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Abstract: At the time of writing, the COVID-19 infection is spreading rapidly. Currently, there is
no vaccine or treatment, and researchers around the world are attempting to fight the infection.
In this paper, we consider a diagnosis method for COVID-19, which is characterized by a very rapid
rate of infection and is widespread. A possible method for avoiding severe infections is to stop
the spread of the infection in advance by the prompt and accurate diagnosis of COVID-19. To this
end, we exploit a group testing (GT) scheme, which is used to find a small set of confirmed cases
out of a large population. For the accurate detection of false positives and negatives, we propose a
robust algorithm (RA) based on the maximum a posteriori probability (MAP). The key idea of the
proposed RA is to exploit iterative detection to propagate beliefs to neighbor nodes by exchanging
marginal probabilities between input and output nodes. As a result, we show that our proposed RA
provides the benefit of being robust against noise in the GT schemes. In addition, we demonstrate the
performance of our proposal with a number of tests and successfully find a set of infected samples in
both noiseless and noisy GT schemes with different COVID-19 incidence rates.
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1. Introduction

The ability to test for COVID-19, which has been characterized as a rapid contagion, is still
insufficient to meet global health needs. COVID-19 transmission occurs between individuals,
becoming a greater threat when using public facilities such as hospitals, religious facilities, schools,
military units, and cruise ships. COVID-19 causes diseases such as pneumonia and acute respiratory
distress syndrome (ARDS), which have low mortality rates but can lead to death. Clinical and physical
symptoms may include shortness of breath, fever, cough, anosmia and gastrointestinal symptoms.
COVID-19 is characterized by a low mortality rate but a very contagious nature. By April 20 in 2020,
the number of confirmed COVID-19 cases was over 2.8 million and more than 148,000 people have
died, as shown in Figure 1. In the future, the number of infected people is expected to continue to
increase across developing countries.

In the most recent papers published online [1–3], group testing (GT) has been used to provide
a quick and efficient solution to test the methods used to screen for COVID-19 infected people.
The number of infected people is currently increasing by hundreds of thousands of people per day;
thus, instead of individual testing, GT has shown to be economical and efficient, as it can reduce
the number of required tests for COVID-19. GT is not a recently proposed approach; it was first
proposed by Dorfman in 1943. [4]. To date, GT has been exploited in a wide range of applications
in biology [5], communication theory [6], computer science [7], and mathematics [8]. The use
of fundamental GTs extends to error correction codes [9], identifying available multiple access
channels [10], detecting malicious attacks in security networks [11], testing the quality of products [12],
and many others.
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Figure 1. The cumulative number of confirmed cases and the cumulative number of deaths by
COVID-19 by 20 April [13].

Next, a brief introduction to GT and an important testing method are discussed. GT began with
a project to find all soldiers infected with syphilis by the U.S. health service during World War II [4].
Syphilis testing took blood cases from individual soldiers to test for syphilis infection. However, as the
number of soldiers tested for syphilis was very large, the cost of the testing was high and a great deal
of time was required to find a new test method [5]. Consequently, this motivated the development of
the GT framework [4].

In conventional GT, syphilis testing was performed using the following method. First, blood cases
from several soldiers were mixed into a single pool to see whether they react to the syphilis test.
When the result was positive, it meant that at least one soldier was infected with syphilis. On the
other hand, in the case of a negative, it could be confirmed that all blood cases used for the syphilis
testing were not infected with syphilis. Thus, it can be stated that most soldiers were not infected with
syphilis, and only a handful of soldiers had syphilis. The main challenges of GT are as follows: first,
determining the samples to be included in a pool; second, a detection algorithm must be used to find a
set of infected people out of the large number of samples.

