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ABSTRACT

Recently, microRNAs (miRNAs) have emerged as im-
portant elements of gene regulatory networks. MiR-
NAs are endogenous single-stranded non-coding
RNAs (~22-nt long) that regulate gene expression at
the post-transcriptional level. Through pairing with
mRNA, miRNAs can down-regulate gene expression
by inhibiting translation or stimulating mRNA degra-
dation. In some cases they can also up-regulate the
expression of a target gene. MiRNAs influence a vari-
ety of cellular pathways that range from development
to carcinogenesis. The involvement of miRNAs in
several human diseases, particularly cancer, makes
them potential diagnostic and prognostic biomark-
ers. Recent technological advances, especially high-
throughput sequencing, have led to an exponential
growth in the generation of miRNA-related data. A
number of bioinformatic tools and databases have
been devised to manage this growing body of data.
We analyze 129 miRNA tools that are being used in
diverse areas of miRNA research, to assist investiga-
tors in choosing the most appropriate tools for their
needs.

INTRODUCTION

One of the most exciting biological discoveries in the
past decade is non-coding RNAs. MicroRNAs (miRNAs)
are very small (~22-nt long), non-protein-coding, single-
stranded RNAs that regulate the expression of protein-
coding genes (1,2). They comprise a subset of non-coding
RNAs that play a key role in gene regulation as part of large
and complex gene regulatory networks (3). Most mam-

malian miRNAs are encoded by RNA Polymerase II (4).
MiRNAs are found in different genomic regions: introns
of protein-coding genes; exons and introns of non-coding
genes (5), and even the 3" untranslated region (3’ UTR) of
protein-coding genes (6). About one-third of mammalian
miRNAs are embedded in introns of protein-coding genes
and have the same transcription pattern as the protein-
coding genes where they reside (5). Over the past few
years, their biogenesis has extensively been explored (3,7-
9). Based on computational predictions ~60% of human
protein-coding genes are targeted by miRNAs through con-
served base-pairing between the 3’ UTR of mRNA and the
5" region of miRNA, called the seed region (10). Pairing
causes inhibition of translation and/or degradation of tar-
get mRNAs (3,8).

MiRNAs affect nearly all types of cellular pathways, from
development to oncogenesis (11). Clearly current miRNA
research is not limited to their biogenesis and function.
Their clinical implications are now a very topical research
issue, because they have been hypothesized to be diagnostic
and prognostic biomarkers and therapeutic targets for dif-
ferent human diseases including cancer (12,13). Given their
involvement in gene regulation as well as disease processes,
experiments have increased at a super-linear rate, generating
an exponential flow of data scattered in thousands of arti-
cles (Figure 1 illustrates the complexity of large data sets).
A large number of bioinformatic tools are now available
to manage the mounting data flow. Both basic and applied
miRNA research is being enhanced by computational tools
and databases. Most applications are accessible through an
online interface; researchers around the world can use these
cutting-edge analysis pipelines and databases, and even lab-
oratories with poor computational infrastructure can par-
ticipate in this topical research effort through free online
interfaces. We present an overview of the major classes of
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Figure 1. Figure illustrates the complexity of large data sets and the need for bioinformatic tools.

miRNA tools and databases and discuss critical issues re-
lated to their selection.

BIOGENESIS, FUNCTION AND THERAPEUTIC IMPLI-
CATIONS OF MIRNAS

The biogenesis of miRNA initiates in the nucleus (Fig-
ure 2) where it is transcribed into primary miRNA (pri-
miRNA) by RNA polymerase II and 111 (4,14). Transcrip-
tion of miRNA genes yields long primary transcripts (pri-
miRNAs) with a local foldback structure. Next pri-miRNA
is cleaved into precursor miRNA (pre-miRNA) by the nu-
clear microprocessor complex formed by the RNase I11 en-
zyme Drosha and its co-factor DiGeorge Syndrome Criti-
cal Region 8 (or Pasha) (3). The resulting pre-miRNA hair-
pin is then exported from the nucleus to cytoplasm by a
complex formed by Exportin 5 and Ran-GTP (15,16). In
the cytoplasm, the RNase III enzyme Dicer in complex
with TAR RNA binding protein (TRBP) cleaves the pre-
miRNA hairpin to its mature length (~21-nt long), giving
rise to a miIRNA:miRNA* duplex (17). The duplex is then
separated and the mature miRNA is loaded together with
Argonaute (Ago 2) proteins onto RNA-induced silencing
complex (RISC) (3,18). Once the miRISC is assembled, the
miRNA drives it to silence target mRNA via mRNA cleav-
age, translational repression or deadenylation (18).

MiRNAs may have a negative or a positive regulatory ef-
fect (19). In humans, they usually bind with partial comple-
mentarity to 3’'UTR regulatory elements on mRNAs called
‘seed sequences’, or to miRNA response elements (MREs)
that causes translational repression (20). A major silencing
mechanism of miRNAs in animals results in target mRNA
destabilization through a cleavage-independent process, af-
fecting transcript level (21,22). A small number of miRNAs
also show decoy activity by binding directly to proteins such
as RNA-binding proteins, inhibiting interaction with their
target RNAs (23). In some cases miRNAs also regulate gene
expression at the transcriptional level (24) by binding di-
rectly to DNA regulatory elements. In certain cases and cell
types they can enhance translation (25).

MiRNAs are frequently deregulated in a wide range of
human diseases (26-30), but their involvement in cancer
is especially interesting. Numerous studies have examined
their function in cancer pathogenesis, diagnosis, prognosis
and treatment (31,32). Overexpression or lack of expres-
sion of particular miRNAs has been reported to correlate
with clinically aggressive or metastatic phenotypes (33,34).
A number of miRNAs are tumor-suppressive or oncogenic,
in nature according to how they affect cancer cell prolifer-
ation (35), and even the same miRNA species can be onco-
genic or tumor-suppressive in different tissues (36). The
link between cancer and miRNAs was first documented in
chronic lymphocytic leukemia, where miR-15 and miR-16
were down-regulated or suppressed (37). Let-7 underexpres-
sion was found to be significantly associated with a shorter
postoperative survival in human lung cancer independently
of disease stage (38). MiRNA upregulation can promote
oncogenesis, for instance miR-21 is one of the miRNAs
that are most commonly up-regulated in tumor cells, pro-
moting cell proliferation, invasion and migration of can-
cer cell populations (39,40). Interestingly, miR-221 acts as
a tumor suppressor by silencing the KIT oncogene in ery-
throblastic leukemia (41), but it is overexpressed in liver can-
cer, where it promotes oncogenesis by targeting tumor sup-
pressor PTEN (42). A growing understanding of the func-
tions of miRNAs is providing insights into the molecular
basis of cancers and inspiring research into their use as new
biomarkers for cancer diagnosis. Stable extracellular circu-
lating miRNAs, first found in human serum, are another
clinically important discovery (43) that suggests the possi-
bility of using miRNAs as non-invasive cancer biomarkers
(44-46).

