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ABSTRACT: Evolving specific molecular recognition function of proteins requires strategic navigation of a complex mutational
landscape. Protein scaffolds aid evolution via a conserved platform on which a modular paratope can be evolved to alter binding
specificity. Although numerous protein scaffolds have been discovered, the underlying properties that permit binding evolution
remain unknown. We present an algorithm to predict a protein scaffold’s ability to evolve novel binding function based upon
computationally calculated biophysical parameters. The ability of 17 small proteins to evolve binding functionality across seven
discovery campaigns was determined via magnetic activated cell sorting of 1010 yeast-displayed protein variants. Twenty
topological and biophysical properties were calculated for 787 small protein scaffolds and reduced into independent
components. Regularization deduced which extracted features best predicted binding functionality, providing a 4/6 true positive
rate, a 9/11 negative predictive value, and a 4/6 positive predictive value. Model analysis suggests a large, disconnected paratope
will permit evolved binding function. Previous protein engineering endeavors have suggested that starting with a highly
developable (high producibility, stability, solubility) protein will offer greater mutational tolerance. Our results support this
connection between developability and evolvability by demonstrating a relationship between protein production in the soluble
fraction of Escherichia coli and the ability to evolve binding function upon mutation. We further explain the necessity for initial
developability by observing a decrease in proteolytic stability of protein mutants that possess binding functionality over
nonfunctional mutants. Future iterations of protein scaffold discovery and evolution will benefit from a combination of
computational prediction and knowledge of initial developability properties.
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■ INTRODUCTION

Proteins have evolved to empower a broad array of
functionality. While minimal amino acid mutations can yield
dramatic enhancements in functional performance via
evolution,1,2 discovery of completely new function typically
requires greater leaps in sequence.3 Given the relative
barrenness and tortuosity of sequence space,2 efficient
strategies are needed to achieve successful de novo discovery.
One strategy to facilitate discovery is the use of a protein
scaffold4,5 comprising a conserved framework to provide
biophysical robustness and a variable active site to provide
diverse function. One particular function, molecular recog-
nition via binding ligands, has ubiquity in natural biology and
broad technological utility in targeted molecular therapies6 and
diagnostics.7 A functional protein ligand scaffold must be able
to evolve new, specific binding function upon mutation of the
paratope8 and possess optimal developability properties (e.g.,

stability, solubility, and expression) for downstream use.9 To
date, numerous protein scaffolds have been engineered to
obtain strong affinity toward clinically relevant targets,10,11

while some have entered clinical trials.12−15 Protein scaffolds
offer novel topologies and differential size, allowing for unique
binding interfaces and tunable pharmacokinetic properties.16,17

The diversity of topologies and physicochemistries of
published scaffolds and the paucity of data on unsuccessful
scaffolds preclude an understanding of the biophysical features
that allow the development of binding functionality. Thus, to
advance the understanding of de novo protein discovery and
evolution, as well as to advance technological capability for
ligand engineering, we sought to develop a platform to
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elucidate the factors that dictate scaffold performance and to
identify new scaffolds.
Previously established scaffolds have been discovered based

on an evolutionary or mechanically themed hypothesis. The
use of antibodies,6 antibody fragments,18 and leucine-rich
repeats19 presumed that their natural function for high affinity
binding will serve as a starting point for scaffold engineering.
Fibronectin type III “monobodies”20 and designed ankyrin
repeat proteins21 are structurally similar to these immune
scaffolds. Lipocalins,22 three-helix bundle affibodies,23 fyno-
mers,24 and others17 offer unique topologies with native
binding ability. Alternatively, multiple scaffolds are chosen for
their strong structural stability, including cystine knots25 and
thermophilic affitins26 and homologues. Similarly, a host of
other scaffolds have provided compelling performance in
ligand development, while others have been tested without the
same level of success.21 A comparison of potential scaffolds was
recently performed, which identified the Gp2 scaffold for its
small size, adjacent, solvent-exposed loops with significant
surface area, and mutational tolerance.10 However, a rigorous
evaluation of the properties that permit protein scaffold
function, now enabled by advances in high-throughput
screening and sequencing, has yet to be performed.
Herein, we propose an iterative discovery and evaluation

platform for new protein scaffolds in which we computationally
characterize biophysical properties of scaffold topologies and
experimentally evaluate binder evolution (Figure 1). Parameter

selection techniques are then employed to assess predictive
characteristics of evolvable scaffolds. In this Research Article,
computationally derived stability and topology parameters
were used to identify the first predictive model of protein
scaffold function, which can be used to identify future
successful protein scaffold candidates. Additionally, exper-
imental characterization of scaffold developability suggests
stable and producible proteins yield improved binder evolution

to combat a trade-off between stability and new binding
function. The findings in the study suggest a combination of
developability and biophysical metrics should be used to
identify future protein scaffolds.

