoV-2 has intricate mechanisms for initiating infection, immune evasion/suppression, and 

replication, which depend on the structure and dynamics of its constituent proteins. Many protein 

structures have been solved, but far less is known about their relevant conformational changes. To 

address this challenge, over a million citizen scientists banded together through the 

Folding@home distributed computing project to create the first exascale computer and simulate an 

unprecedented 0.1 seconds of the viral proteome. Our simulations capture dramatic opening of the 

apo Spike complex, far beyond that seen experimentally, which explains and successfully predicts 

the existence of ‘cryptic’ epitopes. Different Spike homologues modulate the probabilities of open 

versus closed structures, balancing receptor binding and immune evasion. We also observe 

dramatic conformational changes across the proteome, which reveal over 50 ‘cryptic’ pockets that 

expand targeting options for the design of antivirals. All data and models are freely available 

online, providing a quantitative structural atlas.

Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus that 

poses an imminent threat to global human health and socioeconomic stability.1 With 

estimates of the basic reproduction number at ~3–4 and a case fatality rate for coronavirus 
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disease 2019 (COVID-19) ranging from ~0.1–12% (high temporal variation), SARS-CoV-2/

COVID-19 has spread quickly and currently endangers the global population.2–6 As of 

September 12th, 2020, there have been over 29 million confirmed cases and over 925,000 

fatalities, globally. Quarantines and social distancing are effective at slowing the rate of 

transmission; however, they cause significant social and economic disruption. Taken 

together, it is crucial that we find immediate therapeutic interventions.

A structural understanding of the SARS-CoV-2 proteins could accelerate the discovery of 

new therapeutics by enabling the use of rational design.7 Towards this end, the structural 

biology community has made heroic efforts to rapidly build models of SARS-CoV-2 

proteins and the complexes they form. However, it is well established that a protein’s 

function is dictated by the full range of conformations it can access; many of which remain 

hidden to experimental methods. Mapping these conformations for SARS-CoV-2 proteins 

will provide a clearer picture of how they enable the virus to perform diverse functions, such 

as infecting cells, evading a host’s immune system, and replicating. Such maps may also 

present new therapeutic opportunities, such as ‘cryptic’ pockets that are absent in 

experimental snapshots but provide novel targets for drug discovery.

Molecular dynamics simulations have the ability to capture the full ensemble of structures a 

protein adopts but require significant computational resources. Such simulations capture an 

all-atom representation of the range of motions a protein undergoes. Modern datasets often 

consist of a few microseconds of simulation for a single protein, with a few noteworthy 

examples reaching millisecond timescales.8,9 However, many important processes occur on 

slower timescales. Moreover, simulating every protein that is relevant to SARS-CoV-2 for 

biologically relevant timescales would require compute resources on an unprecedented scale.

To overcome this challenge, more than a million citizen scientists from around the world 

have donated their computer resources to simulate SARS-CoV-2 proteins. This massive 

collaboration was enabled by the Folding@home distributed computing platform, which has 

crossed the exascale computing barrier and is now the world’s largest supercomputer. Using 

this resource, we constructed quantitative maps of the structural ensembles of over two 

dozen proteins and complexes that pertain to SARS-CoV-2. Together, we have run an 

unprecedented 0.1 s of simulation. Our data uncover the mechanisms of conformational 

changes that are essential for SARS-CoV-2’s replication cycle and reveal a multitude of new 

therapeutic opportunities. The data are supported by a variety of experimental observations 

and are being made publicly available (https://covid.molssi.org/ and https://osf.io/fs2yv/) in 

accordance with open science principles to accelerate the discovery of new therapeutics.10,11

To the Exascale and beyond!

Folding@home (http://foldingathome.org) is a community of citizen scientists, researchers, 

and tech organizations dedicated to applying their collective computational and intellectual 

resources to understand the role of proteins’ dynamics in their function and dysfunction, and 

to aid in the design of new proteins and therapeutics. The project was founded in the year 

2000 with the intent of understanding how proteins fold.12 At the time, simulating the 

folding of even small proteins could easily take thousands of years on a single computer. To 
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overcome this challenge, researchers developed algorithms for dividing these seemingly 

intractable problems into smaller simulations that could be performed completely 

independently of one another. They then created the Folding@home project to enable 

anyone with a computer and an internet connection to volunteer to run these small chunks of 

simulation, called “work units”.

Over the years, the applications of Folding@home have been generalized to address many 

aspects of protein dynamics, and the algorithms have developed significantly. The 

Folding@home Consortium now involves eight laboratories around the world studying 

various aspects of disease from cancer to antimicrobial resistance to membrane protein 

dysfunction diseases (https://foldingathome.org/about/the-foldinghome-consortium/). The 

project has provided insight into diverse topics, ranging from signaling mechanisms.13–15 to 

the connection between phenotype and genotype.16–18 Translational applications have 

included new means to combat antimicrobial resistance, Ebola virus, and SFTS virus.19–21

In response to the COVID-19 pandemic, Folding@home quickly pivoted to focus on SARS-

CoV-2 and the host factors it interacts with. Many people found the opportunity to take 

action at a time when they were otherwise feeling helpless alluring. In less than three 

months, the project grew from ~30,000 active devices to over a million devices around the 

globe (Fig. 1A and 1B).

Estimating the aggregate compute power of Folding@home is non-trivial due to factors like 

hardware heterogeneity, measures to maintain volunteers’ anonymity, and the fact that 

volunteers can turn their machines on and off at-will. Furthermore, volunteers’ machines 

only communicate with the Folding@home servers at the beginning and end of a work unit, 

with the intervening time taking anywhere from tens of minutes to a few days depending on 

the volunteer’s hardware and the protein to simulate. Therefore, we chose to estimate the 

performance by counting the number of GPUs and CPUs that participated in Folding@home 

during a three-day window and making a conservative assumption about the computational 

performance of each device (see Methods for details). We note that a larger time window has 

been used on our website for historical reasons.

Given the above, we conservatively estimate the peak performance of Folding@home hit 

1.01 exaFLOPS. This performance was achieved at a point when ~280,000 GPUs and 4.8 

million CPU cores were performing simulations. As explained in the Methods, to be 

conservative about our claims, we assume that each GPU/CPU has worse performance than 

a card released before 2015. For reference, the aggregate 1 exaFLOPS performance we 

report for Folding@home is 5-fold greater than the peak performance of the world’s fastest 

traditional supercomputer, called Summit (Fig. 1C). It is also more than the top 100 

supercomputers combined. Prior to Folding@home, the first exascale supercomputer was 

not scheduled to come online until the end of 2021.