Briefly, the GT problem is clearly defined as follows: Let T be the number of tests required to
find a set of confirmed cases when D people of the total population N are infected, and Let A be the
group matrix with T rows and N columns. The role of the group matrix is to map the samples to be
grouped in the test. For i ∈ {1, 2, · · · , T} and j ∈ {1, 2, · · · , N}, if the ith group includes the jth sample,
the corresponding entry Aij of the group matrix A is represented as Aij = 1; otherwise, we express
this as Aij = 0. In other words, when the entry of the group matrix is 1, GT is performed including
the jth sample indicating the corresponding column. And we define the following terminologies and
notations: bold upper and lower case letters denote matrices and column vectors, calligraphic letters
denote sets, and Pr() is a probability.

Some recent works [1–3] have proposed GT methods or the rapid diagnosis of COVID-19.
However, these works had the disadvantage of not being able to accurately pinpoint the outcomes
of tests when there are false negatives and false positives. To overcome this inaccuracy, in this paper,
we propose a robust algorithm (RA) (this term does not refer to a class of GT algorithms, it refers the
meaning of robust decoding for GT problems with false negative and false positives) and demonstrate
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its performance against noise, even if errors occur in the output results. In order to detect the small
number of confirmed cases of COVID-19, we exploit the detection algorithm using the maximum a
posteriori probability (MAP), and we see that the proposed RA provides the benefit of being robust
against noise. In addition, we show how many tests are needed, depending on the incidence rate
of COVID-19. Furthermore, we demonstrate the robustness of our proposed algorithm to noise,
as compared to other algorithms.

This paper is organized as follows. In Section 2, we investigate the related works in detection
algorithms used for GT. The challenges of GT are defined, in detail, in Section 3. The description of
the detection algorithm proposed in this paper is provided in Section 4, and we show the simulation
results and compare them with other results. Finally, in Section 5, we conclude by showing that we
have obtained meaningful results and findings.

2. Related Works

A number of detection algorithms for GT problems have been proposed since the detection
algorithm was first introduced by Dorfman. This section aims to review some detection algorithms
related to GT.

The detection algorithm to be reviewed first is the binary splitting algorithm [5]. This algorithm
is generally called the optimal adaptive algorithm in GT. The binary splitting algorithm is used to
find less than or equal to D infected cases in N cases, and is summarized, as follows, according to
the size of N and D: In the initial step, in the case where N ≤ 2D− 2, finding D confirmed cases is
performed by individual testing. This means that individual testing is better than GT when there
are many confirmed cases. Otherwise, set L = N − D + 1 and α := blog2 L/Dc, respectively. In the
next step, GT is performed by a set of cases with a size of 2α for every testing. Here, when the result
of this GT is negative, all cases in this pool are determined to be normal. Then, the cases are reset
with a size of N = N − 2α and GT is performed in the same manner as in the first step. On the other
hand, using a binary search, one infected sample and the other normal cases S are again set as follows:
N = N − S− 1 and D = D− 1.

The number of tests T for the generalized binary splitting (GBS) algorithm with respect to p > 0,
N, and D is required to be T = D (α + 2) + p− 1 where, in the case of high N/D, T converges to
D log2 (N/D) [5]. In a recent paper [1], the authors analyzed the performance of the binary splitting
algorithm for COVID-19. Their results showed very close optimal results for the lower bounds obtained
from information–theoretic bounds [1].

Next, we review the COMP (Combinatorial Orthogonal Matching Pursuit) algorithm [14].
This algorithm is a class of non-adaptive GT algorithms. The COMP algorithm works as follows: first,
each entry of the group matrix is assumed to follow an i.i.d. (independent and identically distributed)
Bernoulli probability distribution with the probability 1/D for 1, and 1− 1/D for 0. The key idea of
the COMP algorithm is to combine the columns of the group matrix corresponding to the individual
cases participating in a pool. As with the conventional GT problems, the results are determined to
be positive or negative depending on the existence of confirmed cases. The number of tests T for the
COMP algorithm with any constant β > 0 and where the average error probability is less than or equal
to N−β is as follows: T ≥ eD (1 + β) ln N [14].