■ RESULTS AND DISCUSSION
Computational Scaffold Analysis. We hypothesize that

not all proteins possess the characteristics to robustly and
efficiently evolve novel binding function upon mutation. To
advance the understanding of scaffold properties that dictate
evolvability, and to reduce the experimental burden of
identifying new scaffolds or improving existing scaffolds, we
aim to advance a computational/experimental framework to
evaluate binding evolvability of candidates. We hypothesize
that a combination of topological and biophysical parameters
can be used to provide insight on performance.
We focused the current study on small (<65 amino acids),

single-domain proteins for multiple reasons. Small proteins
provide improved physiological transport and rapid clearance
of unbound molecules for enhanced selectivity.27 Small, single-
domain architecture eases fusion and site-specific conjugation
for multifunctional constructs. The small size reduces exposed
surface area that may lead to undesired nonspecific
interactions. Moreover, small size heightens the challenge to
simultaneously balance evolution of intramolecular stability
and intermolecular binding,28,29 which makes it a strong test
case for evolution. Multiple types of protein structure can be
used for diversification of a binding paratope including
loops,20,30 α-helices,31,32 β-strands,33 and mixed topolo-
gies.21,22 Although the impact of entropic cost upon bind-
ing,34,35 relative to more constrained paratope structures,
remains difficult to accurately access, the conformational
flexibility of loops suggests this secondary structure will be
most accepting of mutagenesis.36 Thus, we sought proteins
with at least two enclosed loop regions each with at least four
residues for diversification.
The >100 000 proteins in the Protein Data Bank (PDB)

were (i) filtered for size (30−65 AA pretrimming) and the
presence of two loops with at least four residues. 787 unique
protein scaffolds were (ii) demarcated into conserved frame-
works and diversifiable paratopes and (iii) characterized by 20
parameters describing geometrical, chemical, and stability
properties (summarized in Table 1 and the following text
and described in depth in Experimental Procedures). (1)
Protein Connectivity. We hypothesized that the connectivity of
residues would impact protein stability, leading to the
calculation of inter-residue contact degree (total and long-
range) and contact order.37 (2) Paratope Connectivity. Paratope
connectivity and flexibility, the latter via normal-mode
analysis,38 was also calculated as we believed spatially removed
diversifications will be less destabilizing to the remainder of the
protein. (3) Conserved Surface Area Chemical Nature. As for the
conserved framework, the amount and chemical nature of
exposed residues are likely to affect the ability of proteins to
withstand destabilizing mutations. PyMOL39 was used to
model the protein surface and calculate the chemical nature of
the solvent accessible surface area (SASA). (4) Paratope Size
and Topology. Paratope orientation was parametrized by spatial
and angular separation to capture the potential additivity of the
two paratope loops. Paratope size and shape were described by
measuring the properties of the 2D and 3D binding interface.
(5) Computational Stability. It is proposed that scaffolds must
be stable and have mutational stability to maintain structural

Figure 1. Algorithm for protein scaffold discovery. Small proteins
deposited in the Protein Data Bank are analyzed for structural,
chemical, and predicted stability parameters. Proteins for experimental
evaluation are chosen via a proposed model to predict binding
performance. Protein scaffold libraries consisting of millions of unique
variants are expressed with diversified binding interfaces. Binding
function is evaluated against several molecular targets to determine
which proteins evolve specific binding variants. The observed binding
performance is then used to adjust the predictive model. Iterative
evaluation can be performed.
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integrity when obtaining binding function. The FoldX
empirical force field was used to estimate mutational
destabilization and overall stability.40 The amount of buried
nonpolar surface area was also estimated as a relationship with
stability was recently observed for small proteins.41 (6) General
Scaf fold Properties. We propose the amount of new SASA
introduced by cleaving termini may introduce destabilizing
exposed surfaces. Termini without secondary structure were
removed from experimental and computational analysis except
in the calculation of new SASA. We also included descriptions
of the amount of common secondary structure and total
residues. Small protein topologies exhibit a broad range of
values for these 20 parameters (Figure 2R), which provides
potential utility for scaffold differentiation. Seventeen candi-
date scaffolds (Figure 2A−Q), which provide a range of
characteristics (Figure 2R), were chosen for experimental
evaluation.
Scaffold Binding Evaluation. To evaluate scaffold