Extensive spike opening reveals cryptic epitopes

The Spike complex (S) is a prominent vaccine target that is known to undergo substantial 

conformational changes as part of its function.22–24 Structurally, S is composed of three 
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interlocking proteins, with each chain having a cleavage site separating an S1 and S2 

fragment. S resides on the virion surface, where it waits to engage with an angiotensin-

converting enzyme 2 (ACE2) receptor on a host cell to trigger infection.25,26 The fact that S 

is exposed on the virion surface makes it an appealing vaccine target. However, it has a 

number of effective defense strategies. First, S is decorated extensively with glycans that aid 

in immune evasion by shielding potential antigens.27,28 S also uses a conformational 

masking strategy, wherein it predominantly adopts a closed conformation (often called the 

down state) that buries the receptor-binding domains (RBDs) to evade immune surveillance 

mechanisms. To engage with ACE2, S must somehow expose the conserved binding 

interface of the RBDs. Characterizing the full range of S opening is important for 

understanding pathogenesis and could provide insights into novel therapeutic options.

To capture S opening, we employed our goal-oriented adaptive sampling algorithm, FAST, 

in conjunction with Folding@home. The FAST method iterates between running a batch of 

simulations, building a map called a Markov state model (MSM), ranking the 

conformational states of this MSM based on how likely starting a new simulation from that 

state is to yield useful data, and starting a new batch of simulations from the top ranked 

states.29,30 The ranking function is designed to balance between favoring structures with a 

desired geometric feature (in this case opening of S) and broad exploration of 

conformational space. By balancing exploration-exploitation tradeoffs, FAST often captures 

conformational changes with orders of magnitude less simulation time than alternative 

methods. Broadly distributed structures from our FAST simulations were then used as 

starting points for extensive Folding@home simulations, totaling over 1 ms of data for 

SARS-CoV-2 S, enabling us to obtain a statistically sound final model.

Our SARS-CoV-2 S protein simulations capture opening of S and substantial conformational 

heterogeneity in the open state with full atomistic detail (Fig. 2). Capturing opening of S is 

an impressive technical feat. Other large-scale simulations have provided valuable insight 

into aspects of S, but were unable to capture this essential event for the initiation of 

infection.28,31,32 We successfully captured this rare event for both glycosylated and 

unglycosylated S and found that glycosylation slightly increases the population of the open 

state, but is qualitatively very similar to the unglycosylated ensemble (Fig. S1). The closed 

state is more probable than the open state, explaining the experimental observation that full-

length S has a lower affinity for ACE2 than an isolated RBD.40 Intriguingly, we find that 

opening occurs only for a single RBD at a time, akin to the up state observed in cryoEM 

structures.33 Moreover, we find that the scale of S opening is often substantially larger than 

has been observed in experimental snapshots in the absence of binding partners (Fig. S2). 

The dramatic opening we observe explains the observation that antibodies, and other 

therapeutics, can bind to regions of the RBD that are deeply buried and seemingly 

inaccessible in existing experimental snapshots.34–37 For example, the cryptic epitope for the 

antibody CR3022 is buried in up and down cryoEM structures, but is clearly exposed in our 

conformational ensemble (Fig. 2C). Indeed, our ensemble captures the exposure of many 

known epitopes, despite their occlusion in apo experimental snapshots (Fig. 2D). Our 

models also provide a quantitative estimate of the probability that different epitopes are 

exposed, is consistent with experimental measures of dynamics, and can be used to 

determine the most suitable regions for the design of neutralizing antibodies.
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To understand the potential role of conformational masking in determining the lethality and 

infectivity of different coronaviruses, we also simulated the opening of S proteins from two 

related viruses: SARS-CoV-1 and HCoV-NL63. These viruses were selected because they 

also bind the ACE2 receptor but are associated with varying mortality rates. SARS-CoV-1 

caused an outbreak in 2003 with a high case fatality rate but has not become a pandemic.38 

NL63 was discovered the following year and continues to spread around the globe, although 

it is significantly less lethal than either SARS virus.39 We hypothesized that these 

phenotypic differences may be partially explained by changes to the S conformational 

ensemble. Specifically, we propose mutations or other perturbations can increase the S-

ACE2 affinity by increasing the probability that S adopts an open conformation or by 

increasing the affinity between an exposed RBD and ACE2. In contrast, the affinity of S for 

ACE2 (or antibodies that bind cryptic epitopes) can be reduced by stabilizing the closed 

state.

As expected, the three S complexes have very different propensities to adopt an open state 

and bind ACE2. Structures from each ensemble were classified as competent to bind ACE2 

if superimposing an ACE2-RBD structure on S did not result in any steric clashes between 

ACE2 and the rest of the S complex. We find that SARS-CoV-1 has the highest population 

of conformations that can bind to ACE2 without steric clashes, followed by SARS-CoV-2, 

while opening of NL63 is sufficiently rare that we did not observe ACE2-binding competent 

conformations in our simulations (Fig. 2B). Interestingly, S proteins that are more likely to 

adopt structures that are competent to bind ACE2 are also more likely to adopt highly open 

structures (Fig 2C).

We also observe a number of interesting correlations between conformational masking, 

lethality, and infectivity of different coronaviruses. First, more deadly coronaviruses have S 

proteins with less conformational masking. Second, there is an inverse correlation between S 

opening and the affinity of an isolated RBD for ACE2 (RBD-ACE2 affinities of ~35 nM, 

~44 nM, and ~185 nM for HCoV-NL63, SARS-CoV-2, and SARS-CoV-1, respectively).41,42

These observations suggest a tradeoff wherein greater conformational masking enables 

immune evasion but requires a higher affinity between an exposed RBD and ACE2 to 

successfully infect a host cell. We propose that the NL63 S complex is probably best at 

evading immune detection but is not as infectious as the SARS viruses because strong 

conformational masking reduces the overall affinity for ACE2. In contrast, the SARS-CoV-1 

S complex adopts open conformations more readily but is also more readily detected by 

immune surveillance mechanisms. Finally, SARS-CoV-2 balances conformational masking 

and the RBD-ACE2 affinity in a manner that allows it to evade an immune response while 

maintaining its ability to infect a host cell. Based on this model, we predict that mutations 

that increase the probability that the SARS-CoV-2 S complex adopts open conformations 

may be more lethal but spread less readily.