The finding that miRNAs target multiple protein-coding
genes and their aberrant perturbations in diverse cancers
makes them promising novel therapeutic targets and inter-
vention tools. Perhaps, the most fascinating goal is to use
them directly to develop therapeutic strategies for differ-
ent discases. Several research efforts currently under way
are focusing on developing miRNA therapeutics to treat a
wide range of human diseases (Figure 2). The fact that ma-
ture miRNA sequences are tiny and frequently conserved
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Figure 2. Biogenesis and clinical implications of microRNAs (miRNAs). MiRNA genes are typically transcribed by RNA polymerase II and III and
produce primary miRNA (pri-miRNA). Next pri-miRNA is processed to precursor miRNA (pre-miRNA) hairpin structure in the nucleus by the
Drosha/Pasha complex and transported into the cytoplasm by Exportin 5. Pre-miRNA is further processed by Dicer-TRBP (TAR RNA binding pro-
tein) into a miIRNA:miRNA* duplex. After being separated, the mature miRNA loaded into the Argonaute 2 (Ago 2) containing RNA-induced silencing
complexes (RISCs). Once the miRISC is assembled, the miRNA drives it to silence target mRNA via mRNA cleavage, translational repression or dead-
enylation. At present two strategies are used for miRNA-based therapeutics in the management of cancer: (i) inhibition of miRNA function for oncomiRs
includes miRNA sponges, antisense antimiRs and miRNA masks, (ii) Restoration of miRNA function for tumor suppressive miRNAs includes miRNA
mimics and expression vectors.



across multiple vertebrate species makes miRNAs compar-
atively easy to target therapeutically (47). Two different ap-
proaches are being used to modulate miRNA activity, (i)
restoration of its tumor-suppression function by replac-
ing lost miRNA with synthetic miRNA-like RNA duplexes
called miRNA mimics or with miRNAs encoded in ex-
pression vectors (30,48,49) and (ii) inhibition of miRNA
function through chemically modified antimiR oligonu-
cleotides. Since cancer-related miRNAs (oncomiRs) are of-
ten overexpressed in various neoplasms, their inhibition
would restore the function of their tumor-suppressive target
genes. Several miRNA inhibitory agents have been tested in
preclinical and clinical studies; they include antisense an-
timiR oligonucleotides (30), locked nucleic acid antimiRs
(50), miRNA sponges (51), miRNA masks (52) and small-
molecule miRNA inhibitors (53).

OVERVIEW OF CURRENT BIOINFORMATIC AP-
PROACHES USED IN MIRNA RESEARCH

In recent years, several bioinformatic tools have been de-
veloped to manage the mounting flow of miRNA-related
data. Since most contain heterogeneous information, they
are difficult to categorize, but in this brief overview we have
classified the currently available tools by the main purpose
for which they are being used, which include miRNA find-
ing, miRNA target prediction, validated miRNA finding,
miRNA expression analysis, identification of miRNA reg-
ulatory networks, analysis of miRNA metabolic and sig-
naling pathways, investigation of miRNA and transcription
factor (TF) interplay and linking miRNAs to diseases (Fig-
ure 3).

MiRNA discovery

MiRNA identification is complicated and requires an in-
terdisciplinary strategy. Recent technological advances like
high-throughput sequencing have made it easier to detect
their expression patterns (54). In recent years, biological
and bioinformatic approaches have enabled discovery of
thousands of miRNAs in plants, animals, unicellular eu-
karyotes (55) and viruses (56). They are now collected in
the miRBase, the main online repository of miRNA se-
quences and annotation. The current miR Base (http://www.
mirbase.org) release contains 24 521 miRNA loci from
206 species (30 424 mature miRNA products), including
1872 human miRNA precursors that produce 2578 ma-
ture miRNAs (57). The conventional techniques used to
discover miRNAs include cloning (58), Northern blotting
(59), microarray (60) and in situ hybridization (61), which
are time-consuming and less cost effective (62). Next gen-
eration sequencing (NGS) technology is a reliable and sen-
sitive method to quantify known miRNAs and detect less
common ones (63). A variety of algorithms are applied
to discover new miRNAs from NGS data. Computational
algorithms have been adapted to harmonize experimen-
tal approaches directed at identifying and validating new
miRNAs. These tools consider some major miRNA fea-
tures, like sequence conservation among species, and struc-
tural features like hairpin and minimal folding free energy
(64). Several algorithms have been used to obtain putative

Nucleic Acids Research, 2016, Vol. 44, No. 1 27

secondary structure based on minimum free energy, like
RNAfold and Mfold. The major computational tools used
for gene finding are described below and listed in Table 1.

Early bioinformatic methods predicted putative miRNAs
in genome sequences by targeting secondary RNA struc-
ture, i.e. conserved hairpin structures that are characteristic
of miRNA precursor sequences in related species. MiRscan
(65) and miRseeker (66) are the main tools that target con-
served intragenic sequences that can form hairpin structures
based on RNAfold and Mfold, respectively. MiRscan then
compares the identified structures with known miRNA fea-
tures like 3’ and 5'-stem conservation, whereas miRseeker
selects hairpins sharing similar nucleotide divergence pat-
terns to the reference set. MiRscan and miRseeker were first
applied to identify miRNAs in nematodes and flies, respec-
tively, and a large number of predicted candidates were then
validated experimentally.

However, since tools based on comparative methods
essentially focus on evolutionarily conserved miRNAs,
they are limited to discovery of novel miRNAs. Machine-
learning methods have subsequently been devised to predict
novel miRNAs. These techniques have improved the pre-
diction of unknown miRNAs by extending the analysis be-
yond sequence and structural properties. Machine-learning
algorithms allow computer programs to ‘learn’ from the in-
formation collected from previously verified miRNAs, used
like positive miRNA standards. Algorithms include hidden
Markov model (HMM), Naive Bayes classifier (NBC) and
support vector machine (SVM) (62). HMMs offer pattern
recognition among data sets, in particular nucleotide se-
quences (67). Naive Bayes is a classification model that is
obtained by applying a relatively simple method to a train-
ing data set. NBC calculates the probability that an exam-
ple belongs to a certain class (68,69). SVM is a classifier that
categorizes objects based on a set of features for each object.
It compares vectors from a positive and a negative class and
provides a hyperplane producing the best separation mar-
gin between them (70,71). Several tools based on these ap-
proaches have been developed to predict miRNAs from dif-
ferent species. For instance, the HMM-based tool ProMir
(72) is a probabilistic co-learning model based on conserved
sequences and secondary structures that is applied to pre-
dict human miRNA genes. The improved version, ProMiR
11 (73), provides additional filtering criteria such as G/C ra-
tio, conservation score, entropy and free energy of candi-
date sequences. Prediction of conserved and non-conserved
miRNA genes is also possible by adjusting the filtering cri-
teria. Use of appropriate training data sets allows applica-
tion to all species. MiRRim (74) is another HMM-based
tool that considers both evolutionary and secondary struc-
ture features of miRNA genes to achieve high-performance
identification of new human miRNAs, in particular those
clustering with known miRNAs. HHMMIR (75), predicts
de novo miRNA hairpins in the absence of evolutionary
conservation. The method implements a hierarchical HMM
that utilizes region-based structural as well as sequence in-
formation of miRNA precursors. Another freely available
prediction tool, SSCprofiler (76,77), harnesses a probabilis-
tic method based on Profile HMMs, trained to recognize
key biological miRNA features such as sequence, struc-
ture and conservation, to identify novel miRNA precursors.
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This trained classifier is applied to identify novel miRNA
gene candidates located in cancer-associated genome re-
gions.