evolvability, we performed de novo discovery of binding
ligands from a merged combinatorial library of all 17 scaffolds.
Combinatorial libraries were genetically synthesized in which
the two paratope loops were diversified with 8−17 (mean
11.3) “NNK” degenerate codons, which enable all 20 natural
amino acids. The gene libraries were transformed into a yeast
surface display system to robustly produce scaffold variants,
which yielded 3−9 × 108 variants per scaffold. The 17 scaffold
libraries were mixed resulting in a total diversity of 1 × 1010

protein variants. Deep sequencing revealed that the synthe-
sized library matched design with only 1.2% median deviation
from NNK diversity and a 1.1% framework mutation rate.
The pooled library was sorted to identify specific binding

ligands to a panel of diverse proteins: luciferase, CTLA4,
avidin, PD-1, green fluorescent protein, R-phycoerythrin, and

vascular endothelial growth factor. Four to five rounds of
magnetic activated cell sorting were used to deplete non-
specific binders and enrich selective binders. Maximum
diversity of the sequenced population, estimated by the
lowest-yielding sort with each cell containing a unique variant,
ranged from 3500 to 715 000 per campaign. Enriched
populations exhibited selective binding (Figure 2S) and were
deep sequenced to characterize scaffold variants. 280 000
(range = 1250−115 000 per campaign) full-length reads were
obtained yielding 21 000 (range = 160−9000 per campaign)
unique binding variants. Individual campaign sorting and
sequencing statistics are summarized in Table S1. With
oversampled sorting, enrichment is correlated with binding
affinity.42 MACS sorts were performed with at least 10-fold
diversity of yeast, allowing for differential recovery among
clones of various binding strength. While our depth of
sequencing did not fully sample the theoretical diversity, the
differential frequencies of obtained variant reads suggests the
obtained results reflect the differential affinities of the assayed
scaffold variants. The overall binding performance of a scaffold
was calculated as the mean difference in normalized abundance
between the final and initial binding populations after
transforming (quartic-root dampening43) sequence frequencies
to combine the binding strength and the number of unique
binding variants. It should be acknowledged that the binding
performance metric in this study is dependent on the
performances of the other tested scaffolds, and only provides
a relative comparison between scaffolds. To define a threshold
value of performance, a binding performance of −0.006 was
determined to best classify experimental binding performance
by the ability to develop a strong binding variant (Figure S1).
The assayed protein scaffolds possessed a range of ability to

evolve novel binding function upon paratope mutations

Table 1. Evaluated Descriptors of Protein Scaffolds

factor description mean ± SD (n = 787)

protein connectivity
contact degree total number of residue contacts within 8 Å 920 ± 270 AU
contact order sum of contact sequence separation divided by size and contact degree 0.38 ± 0.01 AU
long-range contact degree number of residue contacts with sequence separation >12 divided by size 11.8 ± 3.1 AU

paratope connectivity
paratope contact degree total number of residue contacts within 8 Å between a paratope and conserved residue 430 ± 140 AU
paratope contact order sum of paratope contacts sequence separation divided by paratope size and contact degree 1.2 ± 0.4 AU
paratope stiffness average stiffness of the paratope in an anisotropic network model −0.28 ± 0.39 AU

conserved surface area chemical nature
charged SASA conserved solvent accessible surface area of D, E, K, R 980 ± 430 Å2

hydrophobic SASA conserved solvent accessible surface area of A, F, G, I, L, M, P 790 ± 340 Å2

polar SASA conserved solvent accessible surface area of C, H, N, Q, S, T, W, Y 780 ± 360 Å2

paratope size and topology
paratope angle [paratope 1: entire scaffold: paratope 2] angle based upon centers of volume 110 ± 30°
paratope SASA solvent-exposed surface area of an alanine-scanned paratope region 780 ± 360 Å2

paratope separation distance between the center of volumes of the paratopes 16 ± 6 Å
projected paratope area two-dimensional projected area of the paratope in the orientation of maximum area 74 ± 25 AU
projected paratope perimeter perimeter of the projected area of the paratope in the orientation of maximum area 1.2 ± 0.4 AU

computational stability
buried NPSA amount of buried nonpolar surface area upon folding 2700 ± 900 Å2