Our atomically detailed model of S can facilitate structure-based vaccine antigen design 

through identification of regions minimally protected by conformational masking or the 

glycan shield.43 To identify these potential epitopes, we calculated the probability that each 

residue in S could be exposed to therapeutics (e.g. not shielded by a glycan or buried by 
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conformational masking), as shown in Fig. 3A. Visualizing these values on the protein 

reveals a few patches of protein surface that are exposed through the glycan shielding (Fig. 

3B). However, another important factor when targeting an antigen is picking a region with a 

conserved sequence to yield broader and longer lasting efficacy. Not surprisingly, many of 

the exposed regions do not have a strongly conserved sequence. Promisingly, though, we do 

find a conserved area with a larger degree of solvent exposure (Fig. 3C). This region was 

recently found to be an effective site for neutralizing antibodies.44 Another possibility for 

antigen design is to exploit the opening motion. A number of residues surrounding the 

receptor binding motif (RBM) of the RBD show an increase in exposure by ~30% in ACE2 

binding competent structures (Fig. 3C). Consistent with immunoassays and cryoEM 

structures, these regions are hotspots for neutralizing antibody binding.34,45,46

Cryptic pockets and functional dynamics are present throughout the 

proteome

Every protein in SARS-CoV-2 remains a potential drug target. So, to understand their role in 

disease and help progress the design of antivirals, we unleashed the full power of 

Folding@home to simulate dozens of systems related to pathogenesis. While we are 

interested in all aspects of a proteins’ functional dynamics, expanding on the number of 

antiviral targets is of immediate value. Towards this end, we seeded Folding@home 

simulations from our FAST-pockets adaptive sampling to aid in the discovery of cryptic 

pockets. We briefly discuss two illustrative examples, out of 36 datasets.

Nonstructural protein number 5 (NSP5, also named the main protease, 3CLpro, or as we will 

refer to it, Mpro) is an essential protein in the lifecycle of coronaviruses, cleaving polyprotein 

1a into functional proteins, and is a major target for the design of antivirals.47 It is highly 

conserved between coronaviruses and shares 96% sequence identity with SARS-CoV-1 

Mpro; it cleaves polyprotein 1a at no fewer than 11 distinct sites, placing significant 

evolutionary constraint on its active site. Mpro is only active as a dimer, however it exists in a 

monomer-dimer equilibrium with estimates of its dissociation constant in the low μM range.
48 Small molecules targeting this protein to inhibit enzymatic activity, either by altering its 

active site or favoring the inactive monomer state, would be promising broad-spectrum 

antiviral candidates.49

Our simulations reveal two novel cryptic pockets on Mpro that expand our current 

therapeutic options. These are shown in Fig. 4A, which projects states from our MSM onto 

the solvent exposure of residues that make up the pockets. The first cryptic pocket is an 

expansion of NSP5’s catalytic site. We find that the loop bridging domains II and III is 

highly dynamic and can fully undock from the rest of the protein. This motion may impact 

catalysis—i.e. by sterically regulating substrate binding—and is similar to motions we have 

observed previously for the enzyme β-lactamase.50 Owing to its location, a small molecule 

bound in this pocket is likely to prevent catalysis by obstructing polypeptide association with 

catalytic residues. The second pocket is a large opening between domains I/II and domain 

III. Located at the dimerization interface, this pocket offers the possibility to find small 

molecules or peptides that favor the inactive monomer state.
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In addition to cryptic pockets, our data captures many potentially functionally relevant 

motions within the SARS-CoV-2 proteome. We illustrate this with the SARS-CoV-2 

nucleoprotein. The nucleoprotein is a multifunctional protein responsible for major lifecycle 

events such as viral packaging, transcription, and physically linking RNA to the envelope.
51,52 As such, we expect the protein to accomplish these goals through a highly dynamic and 

rich conformational ensemble, akin to context-dependent regulatory modules observed in 

Ebola virus nucleoprotein.53,54 Investigating the RNA-binding domain, we observe both 

cryptic pockets and an incredibly dynamic beta-hairpin, which hosts the RNA binding site, 

referred to as a “positive finger” (Fig. 4C–D). Our observed conformational heterogeneity of 

the positive finger is consistent with a structural ensemble determined using solution-state 

nuclear magnetic resonance (NMR) spectroscopy.55 Our simulations also capture numerous 

states of the putative RNA binding pose, where the positive finger curls up to form a cradle 

for RNA. These states can provide a structural basis for the design of small molecules that 

would compete with RNA binding, preventing viral assembly.

The data we present in this paper represents the single largest collection of all-atom 

simulations. Table 1 is a comprehensive list of the systems we have simulated. Systems span 

various oligomerization states, include important complexes, and include representation 

from multiple coronaviruses. We also include human proteins that are targets for supportive 

therapies and preventative treatments. To accelerate the discovery of new therapeutics and 

promote open science, our MSMs and structures of cryptic pockets are available online 

(https://covid.molssi.org/ and https://osf.io/fs2yv/). For ease of use, within each final model 

we provide the residues that comprise cryptic pockets along with an ordered list of states 

from largest to smallest opening.

Discussion

The Folding@home community has created one of the largest computational resources in 

the world to tackle a global threat. Over a million citizen scientists have pooled their 

computer resources to help understand and combat COVID-19, generating more than 0.1 

seconds of simulation data. The unprecedented scale of these simulations has helped to 

characterize crucial stages of infection. We find that Spike proteins have a strong trade-off 

between making ACE2 binding interfaces accessible to infiltrate cells and conformationally 

masking epitopes to subvert immune responses. SARS-CoV-2 represents a more optimal 

tradeoff than related coronaviruses, which may explain its success in spreading globally. Our 

simulations also provide an atomically detailed roadmap for designing vaccines and 

antivirals. For example, we have made a comprehensive atlas and repository of cryptic 

pockets hosted online to accelerate the development of novel therapeutics. Many groups are 

already using our data, such as the COVID Moonshot,59 an international collaboration 

between multiple computational and experimental groups working to develop a patent-free 

inhibitor of the main protease.

Beyond SAR S-CoV-2, we expect this work to aid in a better understanding of the roles of 

proteins in the coronaviridae family. Coronaviruses have been around for millennia, yet 

many of their proteins are still poorly understood. Because climate change has made 

zoonotic transmission events more commonplace, it is imperative that we continue to 
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perform basic research on these viruses to better protect us from future pandemics. For each 

protein system in Table 1, an extraordinary amount of sampling has led to the generation of 

a quantitative map of its conformational landscape. There is still much to learn about 

coronavirus function and these conformational ensembles contain a wealth of information to 

pull from.