MiRFinder (78) is an SVM-based tool that compares
genome-wide and pair-wise sequences between related
species. It identifies hairpin structures from a set of miRNA
candidates and excludes non-robust structures by SVM
analysis of 18 different parameters. Pair-wise genome align-
ments have shown that it can be used for genome-wide pre-
miRNA predictions; however, it may fail to detect species-
specific pre-miRNAs. The NBC-based program BayesmiR-
NAfind (79) is a computational approach that predicts
known miRNAs based on their secondary structure and se-
quence for a specific genome as the input. Another NBC-
based computational tool, MatureBayes (80), identifies ma-
ture miRNA candidates based on sequence and secondary
structure information of their miRNA precursors. The
method predicts the start position of experimentally ver-
ified, mature, human and mouse miRNAs. It considers
both positive (true mature miRNAs) and negative (same-
size non-mature miRNA sequences) examples to optimize
sensitivity and specificity. It is significantly more accurate
than ProMiR and BayesMiRNAfind (80). A list of miR-
NAs discovered via traditional evolutionary conservation
approaches and machine learning-based techniques is pro-
vided as Supporting Material S1.

Several tools have been devised to predict miRNAs from
NGS data. The most common are miRDeep/miRDeep2
(81,82) and miRanalyzer (83,84). Both can find previously
known and novel miRNAs. Another recent tool, miReader
(85), identifies mature miRNAs directly from NGS read
data without the need for genomic sequences or homolo-
gous references. Experimental techniques such as molecu-
lar cloning, sequencing or hybridization are typically used
to validate predictions (86).

Establishing the biological function of the novel miRNAs
discovered with these tools requires additional and more
sophisticated bioinformatic analysis. Most online bioinfor-
matic resources take into consideration only known miR-
NAs. However, a number of tools described in the next
section, such as TargetScan v5.2 (via the link ‘Targetscan
custom’) (87), MiRDB (via the link ‘custom prediction’)
(88), DIANA-microT v3.0 (via the link ‘predict for your
microRNA sequence’) (89) and RNAhybrid (90), include
a functionality that can be applied to identify the targets
of novel miRNAs. Advanced users can download the Tar-
getScan code and run the TargetScan algorithm on any set
of seed regions of interest. Miranda (91) and RNAhybrid
can also be downloaded and run locally to identify the tar-
gets of user-provided miRNA sequences.

The studies that have employed these tools for miRNA
finding are listed in Supporting Material S2; additional
miRNA finding tools are reported in Supporting Material
S3.

MiRNA target prediction

It is well established that miRNAs down-regulate gene
expression by targeting 3’UTRs of mRNAs through
sequence-specific binding. Knowing miRNA targets is es-
sential to understand their function. A single miRNA can

target multiple genes and several miRNAs can target a sin-
gle gene (92). Since more than one-third of human genes ap-
pear to have been under selective pressure to maintain their
pairing to miRNA seeds, miRNAs are clearly involved in
a broad range of cellular processes (87). Unlike plant miR-
NAs, which usually bind to their targets with perfect com-
plementarity (93), animal miRNAs have limited comple-
mentarity which makes it more difficult to determine possi-
ble miRNA targets with high specificity (20). Seed regions
(nucleotides 2—7 in the 5’ region of miRNAs) are considered
crucial for mRNA targeting. Most of the available algo-
rithms require Watson—Crick pairing with the targeted site
(94). Algorithms depending on simple base-pairing rules re-
sult in high false positive rates (94). Target prediction al-
gorithms are evolving in parallel with the growing under-
standing of miRNAs. Validating a possible miRNA target
in the laboratory is expensive and time-consuming, since
each miRNA has a large number of potential target sites.
Computational approaches help reduce their number for ex-
perimental validation.

In most tools prediction thresholds can be entered, to
manage prediction sensitivity or accuracy level. The algo-
rithms take into account several features to increase predic-
tion efficiency, including (i) seed complementarity between
miRNA and mRNA strands; (ii) evolutionary conservation
of miRNA target sites among species; (iii) free energy of the
miRNA:mRNA duplex; (iv) target site accessibility; and (v)
the contribution of multiple binding sites (95).

A number of online computational tools have been de-
veloped to predict putative miRNA targets. Although they
have been extensively reviewed (94,96,97), a brief descrip-
tion of some of those used most commonly is reported be-
low for the sake of completeness (see Table 2 for their gen-
eral features).

TargetScan (10,87,98) is a web tool that predicts miRNA
targets by searching for conserved and non-conserved sites.
It detects targets in the 3’UTR of protein-coding tran-
scripts by base-pairing rules (seed matching); it also pre-
dicts secondary structure to calculate the free energy of
predicted duplexes. Several features like 3’ compensatory
pairing, local AU content and position contribution make
up the score. PicTar (99) identifies binding sites for a sin-
gle miRNA and multiple sites regulated by different miR-
NAs acting co-operatively. It uses a pair-wise alignment
algorithm to find conserved sites across multiple species.
To enhance prediction it also considers miRNA clustering
and co-expression together with ontological information,
such as miRNA time and tissue specificity and their po-
tential targets. RNAhybrid (90,100) predicts multiple poten-
tial miRNA binding sites in large target RNAs and con-
siders the free energy of miRNA:mRNA duplexes. In con-
trast, rna22 (101,102) is a pattern-based approach to find
miRNA binding sites and corresponding miRNA:mRNA
complexes without a cross-species sequence conservation
filter. It can identify putative miRNA binding sites even
though the targeting miRNA is unknown.

The major miRNA target prediction feature of PITA
(103) is target site accessibility. This is a parameter-free
model for miRNA-target interaction that computes the dif-
ference between the free energy gained from miRNA-target
duplex formation and the energy cost of unpairing the tar-



Nucleic Acids Research, 2016, Vol. 44, No. 1 31

‘poyepdn 10U ‘s1eak ¢ Jsed ay) 190 pajepdn Jig :pajepdn Jse[ ‘)T {peIeISalul $[00) JO "ou ‘[N i(eIerpauriaiur) | {(pe) paourApe (V) [[e :[oA9] Jasn ‘T {(N) ON 10 (A) X :Kufiqeisnipe 1asn ‘v {(N) ON 10 (A) SOA :BIep panrwuqns 1asn ‘qsn
(L61) v 12 mEENn SE10T “(961) 77 12 IPPWUYY 4, $9AIND ) Jopun vaIe DY A11ogioads ‘ds :K1anisuas as :oueuiojrad “qgd
UOISIOA SLA[T ASLE I A A

aseqejep uonorpald ‘(g $19518) [RLIPUOYO0IIW ‘A 5198181 NTINO ‘LO ‘S19818) awosowoyd ‘1) oweu Kemyed ‘NJ Toquunu

UOISSA00L aseg Y1l ‘YA ‘suondridsap 839y ‘@ 20uanbas Y 1N ‘SN ‘I AUD ‘1D ‘@l VN YW ‘TA {UON00IL Juegauan) “yo) dseqeiep YN YW ‘A 2dA1 VNI ‘1Y 2ouanbas yN YW ‘SIA :9ouanbas 1a31e) ‘S Ajruue) YN YW JIA [Joquiks audd ‘g0 :ejep indug
oymnbsow ‘bur ‘ysyrapynd ‘d cwrom ‘m K J {ysye1qaz ‘z o1y 1y ‘wnssodo ‘0 (Mo ‘Mo snsayl ‘Yi azurdwIyd 9 fUIIYD ‘ud Fop P eI 1 :snowW ‘W furwiny ‘Y swsiuediQ
SIqE[IBAR 10U, JB[IBAR OPOO 20IN0S ; :9dA ],