Another algorithm, which is an extended version of the COMP algorithm, is called Definite
Defectives (DD), which is used to remove false positive errors [15]. The performance of the DD
algorithm improves on that of the COMP algorithm, where the detection method of the DD algorithm
exploits useful attributes of the COMP algorithm. Note that the normal cases obtained from the COMP
algorithm are surely detected without false negative error. Therefore, the DD algorithm only generates
false negatives compared to the COMP algorithm.

The SCOMP (Sequential COMP) algorithm takes advantage of the fact that the DD algorithm
does not cause errors until the last step [15]. All remaining cases are assumed to be normal. Let K be
the set of cases detected to be infected; if the test contains at least one infected sample from the set
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K, a positive result is obtained. Note that it cannot be said that the set of confirmed cases detected
by the DD algorithm includes all positive results. This means that test results that cannot be clearly
identified have to contain one hidden defect sample. Simulation results using the SCOMP algorithm
have shown results close to the optimal ones [15]. The other results of adaptive and noisy GT problems
are presented in [16–18].

3. Group Testing for Diagnosis of COVID-19

In this section, we define the GT framework in detail. Let x = (x1, x2, · · · , xN)
T be a binary input

vector with size N. If the jth entry of x is infected, then we write xj = 1. Otherwise, xj = 0. Thus,
all the entries of the input vector x are represented in binary form. In this paper, we assume that all the
entries of x are independent and identically distributed (i.i.d.) following the Bernoulli distribution
with the incidence rate ε for COVID-19,

Pr
(

xj
)
=

{
1− ε for xj = 0,

ε for xj = 1,
(1)

where ε = D
N denotes the incidence rate for COVID-19. Indeed, the incidence rate of COVID-19 is

assumed to be a very small value.
The following describes the mathematical expression of GT in more detail. Each entry yi of the

output result vector y is expressed as follows by using the input vector x and the group matrix A:

yi =

 N∨
j=1

(
Aij ∧ xj

)⊕ zi, (2)

where yi is the output of the GT scheme, assuming that the ith additive noise zi is used. In the case
where there is no noise, the output zi of the ith group is positive if there is at least one infected
person in this group, which is indicated by yi = 1; otherwise, it is 0. We express the output of the
GT, as a vector, as follows: y = (y1, y2, · · · , yT)

T . The symbols ∨, ∧, and ⊕ denote the logical AND,
OR, and XOR operations, respectively. Let zi be the additive noise in the ith group leading to false
positives and negatives for the pure output result. It is assumed that the noise zi has the following
probability distribution:

Pr (zi) =

{
1− σ for zi = 0,

σ for zi = 1.
(3)

In fact, the probabilities of false positive and negative errors are not the same. For example,
Knill et al. in [19] showed that the false positive and negative rates were up to 13% and 5% through
actual experiments, respectively. In addition, the Z-channel model with only one error (e.g.,
false positive or negative) was considered in [18]. In this paper, we consider the symmetric noise model
as shown in Equation (3). Then, we obtain all the entries of the output vector y of the GT scheme.
This mathematical expression of the GT scheme takes advantage of the easy handling of the states of x,
A, and y in our proposed algorithm.

Figure 2 shows an example of the GT scheme with a 7× 10 group matrix A, 10 samples x, additive
noise z with one error, and 7 output results y. The white and black cells represent 0 and 1, respectively.
The blue box represents the groups in which the infected samples participate, and the red box shows
the results of the GT. In this example, the third and eighth samples participate in the third group test,
and its output is 1. In addition, the outputs of the sixth and seventh tests are 1. The first pure output is
0; however, the additive noise is included and the corresponding output is flipped.



Diagnostics 2020, 10, 396 5 of 12

Figure 2. One example of the simple group testing (GT) scheme with a 7 × 10 group matrix A,
10 samples x, additive noise z with one error, and seven output results y. The black and white boxes
indicate 1 and 0, respectively. The third and eighth samples are included in the third group test, and
its output is 1. The outputs of the sixth and seventh tests are 1. The first pure output is 0; however,
the additive noise is included, and the corresponding output is flipped.