While we have aggressively targeted research on SARS-CoV-2, Folding@home is a general 

platform for running molecular dynamics simulations at scale. Before the COVID-19 

pandemic, Folding@home was already generating datasets that were orders of magnitude 

greater than from conventional means. With our explosive growth, our compute power has 

increased around 100-fold. Our work here highlights the incredible utility this compute 

power has to rapidly understand health and disease, providing a rich source of structural data 

for accelerating the design of therapeutics. With the continued support of the citizen 

scientists that have made this work possible, we have the opportunity to make a profound 

impact on other global health crises such as cancer, neurodegenerative diseases, and 

antibiotic resistance.

Methods

System preparation

All simulations were prepared using Gromacs 2020.60 Initial structures were placed in a 

dodecahedral box that extends 1.0 nm beyond the protein in any dimension. Systems were 

then solvated and energy minimized with a steepest descents algorithm until the maximum 

force fell below 100 kJ/mol/nm using a step size of 0.01 nm and a cutoff distance of 1.2 nm 

for the neighbor list, Coulomb interactions, and van der Waals interactions. The AMBER03 

force field was used for all systems except Spike protein with glycans, which used 

CHARMM36.61,62 All simulations were simulated with explicit TIP3P solvent.63

Systems were then equilibrated for 1.0 ns, where all bonds were constrained with the LINCS 

algorithm and virtual sites were used to allow a 4 fs time step.64 Cutoffs of 1.1 nm were used 

for the neighbor list with 0.9 for Coulomb and van der Waals interactions. The particle mesh 

ewald method was employed for treatment of long-range interactions with a fourier spacing 

of 0.12 nm. The Verlet cutoff scheme was used for the neighbor list. The stochastic velocity 

rescaling (v-rescale) thermostat was used to hold the temperature at 300 K.65

Adaptive sampling simulations

The FAST algorithm was employed for each protein in Table 1 to enhance conformational 

sampling and quickly explore dominant motions. The procedure for FAST simulations is as 

follows: 1) run initial simulations, 2) build MSM, 3) rank states based on FAST ranking, 4) 

restart simulations from the top ranked states, 5) repeat steps 2–4 until ranking is optimized. 

For each system, MSMs were generated after each round of sampling using a k-centers 

clustering algorithm based on the RMSD between select atoms. Clustering continued until 

the maximum distance of a frame to a cluster center fell within a predefined cutoff. In 

addition to the FAST ranking, a similarity penalty was added to promote conformational 

diversity in starting structures, as has been described previously.66
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FAST-distance simulations of all Spike proteins were run at 310 K on the Microsoft Azure 

cloud computing platform. The FAST-distance ranking favored states with greater RBD 

openings using a set of distances between atoms. Each round of sampling was performed 

with 22 independent simulations that were 40 ns in length (0.88 μs aggregate sampling per 

round), where the number of rounds totaled 13 (11.44 μs), 22 (19.36 μs), and 17 (14.96 μs), 

for SARS-CoV-1, SARS-CoV-2, and HCoV-NL63, respectively.

For all other proteins, FAST-pocket simulations were run at 300 K for 6 rounds, with 10 

simulations per round, where each simulation was 40 ns in length (2.4 μs aggregate 

simulation). The FAST-pocket ranking function favored restarting simulations from states 

with large pocket openings. Pocket volumes were calculated using the LIGSITE algorithm.
67

Folding@home simulations

For each adaptive sampling run, a conformationally diverse set of structures was selected to 

be run on Folding@home. Structures came from the final k-centers clustering of adaptive 

sampling, as is described above. Simulations were deployed using a simulation core based 

on either GROMACS 5.0.4 or OpenMM 7.4.1.60,68

To estimate the performance of Folding@home, we make the conservative assumption that 

each CPU core performs at 0.0127 TFLOPS and each GPU at 1.672 native TFLOPS (or 3.53 

X86-equivalent TFLOPS), as explained in our long-standing performance estimate (https://

stats.foldingathome.org/os). For reference, a GTX 980 (which was released in 2014) can 

achieve 5 native TFLOPS (or 10.56 X86-equivalent TFLOPS). An Intel Core i7 4770K 

(released in 2013) can achieve 0.046 TFLOPS/core. We report x86-equivalent FLOPS.

Markov state models

A Markov state model is a network representation of a free energy landscape and is a key 

tool for making sense of molecular dynamics simulations.69 All MSMs were built using our 

python package, enspara.70 Each system was clustered with the combined FAST and 

Folding@home datasets. In the case of Spike proteins, states were defined geometrically 

based on the RMSD between backbone Cɑ coordinates. States were generated as the top 

3000 centers from a k-centers clustering algorithm. All other proteins were clustered based 

on the Euclidean distance between the solvent accessible surface area of residues, as is 

described previously.50 Systems generated either 2500, 5000, 7500, or 10000 cluster centers 

from a k-centers clustering algorithm. Select systems were refined with 1–10 k-medoid 

sweeps. Transition probability matrices were produced by counting transitions between 

states, adding a prior count of 1/nstates, and row-normalizing, as is described previously.71 

Equilibrium populations were calculated as the eigenvector of the transition probability 

matrix with an eigenvalue of one.

Spike/ACE2 binding competency

To determine Spike protein binding competency to ACE2 the following structures of the 

RBD bound to ACE2 were used: 3D0G, 6M0J, and 3KBH, for SARS-CoV-1, SARS-CoV-2, 

and HCoV-NL63, respectively. The RBD of the bound complex was superimposed onto each 
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RBD for structures in our MSM. Steric clashes were then determined between backbone 

atoms on the ACE2 molecule and the rest of the spike protein. If any of the structures had a 

superposition that resulted in no clashes, it was deemed binding competent.

Cryptic pockets and solvent accessible surface area

For ease of detecting cryptic pockets and other functional motions, we employed our 

exposon analysis method.50 This method correlates the solvent exposure between residues to 

find concerted motions that tend to represent cryptic pocket openings. Solvent accessible 

surface area calculations were computed using the Shrake-Rupley algorithm as implemented 

in the python package MDTraj.72 For all proteins and complexes, a solvent probe radius of 

0.28 nm was used, which has been shown to produce a reasonable clustering and exposon 

map.50

Spike protein solvent accessible surface areas for SARS-CoV-2 were computed with glycan 

chains modeled onto each cluster center. Multiple glycan rotamers were sampled for each 

state and accessible surface areas for each residue were weighted based on MSM 

equilibrium populations.