s}
(s61) /B10-ouwryoo-arwddoy//:sdny aP10c L PV A N - SO TN q [ERECISCREIYY qraddor
SL Z %0 ‘ud <m§3com\$>$m
(r61°€61) [B1o-qezodewauy/-dyny AE10T 14 PV A A 61 SO TN at 0 MO T W Y oM dewryrw
[HdIRLIW/0808
(z61) 081°$8'9%°01¢//:dny XE10T 9 \% N N - IN ‘ad q VNIRAIOS QM Ligaeg i
Jatiiiten)
(161) /npaNid-qe[soudq mmm//:dny AP10T 14 v A A - SLIN at MWy 1OAIIS QM yrwo)
(d1@w/edoruoo-prydoy/
(s6) dny xC10T 4 v A A - IN SO » A I - VNCIRAIIS QM diquu
1N 1O
Plresaruywz/sdde/op ‘1O°Nd
.whmﬁﬁo—.&ws|_:=,EESA>>>>>>\\ ,<E,:>~
(061) dny xS10T 8 v A A 0T ‘I9°$O » ’ » Tuy ynoseaeIea RICAN TG
Nd
SOIO
Juewny ‘SN
(681)  /aynpampdudquireliwy/:dny x110T 14 I A A St VIN at st » q YNIRAIOS QM Ty
ang
dyd-xapuyrormu Jory /100N
(881°L81) [iroeifnysoojordmmmy/dny AP10T St v A A - 19 TN » st ’ zmyaiuy NG Le]
/M1 npa mdudquIdeweuiwy// bu ‘d ‘m Gz 9y waojed
(981°581) dnyg N800T € v A N 769 1D TN » 0 U2 AW Y yaseaeeq de YNy parersalu]
1d-QisanuLIRIS/uIg 130 SLID
(601) /310" yraomspem ploys//:dny FRalld - \% N A - 0T SWIA » » Vad My VNIRALOS G INIBLS
Hu>howso><um,x:HOuu_EABBB\\ ad <o~m3&0m\uu>h0w SAD- Lol
(Lon «dny AE10T - \4 N A 8%S9 81 0 TN Vat > My oM “VNVIA
epUBIA
wds <o§>3,_om\ /810"y N oo
(#81°501) /810 puIODOIIMMM//:dNY x010C - v N A %9L STUTIT°01 SO ‘TN st Mg Tty sseqere@
SL 'S
1281 SD'VD yNTRAIas
(#01°88) /Bro-qparwy/:dny S10T - v A A R RO G 9 TN » A » wpIWY  gam/aseqeieq aqyiu
21008
JLo3uysqnd onvy SN ‘SN yRtemjos/
(€01) /II-e uuBWZIOM dLUdF// ANy N800T - v A A 9L'0 11 9 TN at MWy JOAI9S QM V.LId
eds 1T aNId
(Zo1°101)  /TTRud/mpa uosIajjal-wo//sdny x510T - 1 N A %18 ‘61 8191 SLSI st » ad Mg wey YNTRAIRS QM geeur
ds
e
(66) /oputpiaq-opuresdid//diy NL00T - v N N %0L 9 19T at MWy YNIRAIOS QM Terold
\EHQ%SMF_\QEAV_&Q_MMQ n_Mm <®HN>>COm\
(001°06) -HUNYRJY0d) ALISIqLq /ANy N900T - PV A A 86 - S ‘SL » My JOA13S QI PUGAYYNY
MY
pds “Z 13 ‘0 ‘MO ‘Y1 waojed
(86°L8°01) [B10°urosjoBIRY MMM //:d 1Y x S10C - v N A %69 ITLLTOI EIARNS) at U0 p LWy 1OAIOS QM LEENER RIERIN
LN sad  ¥Ln
\m \m
SAOUAIJIY TN n1 1IN 1N vN asn Nad AIIN viep VN YW uo 95eI19A09 1§ (s)wsruesiQ odA1 S[00], dnoin
nduy

uonoarpard 1031e) (YN YIW) VN YOIOIW 0] $90INO0SAT JBULIOJUIOI] PIIII[IS dWOS “T d[qR],


http://www.targetscan.org/
http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/
http://pictar.mdc-berlin.de/
https://cm.jefferson.edu/rna22/
http://genie.weizmann.ac.il/pubs/mir07/
http://mirdb.org/
http://www.microrna.org/
http://www.microrna.gr/webServer
http://sfold.wadsworth.org/cgi-bin/starmirtest2.pl
http://mirnamap.mbc.nctu.edu.tw/
http://www.proto.cs.huji.ac.il/mirror/index.php
http://mirtar.mbc.nctu.edu.tw/human/
http://www.umm.uni-heidelberg.de/apps/zmf/mirwalk/
http://ophid.utoronto.ca/mirDIP/
http://www.benoslab.pitt.edu/comir/
http://210.46.85.180:8080/mirTarPri/
http://mirmap.ezlab.org/
https://toppmir.cchmc.org/

32 Nucleic Acids Research, 2016, Vol. 44, No. 1

get to make it accessible to the miRNA. MiRDB (88,104) is
an online database for miRNA target prediction and func-
tional annotations with a focus on mature miRNAs. It pro-
vides a web interface for target prediction generated by an
SVM machine learning algorithm and has a wiki editing in-
terface for interactive community-annotated miRNA func-
tional catalog. The web interface microRNA.org predicts
candidate targets using the miRanda algorithm and scores
them with the mirSVR machine learning method for their
potency to repress targeted genes (105). MiRanda recog-
nizes target sites using features like sequence complemen-
tarity between mature miRNAs and the free energy of the
duplex (91).

DIANA-microT-CDS (89,106,107) is the latest version of
DIANA-microT, an algorithm that incorporates a machine-
learning approach to identify the most relevant features
extracted from photoactivatable-ribonucleoside-enhanced
cross-linking immunoprecipitation (PAR-CLIP) data (108).
This enables the algorithm to learn the features associated
with miRNAs whose binding site is known both in cod-
ing sequences (CDs) and 3'UTRs. For target prediction it
considers features like binding category weight, distance
to the nearest end of the region (CDS or 3’UTR) or to
an adjacent binding site, the predicted free energy of the
duplex, conservation and AU content. Though DIANA-
microT is a web-based tool, advanced users are offered a
Taverna plugin that provides additional options and a non-
web interface. Another tool, STarMir (109), implements lo-
gistic prediction models developed with miRNA binding
data from CLIP studies (110). To predict miRNA binding
sites, STarMir computes comprehensive sequence, thermo-
dynamic and target structure features and a logistic prob-
ability as a measure of confidence for each predicted site
(3 UTR, CDS and 5UTR). Several research groups have
used these tools for target prediction (the relevant studies
are listed in Supporting Material S2). Additional and freely
available online tools for miRNA target prediction are pre-
sented in Supporting Material S3.

The information reviewed above clearly indicates that
current target prediction platforms are based on different
prediction assumptions and models, a fact that has consid-
erably hampered the selection by researchers of the appro-
priate tool for their specific requirements. Therefore, check-
ing the underlying assumptions, strengths and limitations
of a target prediction tool before employing it would be a
practical approach. Combining results from multiple tools
is a common, often encouraged practice to minimize false
positive and/or negative outputs. Even though all the tools
reviewed above have predictive power, they all have limita-
tions related to the features incorporated into them. Thus,
a tool relying exclusively on seed match for miRNA target
identification is unlikely to show whether the target site se-
quence is evolutionarily conserved or accessible for binding
and calculate the energy required for miIRNA:mRNA du-
plex formation. There is evidence that many non-conserved
binding sites in 3'UTRs are functional (111). Therefore, ex-
clusive use of conservation-based miRNA target prediction
systems is unlikely to capture such miRNA:mRNA interac-
tions.