4. Detection of Confirmed Cases of COVID-19

4.1. Proposed Robust Algorithm

In this section, we propose a robust algorithm (RA) for GT. This RA is based on the use of
MAP. Note that the problem of finding the optimal MAP solution in GT is NP-hard. Although
it is difficult to find the optimal solution for this argument, many researchers have tried to find
sub-optimal approaches, which are close to the optimal one. Among them, the performance of the
belief propagation algorithm, introduced by Mackey in [20], showed results close to the Shannon limits
in channel coding theory.

To handle our proposed RA, we assume the following: each person xj has a prior probability
of having an infected and normal state (given by Equation (1)) under the GT scheme, assuming
that the input vector, group matrix, and output result are mutually independent. The challenge for
GT is finding the MAP combination of the estimated x̂ cases, given the observed output y. This is
formulated as

x̂ = arg max Pr (x|y)

= arg max
xj∈{0,1}

N

∏
j=1

Pr
(

xj|y
)

,
(4)

where the second equality comes from the independence assumption of the prior cases.
Using Bayes’ rule, the conditional probability Pr

(
xj|y

)
can be rewritten as

Pr
(

xj|y
)
= ∑

x\xj

Pr (x|y)

∝ ∑
x\xj

Pr (y|x)Pr (x)

= ∑
x\xj

T

∏
i=1

Pr (yi|x)
N

∏
j=1

Pr
(
xj
)

,

(5)

where the notation ∑x\xj
denotes a summation over all entries of x except the entry xj, the second

proportional relation holds due to Bayes’ rule and the last equality comes from the independent
assumption. The aim of the proposed algorithm is to find the maximized marginal probability for each
sample in Equation (5).
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Next, we describe the key idea of the RA proposed in this paper. Before describing our algorithm,
the graphical representation of one example of the GT scheme is represented in Figure 3. There are
10 samples—x1 through x10—and seven output results—y1 through y7. As the first row of A, as shown
in Figure 2, is [0 1 0 0 0 1 0 0 0 1], there are three edges between the first output y1 and three samples,
x2, x6 and x10, in Figure 3. In the same way, other edges between the samples and the outputs can be
drawn as shown in Figure 3.
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Figure 3. Graphical representation with 10 samples and seven output results for the example of the
group testing (GT) scheme shown in Figure 2.

Let L(i) = {xj : Aij = 1} be the set of samples participating in the ith group, and V(j) = {yi :
Aij = 1} be the set of groups participating in the jth sample. We also use L(i) \ {j} to denote the set
L(i) excluded the jth sample, and V(j) \ {i} to denote the set V(j) excluding the ith group. The RA
proposed in this paper is mainly described as a process in which two marginal probabilities exchange
information in each iteration. Note that we aim to find the maximum posterior probability for each
sample, as in the last line of Equation (5). In other words, the two conditional probabilities Pr(xj|y)
and Pr(yi|x) are exchanged with each other to maximize the posterior probability. Let ξ ji ∝ Pr(xj|y) be
the downward message from sample xj to output yi, and δij ∝ Pr(yi|x) be the upward message from
output yi to sample xj. Both messages are expressed as conditional probabilities. As mentioned in
Equation (5), the two messages exchange their information with each other. The downward message
ξ ji is a function of the upward message δij, and vice versa. In the example of Figure 3, the downward
message ξx10y1 is obtained from the two upward messages δy4x10 and δy7x10 . Conversely, the upward
message δy1x10 is obtained from the two downward messages ξx2y1 and ξx6y1 .

Now, the RA updates the messages ξ ji and δij associated with each edge between the sample xj
and the output yi. There are three steps to estimate each input sample: initialization, updating the
messages ξ ji and δij, and tentative decoding to check the constraint condition in Equation (2). In the
initialization step, we define the probability distribution of x in Equation (1), generate the group matrix
A with a random design (i.e., low-density parity check (LDPC) codes, as in [20]), and obtain the output
result y from the given A and x. We aim to find an (unknown) input vector x by using (known) A and
y. In addition, the initial downward message ξ ji can be obtained from the prior probability distribution
of Equation (1), assuming that the upward messages for 0 and 1 are equally distributed.