Sequence conservation

Sequence conservation of spike proteins was calculated using the Uniprot database.73 

Sequences between 30% – 90% were pulled and aligned with the Muscle algorithm.74 The 

entropy at each position was calculated to quantify variability of amino acids. Conservation 

was defined as one minus the entropy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We are extremely grateful to all the citizen scientists who contributed their compute power to make this work 
possible, and members of the Folding@home community who volunteered to help with everything from technical 
support to translating content into multiple languages. Thanks to Microsoft AI for Health for helping us use Azure 
to run adaptive sampling simulations, and to UKRI for providing compute resources to parallelize data analysis. 
Thanks to Pure Storage for providing a FlashBlade system to store our large datasets, to Seagate and Micron for 
additional storage, and to MolSSI for helping organize public datasets. Thanks to Avast, AWS, Cisco, Linus Tech 
Tips, Microsoft Azure, Oracle, and VMware for helping us to scale-up Folding@home’s server-side infrastructure 
to keep up with the tremendous growth we experienced in such a short time. Thanks to AMD, ARM and Neocortix, 
and Intel for helping to improve the performance of Folding@home on their hardware. Thanks to all of these 
companies for helping to spread the word about Folding@home, and also to A16Z, Best Buy, CCP, CoreWeave, 
Daimler Truck AG, Dell, GitHub, HP, La Liga, Media Monks, Microcenter, NVIDIA, and Telefonica. Thanks to 
CERN and the particle physics community for helping with data management and to DataDog for server monitoring 
services. Thanks to Christopher O. Barnes for providing the epitope contacts used for Fig. 2D. JRP acknowledges 
support from F30HL146052. GRB and his lab were supported by funding from Avast, the Center for the Science 
and Engineering of Living Systems (CSELS), an NSF RAPID award, NSF CAREER Award MCB-1552471, NIH 
R01 GM124007, a Burroughs Wellcome Fund Career Award at the Scientific Interface, and a Packard Fellowship 
for Science and Engineering. JDC acknowledges support from NIH grant P30 CA008748 and NIH grant R01 
GM121505. VAV and MFDH acknowledge support from NIH grant R01 GM123296, NIH grant S10-OD020095, 
and NSF MRI grant CNS-1625061.

Zimmerman et al. Page 10

Nat Chem. Author manuscript; available in PMC 2021 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Disclosures

JDC is a current member of the Scientific Advisory Board of OpenEye Scientific Software and a consultant to 
Foresite Laboratories.

The Chodera laboratory receives or has received funding from multiple sources, including the National Institutes of 
Health, the National Science Foundation, the Parker Institute for Cancer Immunotherapy, Relay Therapeutics, 
Entasis Therapeutics, Silicon Therapeutics, EMD Serono (Merck KGaA), AstraZeneca, Vir Biotechnology, Bayer, 
XtalPi, the Molecular Sciences Software Institute, the Starr Cancer Consortium, the Open Force Field Consortium, 
Cycle for Survival, a Louis V. Gerstner Young Investigator Award, and the Sloan Kettering Institute.A complete 
funding history for the Chodera lab can be found at http://choderalab.org/funding.

References

1. Zhou P et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. 
Nature 579, 270–273 (2020). [PubMed: 32015507] 

2. Liu Y, Gayle AA, Wilder-Smith A & Rocklöv J The reproductive number of COVID-19 is higher 
compared to SARS coronavirus. J Travel Med 27, (2020).

3. Sorci G, Faivre B & Morand S Why Does COVID-19 Case Fatality Rate Vary Among Countries? 
SSRN Journal (2020). doi:10.2139/ssrn.3576892

4. Morteza Abdullatif Khafaie FR Cross-Country Comparison of Case Fatality Rates of COVID-19/
SARS-COV-2. Osong Public Health and Research Perspectives 11, 74–80 (2020). [PubMed: 
32257772] 

5. Mahase E Coronavirus: covid-19 has killed more people than SARS and MERS combined, despite 
lower case fatality rate. BMJ 368, m641 (2020). [PubMed: 32071063] 

6. Onder G, Rezza G & Brusaferro S Case-Fatality Rate and Characteristics of Patients Dying in 
Relation to COVID-19 in Italy. JAMA 323, 1775–1776 (2020). [PubMed: 32203977] 

7. Ferreira LG, Santos, Dos RN, Oliva G & Andricopulo AD Molecular Docking and Structure-Based 
Drug Design Strategies. Molecules 2015, Vol. 20, Pages 13384–13421 20, 13384–13421 (2015).

8. Voelz VA, Bowman GR, Beauchamp K & Pande VS Molecular Simulation of ab Initio Protein 
Folding for a Millisecond Folder NTL9(1–39). J. Am. Chem. Soc 132, 1526–1528 (2010). 
[PubMed: 20070076] 

9. Lindorff-Larsen K, Piana S, Dror RO & Shaw DE How Fast-Folding Proteins Fold. Science 334, 
517–520 (2011). [PubMed: 22034434] 

10. Stodden V Enabling Reproducible Research: Open Licensing for Scientific Innovation. (2009).

11. Amaro RE & Mulholland AJ A Community Letter Regarding Sharing Biomolecular Simulation 
Data for COVID-19. Journal of Chemical Information and Modeling 60, 2653–2656 (2020). 
[PubMed: 32255648] 

12. Shirts M & Pande VS COMPUTING: Screen Savers of the World Unite! Science 290, 1903–1904 
(2000). [PubMed: 17742054] 

13. Kohlhoff KJ et al. Cloud-based simulations on Google Exacycle reveal ligand modulation of GPCR 
activation pathways. Nature Chem 6, 15–21 (2014). [PubMed: 24345941] 

14. Shukla D, Meng Y, Roux B & Pande VS Activation pathway of Src kinase reveals intermediate 
states as targets for drug design. Nat Commun 5, 1–11 (2014).

15. Sun X, Singh S, Blumer KJ & Bowman GR Simulation of spontaneous G protein activation reveals 
a new intermediate driving GDP unbinding. eLife 7, 19 (2018).