Not all miRNA target prediction tools are consistently
updated. Regular updating is important, since miRNA

nomenclature changes continuously and novel miRNAs are
added to the miR Base every year (the list provided in Sup-
porting Material S4 reports the year of release of each
miRBase version). In a recent miRBase version, v21, 278
‘High-Confidence’ human miRNAs were identified based
on structural analysis of precursor miR NAs combined with
expression counts (57). RNAhybrid uses an older version of
the web server and has not been updated recently; the facts
that it does not offer default values and requires adjustment
of complex settings with user-supplied input make it dif-
ficult to use for beginners. The web servers of Pictar and
PITA are more than 5 years out of date. However, PITA of-
fers a downloadable version compatible with user-provided
data. MiRanda, another widely used but dated algorithm, is
also downloadable. Other tools such as TargetScan, rna22,
STarMir, DIANA-microT-CDS and miRDB, are regularly
updated. TargetScan and miRDB are those most frequently
updated, and use the High-Confidence status of a miRNA
for functional miRNA identification.

There is evidence that miRNA-binding sites within cod-
ing sequences are also involved in controlling gene expres-
sion (112). Tools that predict only the target in conserved
3’'UTRs are unable to predict miRNA:mRNA interactions
in other regions. Among the tools reviewed above DIANA-
microT-CDS can identify miRNA targets in CDSs as well
as 3 UTRs, and rna22, miRDB, and STarMir can do so in
CDSs, SUTRs and 3’'UTRs.

Even though these miRNA target prediction approaches
can be used independently, some web-based integrated plat-
forms have been built in recent years to combine multiple
algorithms (Table 2). The results they generate cannot be
used directly, but require experimental validation. However,
evaluation of these tools is beyond the scope of the present
review.

Finding validated miRNA information

Potential miRNAs obtained even from the most efficient
prediction tools require experimental validation. This can
be accomplished with several approaches. Well-established
techniques for gene-specific experimental validation include
qRT-PCR, luciferase reporter assays and western blotting.
High-throughput sequencing (HITS) techniques are also
available such as microarrays, proteomics, and sequencing-
based methodologies such as RNA-Seq, HITS-CLIP, PAR-
CLIP and Degradome-Seq (92). Some experimentally val-
idated miRNA target databases that collect, curate and/or
analyze the relevant literature are now available (Table 3).
The studies that have used them are reported in Supporting
Material S2.

DIANA-TarBase (113,114) is a manually curated target
database. The latest version (v7.0) contains more than half
a million miRNA-target interactions (MTIs), curated from
published experiments performed with 356 different cell
types from 24 species. It indexes 9- to 250-fold more en-
tries than any other relevant database. It incorporates data
derived from 154 CLIP-Seq/CLASH data sets as well as
more than a hundred other high-throughput data sets. The
database enables retrieval of positive and negative experi-
mental results, experimental methodology used, experimen-
tal conditions including cell/tissue type and treatment. The
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data set is freely available for download. The miRTarBase
(115,116) has accumulated more than 50 000 MTTI from 18
species that are collected by manual screening of the rele-
vant literature after data mining of the text, to filter research
articles related to functional studies of miRNAs. MTIs
are validated experimentally by reporter assay, western
blotting, microarray and NGS experiments. The miRTar-
Base provides an updated collection through comparisons
with similar, previously developed databases. MiRecords
(117) is also a manually curated database hosting 2705
records of interactions between 644 miRNAs and 1901 tar-
get genes in 9 animal species. [t also contains predicted tar-
gets calculated using 11 different algorithms. Another tool,
StarBase (118,119), is designed for multiple tasks includ-
ing miIRNA:mRNA interaction based on CLIP-Seq data.
Among databases containing validated miRNA informa-
tion, DIANA-TarBase is the most frequently updated, and
is associated with the latest miR Base version (v21), which
offers High-Confidence miRNA sets. It also supports the
largest number of species and entries. Three other databases
are linked to miRBase v20. The data sets from all databases
are available for free download.

Correlating miRNNA and mRNA expression

Numerous tools provide miRNA and miRNA target pre-
diction. Despite a significant number of studies, our under-
standing of the molecular mechanisms underlying miRNA
targeting is still incomplete. MiRNA functional analysis
and expression analysis could help identify potential tar-
gets and uncover biologically important relationships. Sev-
eral online bioinformatic resources for miRNA expression
analysis are also available; most combine target prediction
with expression data. Some tools that use miRNA expres-
sion data are described above (Table 3). The list of studies
that have used these tools is reported as Supporting Mate-
rial S2.

MiRonTop (120) is an online Java application that identi-
fies the potential involvement of miRNAs in a given biolog-
ical system using DNA microarrays or HITS data. It pro-
vides fast characterization of the most significant mRNA
targets according to several prediction approaches. It also
provides options to estimate enrichment scores according
to the spatial distribution of predicted target sites along
the transcript, since true sites may be preferentially lo-
cated in the vicinity of stop codons and polyA sites. It pro-
vides graphs of miRNA enrichment associated with up-
or down-regulated transcripts and summary tables of se-
lected mRNA targets and their functional annotations by
Gene Ontology. DIANA-mirExTra (121) is a web server
that identifies primarily the miRNAs inducing gene dereg-
ulation by targeting six nucleotide-long motifs (hexamers)
that are overrepresented in the 3’ UTR sequences of dereg-
ulated genes. Once miRNAs of interest are detected, the
user can directly view their predicted targets as produced by
DIANA-microT 3.0 (89). To learn how gene deregulation
may contribute to disease development or other processes
of interest, an integrated tool, DIANA-mirPath (122), sug-
gests biological pathways in which miRNA targets of inter-
est are more likely to be involved. mESAdb (123) is an in-
teractive and expandable analytical tool that uses miRNA
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sequence and expression data from multiple taxa. MESAdb
analysis modules allow (i) mining selected miRNA expres-
sion data sets for a list of miRNAs; (ii) pair-wise multi-
variate analysis of expression data sets within and between
taxa; and (iil) association of miRNA lists or of miRNAs
with a given motif with annotation databases, HUGE Nav-
igator (124), KEGG (125) and GO (126). The possibility
of uploading and analyzing user-specified data sets makes
mESAdb an interactive and expandable analysis tool for
miRNA sequence and expression data. Finally, miRGator
v3.0 (127) is an integrated portal collecting deep sequenc-
ing miRNA data that has become the principal resource on
miRNA diversity and expression. It encompasses miRNA
diversity, expression profiles, target relationships and var-
ious supporting tools. The weakness of these tools is that
they are not regularly updated. Only miRGator is linked to
miR Base v18, whereas the others are using older versions.
Additional miRNA expression analysis tools are presented
in Supporting Material S3.

MiRNA regulatory network identification

Since miRNAs can have multiple targets, and each protein-
coding gene can be targeted by multiple miR NAs that make
up a complex regulatory network. The investigation of the
biological importance of the miRINA-target interaction net-
work is an exciting and challenging task. Construction
of networks enables modeling complex biological systems.
Since miRNAs play a key role in many processes and path-
ways, it is crucial to have tools that can integrate miRNA-
related data into networks. In this section we describe some
tools that combine miRNA-related data to create interac-
tion networks that model and describe the molecular that
involve miRNA regulation. Most of these tools also offer
computational facilities for the visualization and analysis of
such networks. This class of tools offers an interface to deal
with network-oriented data (Table 3). The studies that have
employed these tools are reported in Supporting Material
S2.