Next, we consider the upward message δij from output yi to sample xj. This message δij is
obtained as follows:

δij = ∑∨N
j=1(Aij∧xj)

∏
j′∈L(i)\{j}

ξ j′i, Pr(zi) (6)

where the constraint condition in Equation (2) is satisfied as
∨N

j=1
(

Aij ∧ xj
)

in the noiseless GT scheme.
The summation of Equation (6) is used to collect all the associated downward probabilities that satisfy
the constraint condition of Equation (2). To update the upward message, the noisy probability Pr(zi)

is multiplied.
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The downward message ξ ji can be written as

ξ ji = λ Pr(xj) ∏
i′∈V(j)\{i}

δi′ j, (7)

where the variable λ is used for normalization of the total probability. Let Pr(x̂j) := Pr(xj|y) be
the posterior probability for the sample xj. Finally, we determine a maximum probability for 0 or 1,
as defined in Equation (5),

x̂j = arg max
xj∈{0,1}

Pr(xj) ∏
i∈V(j)

δij. (8)

Using Equations (6) and (7), the proposed RA iteratively updates the messages ξ ji and δij; that is,
while the algorithm is running, the posterior probability of each sample moves to converge in general.
Even when the algorithm has been operated for the maximum number of iterations, the posterior
probability may not converge. In this case, we assume that the sample is unreliable and perform
individual testing instead of GT. In the final step, we perform individual testing by picking only
unstable samples. Algorithm 1 describes our proposed RA for the detection of infected people
in COVID-19.

Algorithm 1: Proposed Robust Algorithm (RA).
Input: Prior probability: Pr(xj)

Noisy probability: Pr(zi)

Group matrix A with T rows and N columns
Output: The number of total tests: T
(1) Initialization:

Set the incidence rate ε and the noisy probability σ

Initial downward message ξ ji ← Pr(xj)

Set the maximum number of iterations
for Maximum Iterations do

(2) Update the upward message δij:
δij ← ∑(

∨
j(Aij∧xj)) ∏j′∈L(i)\{j} ξ j′i Pr(zi)

(3) Update the downward message ξ ji:
ξ ji ← λ Pr(xj)∏i′∈V(j)\{i} δi′ j

(4) Tentative decoding:
x̂j ← arg maxxj∈{0,1} Pr(xj)∏i∈V(j) δij

end
for j = 1 : N for xj do

if x̂j does not converge then
Individual testing: Tadd ← Tadd + 1

end
end
return T ← T + Tadd

Let Tadd be the number of samples that requires individual testing when the posterior probability
does not converge. The total number of tests T for successfully finding infected people in COVID-19 is
obtained as follows:

T = T + Tadd. (9)

4.2. Simulation Results

COVID-19 has a different incidence rate in each country. Figure 4 shows the number of infected
people and number of tests in each country. The statistics shown in Figure 4 list the countries with the
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largest number of confirmed cases as of 12 April 2020. China, the first affected country, was excluded
from Figure 4, due to a lack of information on the number of tests. In addition, the average incidence
rate for the most-affected countries, as shown in Figure 4, is 12.89%, where the total number of
confirmed cases is 1,743,883 and the total number of tests is 13,531,095. However, this incidence rate is
reported to be lower than the actual case, as it is not recommended to actively test suspected patients.
We consider South Korea as our simulation environment for the diagnosis of COVID-19; the reason
for this is that it adopted the world’s most objective and aggressive countermeasures to COVID-19.
According to these results, the incidence rate of COVID-19 in South Korea is very low, at about 2%.

Figure 4. The total number of confirmed cases and tests for COVID-19 in each country as of 12 April
2020 [13]. The average incidence rate is 12.89%, with a total number of confirmed cases of 1,743,883
and a total number of tests of 13,531,095.