16. Hart KM, Ho CMW, Dutta S, Gross ML & Bowman GR Modelling proteins’ hidden 
conformations to predict antibiotic resistance. Nat Commun 7, 1–10 (2016).

17. Chen S et al. The dynamic conformational landscape of the protein methyltransferase SETD8. 
eLife 8, 213 (2019).

18. Porter JR, Meller A, Zimmerman MI, Greenberg MJ & Bowman GR Conformational distributions 
of isolated myosin motor domains encode their mechanochemical properties. eLife 9, 19 (2020).

19. Hart KM et al. Designing small molecules to target cryptic pockets yields both positive and 
negative allosteric modulators. PLOS ONE 12, e0178678 (2017). [PubMed: 28570708] 

Zimmerman et al. Page 11

Nat Chem. Author manuscript; available in PMC 2021 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://choderalab.org/funding


20. Cruz MA et al. Discovery of a cryptic allosteric site in Ebola’s ‘undruggable’ VP35 protein using 
simulations and experiments. bioRxiv 17, 2020.02.09.940510 (2020).

21. Wang W et al. The Cap-Snatching SFTSV Endonuclease Domain Is an Antiviral Target. Cell 
Reports 30, 153–163.e5 (2020). [PubMed: 31914382] 

22. Kirchdoerfer RN et al. Stabilized coronavirus spikes are resistant to conformational changes 
induced by receptor recognition or proteolysis. Sci Rep 8, 1–11 (2018). [PubMed: 29311619] 

23. Walls AC et al. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 
181, 281–292.e6 (2020). [PubMed: 32155444] 

24. Wrapp D et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 
367, 1260–1263 (2020). [PubMed: 32075877] 

25. Zhang H, Penninger JM, Li Y, Zhong N & Slutsky AS Angiotensin-converting enzyme 2 (ACE2) 
as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care 
Med 46, 586–590 (2020). [PubMed: 32125455] 

26. Hoffmann M et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a 
Clinically Proven Protease Inhibitor. Cell 181, 271–280.e8 (2020). [PubMed: 32142651] 

27. Watanabe Y et al. Vulnerabilities in coronavirus glycan shields despite extensive glycosylation. Nat 
Commun 11, 1–10 (2020). [PubMed: 31911652] 

28. Casalino L et al. Shielding and Beyond: The Roles of Glycans in SARS-CoV-2 Spike Protein. 9, 
221–27 (2020).

29. Zimmerman MI & Bowman GR FAST Conformational Searches by Balancing Exploration/
Exploitation Trade-Offs. J. Chem. Theory Comput 11, 5747–5757 (2015). [PubMed: 26588361] 

30. Zimmerman MI & Bowman GR How to Run FAST Simulations. Methods in Enzymology 578, 
213–225 (2016). [PubMed: 27497168] 

31. Sikora M et al. Map of SARS-CoV-2 spike epitopes not shielded by glycans. bioRxiv 
2020.07.03.186825 (2020). doi:10.1101/2020.07.03.186825

32. Turoňová B et al. In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by 
three hinges. Science eabd5223 (2020). doi:10.1126/science.abd5223

33. Yuan Y et al. Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the 
dynamic receptor binding domains. Nat Commun 8, 1–9 (2017). [PubMed: 28232747] 

34. Zhou T et al. A pH-dependent switch mediates conformational masking of SARS-CoV-2 spike. 
bioRxiv 16, 2020.07.04.187989 (2020).

35. Guo L et al. Engineered Trimeric ACE2 Binds and Locks ‘Three-up’ Spike Protein to Potently 
Inhibit SARS-CoVs and Mutants. bioRxiv 2020.08.31.274704 (2020). 
doi:10.1101/2020.08.31.274704

36. Barnes CO et al. Structural classification of neutralizing antibodies against the SARS-CoV-2 spike 
receptor-binding domain suggests vaccine and therapeutic strategies. bioRxiv 584, 
2020.08.30.273920 (2020).

37. Huo J et al. Neutralization of SARS-CoV-2 by Destruction of the Prefusion Spike. SSRN Journal 
(2020). doi:10.2139/ssrn.3613273

38. Zhong NS et al. Epidemiology and cause of severe acute respiratory syndrome (SARS) in 
Guangdong, People’s Republic of China, in February, 2003. The Lancet 362, 1353–1358 (2003).

39. van der Hoek L et al. Identification of a new human coronavirus. Nat Med 10, 368–373 (2004). 
[PubMed: 15034574] 

40. Shang J et al. Cell entry mechanisms of SARS-CoV-2. PNAS 117, 11727–11734 (2020). [PubMed: 
32376634] 

41. Wu K, Li W, Peng G & Li F Crystal structure of NL63 respiratory coronavirus receptor-binding 
domain complexed with its human receptor. PNAS 106, 19970–19974 (2009). [PubMed: 
19901337] 

42. Shang J et al. Structural basis of receptor recognition by SARS-CoV-2. Nature 581, 221–224 
(2020). [PubMed: 32225175] 

43. Graham BS, Gilman MSA & McLellan JS Structure-Based Vaccine Antigen Design. Annu. Rev. 
Med 70, 91–104 (2019). [PubMed: 30691364] 

Zimmerman et al. Page 12

Nat Chem. Author manuscript; available in PMC 2021 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



44. Li Y et al. Linear epitopes of SARS-CoV-2 spike protein elicit neutralizing antibodies in 
COVID-19 patients. medRxiv 2020.06.07.20125096 (2020). doi:10.1101/2020.06.07.20125096

45. Brouwer PJM et al. Potent neutralizing antibodies from COVID-19 patients define multiple targets 
of vulnerability. Science 38, eabc5902 (2020).

46. Hansen J et al. Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody 
cocktail. Science eabd0827 (2020). doi:10.1126/science.abd0827

47. Zhang L et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of 
improved α-ketoamide inhibitors. Science 368, 409–412 (2020). [PubMed: 32198291] 

48. Graziano Vito, McGrath William J, Yang Lin, Walter A, Mangel F. SARS CoV Main Proteinase: 
The Monomer–Dimer Equilibrium Dissociation Constant. Biochemistry 45, 14632–14641 
(American Chemical Society, 2006). [PubMed: 17144656] 

49. Goyal B & Goyal D Targeting the Dimerization of the Main Protease of Coronaviruses: A Potential 
Broad-Spectrum Therapeutic Strategy. ACS Combinatorial Science 22, 297–305 (2020). [PubMed: 
32402186] 

50. Porter JR et al. Cooperative Changes in Solvent Exposure Identify Cryptic Pockets, Switches, and 
Allosteric Coupling. Biophysical Journal 116, 818–830 (2019). [PubMed: 30744991] 

51. McBride R, Van Zyl M & Fielding BC The Coronavirus Nucleocapsid Is a Multifunctional Protein. 
Viruses 2014, Vol. 6, Pages 2991–3018 6, 2991–3018 (2014).