MAGIA (miRNA and genes integrated analysis) (128)
is a web tool for the integrated analysis of target predic-
tions and for miRNA and gene expression data. It offers
an interface to construct bipartite regulatory networks of
the best putative miRNA:mRNA interactions. The interac-
tive bipartite regulatory network is reported together with
the corresponding browsable table of relationships. A hy-
perlink allows functional enrichment analysis through the
DAVID tool (129) on the desired number of target genes.
The user can further investigate each mRNA, miRNA
or miRNA:mRNA interaction and employ it for differ-
ent queries. Similarly, mirConnX (130) is a web interface
for inferring, displaying and parsing mRNA and miRNA
gene regulatory networks. It combines sequence informa-
tion with gene expression data analysis to create a disease-
specific, genome-wide regulatory network. Another tool
CoMeTa (Co-expression Meta-analysis of miRNA Targets)
(131) is based on the assumption that the targets of a given
miRNA are likely to be co-expressed and therefore to be-
long to the same miRNA gene network. CoMeTa aims at
inferring miRNA targets and miRNA-regulated gene net-
works by integrating expression data from hundreds of cell
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and tissue conditions. The three tools are not regularly up-
dated and are using an older miR Base version.

MiRNA metabolic and signaling pathway analysis

MiRNAs are functionally related both to signaling (132)
and metabolic (133) networks and extensively interact with
other factors (134) through distinct topological patterns, in-
tegrating transcriptional and post-transcriptional mecha-
nisms into biological regulatory networks. Moreover, they
typically have multiple targets within cellular networks
that possibly enable modulation of entire pathways related
to individual biological process. Despite the growing evi-
dence for the involvement of miRNAs in central biologi-
cal processes, their systematic integration in biological path-
ways remains incomplete. Some online tools now deal with
miRNA-related pathways (Table 3). The studies that have
used these tools are reported in Supporting Material S2.
EIMMo (135) is a Bayesian target prediction algorithm
that uses evolutionary conservation and pathway analysis
and can be applied to sequences from any clade of species.
The algorithm automatically infers the phylogenetic distri-
bution of functional sites for each miRNA and assigns a
posterior probability to each putative target site. By com-
bining the predictions with pathway analysis, it proposes
functions of specific miRNAs in nervous system develop-
ment, intercellular communication and cell growth. MiR-
NApath (136) is an online database that uses miRNA target
genes to link miRNAs to metabolic pathways. Additionally,
it provides five search services and a download area. There
is a specific input type for each search, which may be a list of
target genes, miRNAs, or metabolic pathways, and results
in different outputs depending on input data. Internal links
lead to a deeper level of analysis and cross-links to other
databases with more detailed information. miTALOS (137)
is a web resource providing insights into miRNA-mediated
regulation of signaling pathways. It considers the tissue-
specific expression signatures of miRNAs and target tran-
scripts to improve miRNA regulation analysis in biological
pathways. It identifies potential pathway regulation by (i) an
enrichment analysis of miRNA target genes and (ii) using a
proximity score to evaluate the functional role of miRNAs
in biological pathways by their network proximity. MiRSys-
tem (138) is a web-based tool providing miRNA target gene
analysis, prediction of biological functions, and canoni-
cal pathways of miRNAs and their target genes. DIANA-
miRPath (122,139,140) is a relatively efficient web-based
application that performs enrichment analysis of predicted
target genes of one or more miRNAs in biological path-
ways. It addresses the combinatorial effect of co-expressed
miRNAs in the modulation of a given pathway through si-
multaneous analysis of multiple miRNAs. The new version
of this tool performs advanced analysis pipelines, such as
hierarchical clustering of miRNAs and pathways based on
the levels of their interactions. Users can also easily cre-
ate heat maps of miRNA-pathway interactions. The tool
also provides identification of pathological single nucleotide
polymorphisms (SNPs) at miRNA binding sites, as well as
the ‘Reverse Search module’, where the user can identify
all the predicted or experimentally validated miRNAs sig-
nificantly targeting a selected pathway. Among these tools,

MiR System and DIANA-miR Path have been updated very
recently. MiR System and DIANA-miRPath are using miR-
Base v20 and v21, respectively. DIANA-miRPath includes
High Confidence miRNA sets.

MiRNA and transcription factor interaction

MiRNAs and transcription factors (TFs) are two vital
classes of transregulators in gene regulatory networks.
MiRNAs are important cellular components that regulate
gene expression at the post-transcriptional level. It has be-
come clear that they do not act independently, but co-
operate with other molecules like TFs to regulate target
genes, or execute specific functions indirectly (141). TFs
are an important class of gene regulators that act at the
transcriptional level. Furthermore, miRNA expression can
be activated or repressed by TFs, although studies of TF-
miRNA regulation are relatively limited. Recently, some
databases and bioinformatic tools have been developed to
gain a greater understanding of these interactions (Table 3).
The studies that have used these tools are reported in Sup-
porting Material S2.

TransmiR is a manually curated database that uses TF-
miRNA regulatory relationships found in the literature
(142). Tt provides a limited number of experimentally val-
idated TF-miRNA regulations for multiple species as well
as information on their involvement in tumors and miR NA-
associated diseases, where available. The PuTmiR database
focuses on the TFs that might regulate miRNAs (143). It
provides a repository of putative TFs for any arbitrary hu-
man miRNA binding in the 10 kb upstream and down-
stream region. It also offers an interface that allows region-
specific searches for a given miRNA both in upstream and
downstream, to extract the list of putative TFs for hu-
man miRNAs, where the putative TFs are considered as
the possible regulators of those miRNAs. CircuitsDB is a
database devoted to identification and analysis of mixed
miRNA-TF regulatory circuits in the human and mouse
genomes based on bioinformatic sequence analysis (144).
Specifically, the website focuses on the study of a partic-
ular type of connection between transcriptional and post-
transcriptional interactions: the miRNA-TF feed-forward
regulatory Loop (FFL), i.e. basic circuits where a master
transcription factor regulates a miRNA and together with
it a set of joint target protein-coding genes. Furthermore,
this tool investigates the functional properties and disease
relevance of proposed interactions with the aid of sev-
eral external sources. The web application MIR@NT@N
is based on a meta-regulation network model that illus-
trates interactions among transcription factors, miRNAs
and protein-coding genes (145). It predicts regulatory net-
works and sub-networks including conserved motifs, feed-
back loops (FBLs) and FFLs. The main feature of this tool
is that it enables to predict TF- and miRNA-mediated reg-
ulations on a genome-wide scale. MIR@NT@N facilitates
the analysis of ‘omics’ data and allows detection of rele-
vant molecular interactions and associated regulatory mo-
tifs (e.g. FFLs). The most updated database is ChIPBase,
which integrates chromatin immunoprecipitation with next-
generation DNA sequencing (ChIP-Seq) data to facilitate
the comprehensive annotation and discovery of TF bind-



ing maps and transcriptional regulatory relationships of
miRNAs from ChIP-Seq data (146). By analyzing millions
of TF binding sites it has identified tens of thousands of
TF-miRNA regulatory relationships. While databases like
transmiR and CircuitsDB only assemble computationally
predicted or experimentally supported TF-miRNA interac-
tions, ChIPBase provides comprehensive TF-miRNA regu-
latory relationships identified from high-throughput ChIP-
Seq data. Among these tools ChIPBase and TransmiR are
updated relatively often. ChIPBase is currently using miR-
Base v17.