We implemented a decoding algorithm for the GT scheme to find people with infected COVID-19
in noiseless (σ = 0) and both false positive and negative settings (σ 6= 0). Our proposed algorithm is
based on the belief propagation algorithm of LDPC codes [20] in channel coding theory, which has
shown performance close to the Shannon limit in information theory. The difference between Mackey’s
method [20] and the proposed RA is revealed in the operations. In the case of channel coding,
the operation is performed over Finite Fields; however, GT uses Boolean operations such as AND, OR,
and XOR. We evaluate the performance on RAs for the GT schemes. To this end, we set the simulation
environment as follows: the defective samples are generated from the probability distribution in
Equation (1) with different incidence rates ε, and the group matrix comes from LDPC codes with five
constant weights in each column. Additionally, we set the number of maximum iterations as 20 for
the RA. Throughout this paper, we consider N = 1000, assuming that the diagnosis of COVID-19 is
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carried out 1000 times simultaneously on one site. All the results for the number of tests are averaged
from 100 experiments. The computational complexity of the RA based on the belief propagation
algorithm in LDPC codes is O(N log N) in [20]. In addition, the relationship between the number of
iterations and the performance on the belief propagation algorithm by using the analysis of density
evolution under binary erasure and symmetry channels was presented in [21]. Intuitively, the greater
the number of iterations of belief propagation decoding, the better the performance, but in order to
achieve such a conclusion, it is necessary to have characteristics regarding the generation of a group
matrix (e.g., stopping set) in [21].

Next, we evaluate the total number of tests T to successfully find infected people with different
incidence rates in the noiseless GT scheme, as shown in Table 1. First, the information-theoretic bound
was obtained from [22], which is exploited (by Fano’s inequality [23]) as a lower bound on the number
of tests. Dorfman’s method [4], the DT method [1], and the GBS method [5] were evaluated at N = 1000
and different incidence rates of ε (0.01, 0.02, 0.03, 0.04, 0.05, and 0.1), whose values were based on
the statistics of the infected people for COVID-19 as of 12 April 2020, as shown in Figure 4. All the
statistical results for the number of tests T are shown in Table 1. In the noiseless schemes, the best
method for the detection of COVID-19 was the GBS algorithm [5], the results of which were close to
the information-theoretic bound. This method showed the best performance but has the inconvenience
of not being able to test all samples simultaneously. In contrast, our proposed RA offers the advantage
of GT all the samples at once using a predefined group matrix. In other words, in the GBS method,
the current test is determined based on the results of the previous test, whereas the RA processes all
tests at the same time, so it can be inspected in large quantities.

Table 1. Comparisons of the total number of tests T expressed as mean to successfully find infected
people with different incidence rates in the noiseless GT scheme, where N = 1000 and σ = 0.