52. Masters PS Coronavirus genomic RNA packaging. Virology 537, 198–207 (2019). [PubMed: 
31505321] 

53. Cubuk J et al. The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase separates 
with RNA. bioRxiv 53, 171–39 (2020).

54. Su Z et al. Electron Cryo-microscopy Structure of Ebola Virus Nucleoprotein Reveals a 
Mechanism for Nucleocapsid-like Assembly. Cell 172, 966–978.e12 (2018). [PubMed: 29474922] 

55. Dinesh DC, Chalupska D, Silhan J, Veverka V & Boura E Structural basis of RNA recognition by 
the SARS-CoV-2 nucleocapsid phosphoprotein. 73, 213–13 (2020).

56. Waterhouse A et al. SWISS-MODEL: homology modelling of protein structures and complexes. 
Nucleic Acids Res. 46, W296–W303 (2018). [PubMed: 29788355] 

57. Jo S, Kim T, Iyer VG & Im W CHARMM-GUI: a web-based graphical user interface for 
CHARMM. Journal of computational chemistry 29, 1859–1865 (2008). [PubMed: 18351591] 

58. Lee J et al. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and 
CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. J. Chem. Theory 
Comput 12, 405–413 (2016). [PubMed: 26631602] 

59. Chodera J, Lee AA, London N & Delft von, F. Crowdsourcing drug discovery for pandemics. 
Nature Chem 12, 581–581 (2020). [PubMed: 32555379] 

60. Abraham MJ et al. GROMACS: High performance molecular simulations through multi-level 
parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).

61. Duan Y et al. A point-charge force field for molecular mechanics simulations of proteins based on 
condensed-phase quantum mechanical calculations. J Comput Chem 24, 1999–2012 (2003). 
[PubMed: 14531054] 

62. Huang J & MacKerell AD CHARMM36 all-atom additive protein force field: validation based on 
comparison to NMR data. J Comput Chem 34, 2135–2145 (2013). [PubMed: 23832629] 

63. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW & Klein ML Comparison of simple 
potential functions for simulating liquid water. The Journal of Chemical Physics 79, 926–935 
(1983).

64. Hess B P-LINCS: A Parallel Linear Constraint Solver for Molecular Simulation. J. Chem. Theory 
Comput 4, 116–122 (2008). [PubMed: 26619985] 

65. Bussi G, Donadio D & Parrinello M Canonical sampling through velocity rescaling. The Journal of 
Chemical Physics 126, 014101 (2007). [PubMed: 17212484] 

66. Zimmerman MI et al. Prediction of New Stabilizing Mutations Based on Mechanistic Insights from 
Markov State Models. ACS Cent Sci 3, 1311–1321 (2017). [PubMed: 29296672] 

Zimmerman et al. Page 13

Nat Chem. Author manuscript; available in PMC 2021 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



67. Hendlich M, Rippmann F & Barnickel G LIGSITE: automatic and efficient detection of potential 
small molecule-binding sites in proteins. J. Mol. Graph. Model 15, 359–63–389 (1997). [PubMed: 
9704298] 

68. Eastman P et al. OpenMM 7: Rapid development of high performance algorithms for molecular 
dynamics. PLoS Comput Biol 13, e1005659 (2017). [PubMed: 28746339] 

69. Husic BE & Pande VS Markov State Models: From an Art to a Science. J. Am. Chem. Soc 140, 
2386–2396 (2018). [PubMed: 29323881] 

70. Porter JR, Zimmerman MI & Bowman GR Enspara: Modeling molecular ensembles with scalable 
data structures and parallel computing. The Journal of Chemical Physics 150, 044108 (2019). 
[PubMed: 30709308] 

71. Zimmerman MI, Porter JR, Sun X, Silva RR & Bowman GR Choice of Adaptive Sampling 
Strategy Impacts State Discovery, Transition Probabilities, and the Apparent Mechanism of 
Conformational Changes. J. Chem. Theory Comput 14, 5459–5475 (2018). [PubMed: 30240203] 

72. McGibbon RT et al. MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics 
Trajectories. Biophysical Journal 109, 1528–1532 (2015). [PubMed: 26488642] 

73. UniProt Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 47, 
D506–D515 (2019). [PubMed: 30395287] 

74. Edgar RC MUSCLE: multiple sequence alignment with high accuracy and high throughput. 
Nucleic Acids Res. 32, 1792–1797 (2004). [PubMed: 15034147] 

Zimmerman et al. Page 14

Nat Chem. Author manuscript; available in PMC 2021 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: Summary of Folding@home’s computational power.
A) The growth of Folding@home (F@H) in response to COVID-19. The cumulative number 

of users is shown in blue and COVID-19 cases are shown in orange. B) Global distribution 

of Folding@home users. Each yellow dot represents a unique IP address contributing to 

Folding@home. C) The processing speed of Folding@home and the next 10 fastest 

supercomputers, in exaFLOPS.
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Figure 2: Structural characterization of Spike opening and conformational masking for three 
Spike homologues.
A) An example structure of SARS-CoV-2 Spike protein from our simulations that is fully 

compatible with receptor binding, as shown by superimposing ACE2 (gray). The three 

chains of Spike are illustrated with a cartoon and transparent surface representation (orange, 

teal, and purple), and glycans are shown as sticks (green). B) Three Spike homologues have 

very different probabilities of adopting ACE2 binding competent conformations, likely 

modulating their affinities for both ACE2 and antibodies that engage the ACE2-binding 

interface. HCoV-NL63, SARS-CoV-1, and SARS-CoV-2 are shown as light-blue, orange, 

and black, respectively. C) The probability distribution of Spike opening for each 

homologue. Opening is quantified in terms of how far the center of mass of an RBD deviates 

from its position in the closed (or down) state. The cryptic epitope for the antibody CR3022 

(red) is only accessible to antibody binding in extremely open conformations. D) Our 

simulations capture exposure of cryptic epitopes that are buried in the up and down cryoEM 
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structures. The fraction of residues within different epitopes that are exposed to a 0.5 nm 

radius probe for the down structure (blue), up structure (yellow), the ensemble average from 

our simulations (green), and the maximum value we observe in our simulations (red). 