FoldX DDG mean difference in stability from parental across 50 variants 17 ± 12 kJ/mol
FoldX energy mean energy of 50 NNK variants using FoldX’s forcefield 35 ± 25 kJ/mol

general scaf fold properties
new SASA amount of solvent exposed area created when removing unstructured termini 320 ± 260 Å2

secondary structure percent percent of residues in an α-helix or β-sheet 51 ± 12%
size total number of residues in the scaffold 47 ± 7 AA
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(Figure 2T). Five scaffold libraries failed to contain binding
variants in any campaign: scaffolds C, F, and I maintained a
near-neutral score as the starting abundance was rare, whereas
scaffolds G and Q performed comparatively worse as each
sequence had more potential to find binding variants. Scaffolds
D and L produced binders to a single target. Yet, the binding
was not strong relative to other binders, which rendered the
scaffolds’ overall performances as poor. Libraries of scaffolds A,
B, E, H, J, K, M, N, O, and P contained binders to more than
one target, with A, E, H, J, K, N, and O producing binders with
sequences that occupied ≥1% of the reads for a campaign
(Figure S2). Scaffolds J, H, O, and P increased abundance in at
least one campaign but overall yielded a negative performance
(i.e., depletion in frequency upon evolution).
Four scaffolds (A, E, K, and N) yielded an increased

abundance across the study (Figure 3). Scaffolds A, E, and N
had an increase in normalized abundance above 0.1 in two or
more campaigns. Scaffold A, a binding subunit of the
chaperone protein calreticulin with a relatively extended fold
exposing both diversified loop regions, was found in all binding
campaigns. Scaffold E, an RNA polymerase inhibitor, presents

a pair of solvent-exposed loops on one end of a scaffold in
which a single α-helix packs across from a β-sheet. This
topology, recently identified via scaffold mining,10 has been
validated as a protein scaffold and serves as a positive control
for this experiment. Scaffold N, an actin-binding protein
presenting a pair of loops between three relatively small
helices, obtained binding function in six campaigns with only 9
diversified sites. Scaffold K, an antifungal protein, dominated
the fourth binding campaign and comprises three interacting β-
sheets. These scaffolds offer diverse options for ligand
evolution and provide, along with analysis of the other
scaffolds, a means by which to evaluate the impact of
topological and biophysical parameters on scaffold evolvability.
We would like to acknowledge a few limitations in the

analysis of scaffold performance using the employed method-
ology in the experiment. Scaffold libraries may under- or
overperform their overall evolvability for multiple reasons. The
diversified sites may not be optimal as evolution can be aided
by conservation of loop sites44 and diversification of sites with
secondary structure adjacent to paratope.32,44 Full amino acid
diversity is not optimal for evolution at many sites.32,44 Yet the

Figure 2. Protein scaffold candidates show varying binding performance. (A−Q) The 17 assayed protein scaffolds with conserved region colored
gray and variable paratope colored red. (R) 787 protein scaffolds of 30−65 amino acids with two solvent-exposed loops were computationally
analyzed for 20 topological and biophysical factors (Table 1). The z-score distributions across all scaffolds are depicted by the box plots (box, 25−
75th percentile; center bar, median; whiskers, 1.5 × interquartile range). The plotted values for each of the 17 assayed scaffolds indicate a diversity
of proteins were assayed. (S) A pooled sample of 1 × 1010 variants across 17 scaffolds was enriched for binding variants in seven campaigns. MACS
sorting was performed until seven binding populations were identified toward diverse molecular targets. Positive selection sorts (bold molecular
target) were completed after two depletion sorts of the other listed targets. Binding functionality, quantified here as increased relative yield over
control beads, was observed in all campaigns. (T) The relative binding performance for each scaffold against each molecular target as determined
by the difference in scaffold abundance from the initial population to the binding populations. Scaffold abundance combines unique variants and
variant binding strength using exponential dampening of sequence counts. Inset: The initial abundance of each scaffold. Error bars represent
standard error (n = 3).
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library designs that optimally balance intramolecular stability
and intermolecular binding potential are not evident a priori.
Thus, for consistency of scaffold evaluation, this common
diversification strategy was employed. Additionally, assessing
binding functionality via multivalent MACS with multivalent
yeast display only requires moderate affinity. As our ability to
identify functional scaffolds increases, modifying the selection
stringency may modify scaffold performance and associated
predictive parameters. There are several potential sources of
variability in the experiments. Illumina preparation could have
PCR bias;45 however, initial library sequencing identified all
scaffolds and our evolvability metric accounts for differences in
initial abundance, which mitigates this issue. Additional

differences in initial abundance could be explained by
differential library construction efficiency. Severe under-
sampling of the theoretical 1016 variants yields potential
stochasticity; however, the depth and breadth of evolved
binders (21 000 unique sequences) provides a generalizable
result. Finally, it is observed that not all scaffolds perform
equally for all targets. The use of seven campaigns addresses
this concern, and future experiments may benefit from further
increasing campaign breadth.