Incidence Rate ε 0.01 0.02 0.03 0.04 0.05 0.1

Lower bound [22] 80 141 194 242 286 469

Dorfman’s method [4] 196 274 335 384 432 594

Divide and Test method [1] 81 144 198 275 289 477

GBS method [5] 88 153 209 258 305 494

Our proposed method 108 168 231 306 377 593

The main advantage of our algorithm, compared to other algorithms, is that it is noise-resistant.
Other detection methods shown in Table 1 have better performance in the noiseless GT. However,
there exists noise in the GT framework, so it is limited when using these methods. We need a way
to find infected samples even when the GT is noisy. To this end, we consider the noisy GT scheme
with different noise values σ, which is formulated by Equation (3) as the false positive and the false
negative of the GT. Figure 5 shows how many total tests on the theoretical bounds [22] are required to
successfully find different incidence rates ε in the noisy GT schemes with N = 1000, where σ = 0.01,
0.03, 0.05, and 0.1. As shown in Figure 5, if the incidence rate ε is greater than 0.2 and the noise
probability σ is greater than 0.05, individual testing is better that the GT scheme. In other words, the
GT scheme in COVID-19 is suitable for the reduction of the number of tests when the incidence rate is
less than 0.2, when assuming σ = 0.05. Table 2 shows the performance for the number of tests T of our
proposed RA method for the noisy GT scheme, in which there are different incidence rates ε and noise
probabilities σ. Note that the interpretation of the false negative is more complicated because there
may be contaminated input samples. In addition, test results including a large number of defective
samples are unlikely to lead to false negatives, even with noise. In [24], authors showed that it is easier
to find false negatives than positive ones. It also led to improved results on the number of tests in the
case of false negatives.
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The reason for this robustness against noise is as follows: first, the RA updates all the posterior
probabilities of the unknown binary input vector at every iteration, where it comes from exchanging
upward and downward messages with each other. It is used to find the uncorrupted value using the
beliefs of neighboring nodes even if the test result changes due to false negative or positive errors.
As the number of iterations of the algorithm increases, the posterior probability gradually converges
once there is cycle-free in the bipartite graph of the GT scheme with the low noise. Note that generating
a group matrix with cycle-free is difficult in the large length. In our proposed RA, as the noise increases,
the belief propagation does not work, so it falls into a region where errors cannot be corrected. For more
details of effect of noise for belief propagation algorithms that are robust to noise, please refer to Lav’s
paper in [25].

0 0.05 0.1 0.15 0.2 0.25

Incidence rate 

0

200

400

600

800

1000

T
h

e
 n

u
m

b
e

r 
o

f 
te

s
ts

 T

Noiseless ( =0)

Noisy (  = 0.01)

Noisy (  = 0.03)

Noisy (  = 0.05)

Noisy (  = 0.1)

Figure 5. Comparisons of the number of tests T on information-theoretic bounds in the noisy GT
schemes with a size of N = 1000, different incidence rates ε (0.001–0.25), and noise levels σ (0.01, 0.03,
0.05, and 0.1).

Table 2. Comparisons of the total number of tests T expressed as (mean, standard deviation) to
successfully find infected people with different incidence rates in the noisy GT scheme, where N = 1000
and σ = 0.01, 0.03, 0.05.

Incidence Rate ε 0.01 0.02 0.03 0.04 0.05 0.1

σ = 0.01
Lower bound [22] (88, 0.0) (154, 0.0) (212, 0.0) (264, 0.0) (312, 0.0) (521, 0.0)

Our proposed method (119, 5.3) (184, 8.9) (253, 10.6) (334, 11.1) (417, 11.0) (658, 11.8)

σ = 0.03
Lower bound [22] (100, 0.0) (175, 0.0) (241, 0.0) (301, 0.0) (355, 0.0) (581, 0.0)

Our proposed method (136, 5.3) (210, 9.1) (289, 10.1) (383, 11.2) (476, 11.5) (749, 11.9)

σ = 0.05
Lower bound [22] (113, 0.0) (198, 0.0) (272, 0.0) (340, 0.0) (406, 0.0) (658, 0.0)

Our proposed method (153, 5.8) (237, 9.2) (325, 10.7) (431, 11.9) (539, 12.1) (846, 12.4)

5. Conclusions

In this paper, we considered a diagnosis method for COVID-19, which has been characterized
by a very rapid rate of infection and is widespread. A possible method for avoiding severe infections
is to stop the spread of the infection in advance by the prompt and accurate diagnosis of COVID-19.
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To this end, we exploit a group testing (GT) scheme, which is used to find a small set of confirmed
cases out of a large population. To this end, results using GT as a diagnostic method for COVID-19
were presented. For the detection of false positives and negatives, we proposed an RA based on the
MAP. The core idea of RA is that it exploits iterative detection to propagate beliefs to neighbor nodes
by exchanging marginal probabilities between input and output nodes. As a result, we demonstrated
that the our proposed RA provides the benefit of being robust in the GT schemes against noise when
false positive and false negative outputs occur. In addition, through a number of tests, we showed the
ability of our proposed method to successfully find a set of infected people in noiseless and noisy GT
schemes with different incidence rates of COVID-19.
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