Linking miRNA and disease

MiRNA deregulation in human diseases. 1t is well estab-
lished that miRNA deregulation is associated with several
human diseases (147-149) including various cancers (150).
One way to study diseases involving miRNAs is by assem-
bling data from independent sources. Therefore, an online
knowledge base is crucial to provide up to date information.
Some available databases (Table 3) already gather informa-
tion about miRNA involvement in various diseases. Among
them, miR2Disease (151) is a manually curated database
offering comprehensive information on miRNA deregula-
tion in various human diseases. Each entry contains de-
tailed miRNA-disease relationship data, including miRNA
ID, disease name, a brief description of the miR NA-disease
relationship, miRINA expression pattern in the disease state,
the miRNA expression detection method, experimentally
verified miRNA target gene(s) and literature references. It
also includes a page that allows submitting novel miRNA-
disease relationships. MiRo (152), another online knowl-
edge base providing miRNA-phenotype associations in hu-
mans, integrates data from various online sources includ-
ing miRNA databases, ontologies, diseases and targets, into
a single resource equipped with an intuitive and flexible
query interface and data mining facilities. It allows asso-
ciating genes and diseases based on miRNA annotations
and functions, thus enabling selection of the most promis-
ing associations. PhenomiR (153) is a database providing in-
formation about miRNAs exhibiting a differential regula-
tion in disease and other biological processes. OncomiRDB
(154), a manually curated database reporting experimen-
tally verified oncogenic and tumor-suppressing miRNAs,
contains 2259 entries of cancer-related miRNA regulations
that are based on direct experimental evidence from about
9000 abstracts, covering more than 300 miRNAs and 829
target genes across 25 cancer tissues. [t provides both graph-
ical and text-based interfaces that facilitate both compu-
tational analysis and experimental study of miRNA regu-
latory networks and functions in cancer. miRCancer (155)
is another miRNA-cancer association database that is con-
structed by text mining on literature. It contains 878 rela-
tionships among 236 miRNAs and 79 human cancers ob-
tained by processing 426 000 published articles. HMDD
(156), Human microRNA Disease Database, collects ex-
perimentally supported human miRNA-disease associa-
tion data from genetics, epigenetics, circulating miRNAs
and miRNA-target interactions. In addition, it presents
data generated on the basis of concepts derived from the
miRNA-disease association data, including disease spec-
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trum width of miRNAs and miRNA spectrum width of hu-
man diseases. A link for data download and one for submis-
sion of novel data to the database are also provided.

Among these databases, miR2Disease and miRo have
not been updated for more than 5 years and are linked
to a very old miRBase version. PhenomiR is newer, but
it too is associated with an older miRBase version (v12).
OncomiRDB, miRCancer and HMDD are using miR Base
v20, v18 and v20, respectively. Whereas OncomiRDB and
miRCancer provide only data from cancers, HMDD pro-
vides information from various human diseases. Please see
Supporting Material S2 for the studies that have employed
these databases.

Extracellular circulating miRNAs. MiRNAs found in hu-
man extracellular body fluids such as serum, plasma, saliva
and urine are referred to as circulating miRNAs (46). Such
miRNAs are considered as potential biomarkers, because
they are easily collected, they are stable under different stor-
age and experimental conditions, and can be detected using
specific, sensitive and reproducible assays (157). Numerous
miRNAs have been found in human body fluids to date.
Some circulating miRNAs have recently been reported to
be associated with disease conditions including cancer (158)
and age-related diseases (159,160), suggesting that all types
of circulating miRNAs in body fluids should be included in
the study of miRNAs as biomarkers of disease. Given the
importance of circulating miRNAs in biomedical research
data are mounting quickly. A knowledge base of extracel-
lular circulating miRNAs is therefore a key biomedical re-
search tool. MiRandola (158) is a comprehensive database
that provides manually curated classification of extracellu-
lar circulating miRNAs (see Table 3 and Supporting Mate-
rial S2). Its connection to another miRNA database, miRo
(152), allows users to infer the potential biological functions
of circulating miRNAs and their connections with pheno-

types.

MiRNAs, environmental factors and phenotype. MiRNAs
are involved in a number of biological processes and human
diseases. Extensive studies have also been conducted on the
association between environmental factors (EFs) and hu-
man diseases (161,162). According to recent reports miR-
NAs functionally interact with various EFs such as diet,
stress, smoking habits, air pollution, alcohol, drugs, viruses
and radiation (163), and work synchronously to influence
phenotypes and diseases, including cancer (164). Compu-
tational analysis and modeling of miRNA-EF interactions
thus provides crucial insights into EF mechanism and en-
ables identification of the miRNA signature of EFs and a
greater understanding of the role of their interplay in hu-
man disease. Such investigations are still extremely limited
due to the lack of a large-scale miRNA-EF interaction data
set. Now, the miREnvironment (see Table 3 and Supporting
Material S2) database provides a comprehensive collection
of experimentally supported interactions among miRNAs,
EFs and phenotypes (165). It incorporates more than 3857
entries, 1242 miRNAs, 394 EFs, 305 phenotypes and 24
species from 557 publications. It also has a tool performing
bioinformatic analysis to predict the result of cancer treat-
ment and associations between EFs and human disease.



38 Nucleic Acids Research, 2016, Vol. 44, No. 1

Polymorphisms in miRNA targets associated with human dis-
eases. SNPs can affect susceptibility to disease through
gene expression regulation. MiRNAs also regulate gene ex-
pression, through post-transcriptional repression, by bind-
ing to the 3’ UTR of their target mRNA. MiRNA-mRNA
binding is mainly determined by pairing of the miRNA
seed sequence (nucleotides 2-7) to the complementary
match sites in each mRNA target (166). SNPs at the seed
sites of miRNA targets may affect the complementarity of
miRNA-mRNA binding positively or negatively, thus in-
fluencing phenotypes and disease susceptibility (167). In
addition to SNPs within miRNA seed sites, SNPs outside
miRNA binding sites (rest of the 3 UTR) in a gene can
influence miRNA function (168,169). Several reports have
addressed the association of SNPs at miRNA 3’ UTR tar-
get sites with complex conditions including cardiovascular
disease, neurodegenerative disorders, hippocampal sclero-
sis, Parkinson disease, Tourette’s syndrome, asthma, peri-
odontal disease, tumor susceptibility and various types of
cancers (170). In addition, genetic variants in miRNA genes
may also have important roles by influencing miRNA mat-
uration, which may affect disease susceptibility (167).

Even though the identification of SNPs associated with
diseases is gathering pace, the underlying molecular mech-
anisms for the majority of disease-associated SNPs in 3
UTRs still needs to be elucidated. Here, too, a contribution
to the study of the interplay between SNPs and miRNAs
and of their association with disease has come from the cre-
ation of online databases and tools (see Table 3 and Sup-
porting Material S2).