Epitopes are determined as the residues that contact the specified antibody, and are clustered 

by their binding location on the RBD.36

Zimmerman et al. Page 17

Nat Chem. Author manuscript; available in PMC 2021 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: Effects of glycan shielding and conformational masking on the accessibility of different 
parts of the Spike to potential therapeutics.
A) The probability that a residue is exposed to potential therapeutics, as determined from 

our structural ensemble. Red indicates a high probability of being exposed and blue 

indicates a low probability of being exposed. B) Exposure probabilities colored on the 

surface of the Spike protein. Exposed patches are circled in orange. Red residues have a 

higher probability of being exposed, whereas blue residues have a lower probability of being 

exposed. Green atoms denote glycans. C) Sequence conservation score colored onto the 

Spike protein. A conserved patch on the protein is circled in orange. Red residues have 

higher conservation, whereas blue residues have lower conservation. D) The difference in 

the probability that each residue is exposed between the ACE2-binding competent 

conformations and the entire ensemble. Red residues have a higher probability of being 

exposed upon opening, whereas blue residues have a lower probability of being exposed.
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Figure 4: Examples of cryptic pockets and functionally-relevant dynamics.
A-B) Conformational ensemble of Mpro (monomeric) highlighting cryptic pockets near the 

active site (AS) and domain interface (DI). Conformational states (black circles) are 

projected onto the solvent accessible surface areas (SASAs) of residues surrounding either 

the active-site or dimerization interface. The starting structure for simulations (6Y2E) is 

shown as a red dot. Representative structures are depicted with cartoon and transparent 

surface. Domains I and II are colored cyan and domain III is colored gray. The loop of 

domain III, which covers the active-site residues and is seen to be highly dynamic, is colored 

red. C-D) The conformational ensemble from our simulations of nucleoprotein is similar to 

the distribution of structures seen experimentally. Conformational states are projected onto 

the distance and angle between the positive finger and a nearby loop. Angles were calculated 

between vectors that point along each red segment in panel D and distances were calculated 

between their centers of mass. Cluster centers are represented as black circles, the starting 

structure for simulations (6VYO) is shown as a red dot, and NMR structures are shown with 

solid blue dots. Representative structures are shown as cartoons.
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Figure 5: NSP10/NSP14 (complex) transition from closed to open state.
Backbone is represented as a cartoon and sidechains are represented with a transparent 

surface. The residues that undergo a large conformational change to expose a cryptic pocket 

are highlighted in pink.
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Figure 6: Human IL6-R transition from expanded to closed state.
Backbone is represented as a cartoon and sidechains are represented with a transparent 

surface. The residues that undergo a large conformational change to reveal a potential 

druggable site are highlighted in red.
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Table 1:

Summary of protein systems we have simulated on Folding@home, organized by viral strain.

System name Oligomerization Initial structure Residues Atoms in 
system

Aggregate 
simulation time 
(μs)

Cryptic pockets 
discovered

SARS-CoV-2

 NSP3 (Macrodomain “X”) Monomer 6W02 167 23907 10,906 -

 NSP3 (Papain-like protease 2, 
PL2pro)

Monomer 3E9S** 306 97285 731 2

 NSP5 (main protease, Mpro, 
3CLpro)

Monomer 6Y2E 306 64791 6,405 2

 NSP5 (main protease, Mpro, 
3CLpro)

Dimer 6Y2E 612 77331 2,902 2

 NSP7 Monomer 5F22** 79 20094 3,722 3

 NSP8 Monomer 2AHM** 191 156282 1,776 3

 NSP9 Dimer 6W4B* 226 49885 8,939 2

 NSP10 Monomer 6W4H* 131 29560 6,141 2

 NSP12 (polymerase) Monomer 6NUR** 891 186622 3,330 3

 NSP13 (helicase) Monomer 6JYT** 596 129368 3,407 3

 NSP14 Monomer 5C8S** 527 216380 2,384 2

 NSP15 Monomer 6VWW 347 67345 3,674 4

 NSP15 Hexamer 6VWW 2082 230339 4,270 -

 NSP16 Monomer 6W4H* 298 45672 2,382 5

 Nucleoprotein (RBD) Monomer 6VYO 173 29125 9,493 3

 Nucleoprotein Dimerization 
Domain Monomer 6YUN* 118 34905 6,782 -

 Nucleoprotein Dimerization 
Domain Dimer 6YUN* 236 72733 1,458 2

 Spike Trimer 6VXX*** 3363 442881 1,109 -

 NSP7 / NSP8/ NSP12 Trimer complex 6NUR** 1184 215694 1,686 -

 NSP10 / NSP14 Dimer complex 5C8S** 688 226672 689 3

 NSP10 / NSP16 Dimer complex 6W4H* 429 63752 3,463 2

SARS-CoV-1

 NSP3 (Macrodomain “X”) Monomer 2FAV 172 33117 659 -

 NSP9 Dimer 1QZ8* 226 49599 7,763 -

 NSP15 Monomer 2H85 345 67345 4,734 -

 NSP15 Hexamer 2H85 2070 230339 1,130 -

 Nucleoprotein RBD Monomer 2OFZ 174 29125 4,088 -

 Nucleoprotein Dimerization 
Domain Monomer 2GIB 370 34905 1,626 -

 Nucleoprotein Dimerization 
Domain Dimer 2GIB 740 72733 4,221 -

 Spike Trimer 5X58*** 3261 375851 741 -
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System name Oligomerization Initial structure Residues Atoms in 
system

Aggregate 
simulation time 
(μs)

Cryptic pockets 
discovered

 NSP10 / NSP16 Dimer complex 6W4H** 425 69589 518 -

Human

 IL6 Monomer 1ALU 166 26855 1,593 2

 IL6-R Monomer 1N26 299 149764 196 5

 ACE2 Monomer 6LZG 596 75787 664 2

MERS

 NSP13 Monomer 5WWP 596 121134 719 -

 NSP10 / NSP16 Dimer Complex 6W4H** 424 69127 518 -

HCoV-NL63

 Spike Trimer 5SZS*** 3606 453348 651 -

*
Missing residues were modeled using Swiss model.56

**
Structural model was generated from a homologous sequence using Swiss model.56

***
Missing residues were modeled using CHARMM-GUI.57,58
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