The Patrocles (171) database collects DNA sequence
polymorphisms in the 3’ UTR of genes that perturb
miRNA-mediated gene regulation in seven vertebrate
species. It also provides a tool (Patrocles finder) that al-
lows users to find specific polymorphisms that may per-
turb miRNA-mediated gene regulation of custom target
sequences. The web-based application MicroSNiPer (172)
predicts not only the impact of an SNP on putative miRNA
targets in the 3’ UTR of genes, but can also be applied to any
RNA/DNA sequence of interest (5 UTRs or open reading
frames, ORFs). It predicts whether an SNP within the tar-
get site will disrupt/eliminate or enhance/create a miRNA
binding site. Numerous SNPs are associated with complex
diseases that have been identified by genome-wide associ-
ation studies (GWAS) (173). GWAS and expression quan-
titative trait locus (eQTL) are powerful methods to iden-
tify genetic variants that affect disease risk and gene expres-
sion. Mirsnpscore (174) is a computational tool that identi-
fies the causative SNPs associated with diseases by focusing
on SNPs affecting gene regulation by miRNAs. It predicts
the effects of SNPs on miRNA target sites and uses link-
age disequilibrium to map the miRNA-related variants to
SNPs of interest in GWAS. The online database MirSNP
(175) collects human SNPs at predicted miRNA-mRNA
binding sites, which can be combined with researchers’ own
GWAS or eQTL data sets to identify the putative miRNA-
related SNPs associated with diseases, thus directing subse-
quent functional studies. The miRASNP (170) database is a
comprehensive data source on disease-associated SNPs that
provides robust tools to explore their distance from miRNA
target sites on the 3’ UTRs of human genes. It also helps ex-

plore the molecular mechanism of gene dysregulation for
disease-associated SNPs at the post-transcriptional level.
PolymiRTS (176,177) offers the largest number of features.
It is an integrated platform designed to analyze the func-
tional impact of genetic polymorphisms in miRNA seed
regions and at miRNA target sites. It provides links be-
tween SNPs at miRNA target sites, cis-acting eQTLs and
the results of GWAS of human diseases. It also integrates
data from CLASH (cross-linking, ligation and sequencing
of hybrids) experiments to provide complete and accurate
miRNA-mRNA interactions. Among these tools MicroS-
NiPer and PolymiRTS are updated relatively often and are
using miRBase v19 and v20, respectively.

Somatic mutations in miRNAs and their target sites.
Whole-genome sequencing of cancers has enabled identifi-
cation of somatic mutations that distinguish normal from
cancer tissue genomes. In addition to germline mutations,
which disrupt miRNA targeting and play important roles
in cancer, somatic mutations also need to be investigated,
since whole genome sequencing data are available for sev-
eral cancers (178). Some databases have been set up to pro-
vide data to investigate the impact of somatic and germline
mutations on miRNA function in cancer (see Table 3 and
Supporting Material S2). The SomaMir (179) database is
linked to miRBase version v17; it contains somatic muta-
tions that can create or disrupt miRNA target sites and inte-
grates such mutations with germline mutations at the same
target sites, genome-wide and candidate gene association
studies of cancer, and functional annotations that link genes
containing mutations to cancer. Additionally, the database
contains a collection of germline and somatic mutations, in
miRNAs and their targets, that have been experimentally
shown to impact miRNA function and have been associ-
ated with cancer. Another very recent tool, miR2GO (180),
is a web server for comparative analyses of human miRNA
functions. It offers two programs: miRmut2GO, which im-
plements a knowledge-based method to assess the func-
tional effects of genetic and somatic mutations in miRNA
seed regions, and miRpair2GO, which compares the func-
tions of two different miRNAs based on the enriched func-
tional annotations of their target gene sets.

Prediction of the cell targets of host and viralmiRNAs.  Like
all eukaryotic organisms, viruses also encode miRNAs (91)
that contribute to the complex interactions between viruses
and their hosts. As viruses are habitually parasitic, viral
miRNAs may target important host genes to impair the
host cell defense and control host cell biogenesis. For ex-
ample, Human herpes virus 4 (Epstein-Barr virus) represses
a number of host genes, including those encoding B cell-
specific chemokines and cytokines, transcriptional regula-
tors and components of signal transduction pathways, using
virus-encoded miRNAs (91). Even though large-scale com-
putational prediction of miRNAs has been conducted for
many organisms using known genomic sequences, data for
the thousands of known viral genomes are extremely lim-
ited. However, some bioinformatic tools are available and
are presented below (see Table 3 and Supporting Material
S2).



ViTa (181) is a viral database that curates the known virus
miRNA genes as well as the known/putative target sites of
human, mouse, rat and chicken miRNAs. It also contains
the virus annotations, virus-infected tissues and tissue speci-
ficity of host miRNAs. ViTa also facilitates comparisons be-
tween virus subtypes, such as influenza viruses, human liver
viruses and the conserved regions between viruses. A sim-
ilar database Vir-Mir db (56) predicts viral miRNA candi-
date hairpins. It has examined 2266 available viral genome
sequences for putative miRNA hairpins and identified 33
691 hairpin candidates in 1491 genomes. Bi-Targeting (182)
is an algorithm that identifies groups of viral and host
miRNAs that cooperate in post-transcriptional gene reg-
ulation, and their target genes that are involved in similar
biological processes. RepTar (183) is a database that pro-
vides a comprehensive set of conventional (‘seed’ type) and
non-conventional miRNA target predictions, including 3’-
compensatory and centered sites. It offers genome-wide pre-
dictions of cellular targets of host and viral miRNAs and
provides sophisticated data-mining techniques for querying
the large data set of miRNA-target predictions. However,
all the tools of this category require updating, since they
are out of date and are using old miR Base versions.

These bioinformatic resources are valuable tools for
biomedical researchers who study virus—host interactions,
to identify possible viral miRNAs and their target genes in
hosts.

CONCLUSION AND PROSPECTS

Since miRNAs are involved in a variety of biological pro-
cesses and their deregulation can be linked to cancer and
several other diseases, they have a huge impact on biomedi-
cal research. Despite the large number of studies carried out
to date, our understanding of miRNAs and their large-scale
regulatory mechanisms is still limited. High-throughput
technologies have significantly advanced our knowledge of
miRNAs; now bioinformatic tools are making it possible
to address all the aspects of miRNA research pipelines. We
have reviewed various bioinformatic resources that can be
harnessed in miRNA research; they cover an impressive
range, from miRNA gene and target prediction to the func-
tional implication of miRNAs.

These tools still have a few flaws, whose correction would
refine existing resources and help develop new ones. The
most common and vital limitation of these computational
tools is generation of large amounts of false-positive data.
Machine-learning-based programs and filter-based algo-
rithms can minimize their rate. Furthermore, integrated
platforms that incorporate multiple computational tools
would probably produce better outputs than a single algo-
rithm. Integrated tools act as hubs for executable programs,
enabling generation of comprehensive and reliable miRNA
information.

The mounting body of NGS and gene expression data
being generated requires increasingly sophisticated analyti-
cal tools. Future tools need more user-friendly features for
improved efficiency; although some already have them, this
would be a useful general property. Resources should also
be downloadable, to allow user inputs and data processing.
Open source software would also be useful for advanced
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users, to enable customization and improvement. System-
atic updating with the update of the experimental data in the
corresponding databases would be another valuable feature.
Furthermore, in this increasingly open scientific age, all re-
searchers should make their raw data freely accessible, thus
enabling independent bioinformatic analysis and interpre-
tation. Authors should therefore be allowed to upload their
data and findings in online repositories in simple format.

Social networking also in the scientific community is in-
creasing contacts among researchers around the globe. A
new study or tool is immediately discussed in scientific fo-
rums throughout the world and its strengths and weak-
nesses highlighted, encouraging and guiding progress. The
interaction between users and developers could significantly
contribute to the design of more efficient bioinformatic plat-
forms. Since miRNAs are frequently dysregulated in hu-
man disease, they are considered as promising targets for
therapeutic intervention. A powerful bioinformatic plat-
form could play a crucial role in this type of research. Next-
generation biomedical research will hugely benefit from
bioinformatic resources, since the massive flow of miRNA
data cannot be managed without them. This overview is
probably most useful to miRNA scientists, who need to
master bioinformatic tools to enhance their research, but
it could also inspire bioinformatics experts and resource
developers to design more user-friendly next-generation
miRNA tools.

SUPPLEMENTARY DATA
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