Identifying Evolvable Scaffold Properties. To evaluate
a generalizable impact of topological and biophysical
parameters on scaffold evolvability, a tandem independent
component analysis (ICA) and elastic net regularization
protocol was performed. Given the extensive resources
required to evaluate numerous scaffold performances, we
sought to predict performance from our limited data set while
avoiding overfitting. Briefly, the 20 calculated factors for 787
potential scaffolds were z-transformed and subsequently
whitening transformed by principal component analysis to
determine orthogonal metavariables, which describe variability
between scaffolds in lower dimensional space and remove
correlation (Figure S3). Six scaffold features were then
reconstructed using ICA to identify underlying independent
features describing protein scaffolds (Figure S4). The six
independent components for the 17 assayed scaffolds were
then fed into an elastic net regularization to determine
predictive descriptions of scaffold binding performance.
Regularization penalizes the norm of term coefficients,
removing terms which do not aid predictive power. The
technique isolated two components which best reduced a
leave-one-out (LOO) root mean squared error (RMSE) in
predicting scaffold performance (Figures 4A and S4). The final
model was composed of a constant term, to account for bias in
the definition of scaffold performance, and two independent
components. The most predictive model successfully identifies
4 of the 6 functional scaffolds above the determined threshold.
Nine of the 11 scaffolds predicted to be less evolvable indeed
fit that description. Yet the model does result in false positives
for 2 of 6 scaffolds.

Figure 3. Successful protein scaffolds have diverse topologies. The
identity, natural function, structure, and sequence of the top
performing scaffolds are presented. The top proteins have various
amounts and types of secondary structure. Diversified paratope
residues are colored red in both the primary sequence and PyMOL
rendering of the protein. Strikethroughs in the sequence represent
residues present in the solved structure that were removed in our
experimental analysis (as unstructured termini).

Figure 4. Large disconnected paratopes are associated with increased binding performance. ICA analysis was completed to describe the
independent features of protein scaffolds. Elastic net regularization was performed to determine which of the features predicted binding
performance. The resulting linear model was composed of two independent components and a constant term yielding a LOO RMSE of 0.06. (A)
The LOO prediction of scaffold binding performance obtained a 4/6 true positive rate, a 9/11 negative predictive value, and a precision (positive
predictive value) of 4/6. Classification threshold was determined by ability to evolve a strong binding variant. (B) The predictive model is a linear
combination of the 20 calculated parameters and a constant term. The coefficients describe which parameters to modify to improve binding
performance of a small protein scaffold.
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By distributing the weights of the independent components
in the model back onto the calculated biophysical parameters,
we can hope to obtain a physical understanding of what
predicts scaffold success. On the basis of the linear model term
coefficients, the predicted model suggests generally decreasing
scaffold connectivity, paratope connectivity, conserved exposed
surface area, buried nonpolar surface area, FoldX energy,
secondary structure, and size (Figure 4B). It also suggests
increasing paratope 2D and 3D surface area, 2D perimeter, and
exposing new surface area upon removal of unstructured
termini. While an exact interpretation of the model is complex,
a general trend appears to suggest a large, disconnected
paratope may predict increased binding performance. The
distribution of binding performance of all predicted scaffolds
can be found in Figure S5.
While several approaches to identify predictive biophysical

parameters could have been utilized, we identified what we
believe to be the most compelling approach using underlying
features of protein scaffolds. For thoroughness, we also tested a
similar approach utilizing principal components, which best
describe differences between scaffolds, yielding a comparable
outcome in terms of predictability and parameter insight
(Figure S6). Both models agree on reducing protein and
paratope contacts, minimizing conserved SASA, and increasing
paratope SASA yet differ in the impact of paratope stiffness,
FoldX energy, and new SASA. In a third approach, each
individual parameter was analyzed to determine predictive
performance. The top two predictive models in terms of
minimizing LOO RMSE also suggest a decrease in conserved
polar SASA or an increase in paratope SASA.
Paratope Analysis. We sought to analyze the character-

istics of the evolved scaffold variants to illuminate any trends
which may aid in future paratope design. We first asked if the
binding variants for each scaffold were closely related in
sequence space by plotting the distribution of pairwise
Hamming distances for each scaffold. (Figure 5A). A paratope
size normalized Hamming distance of 1 represents a
completely unique paratope by position. A distance less than
1 represents variants with more similar paratope motifs. On the
basis of the Hamming distance, only 2 of 12 binding scaffolds
significantly reduced the sequence space from their initial
distribution (P < 0.05, one-tailed Kolmogorov−Smirnov Test
with Bonferroni correction for multiple comparisons). The
similar Hamming distance distribution between the initial and

binding populations provides evidence that the populations
have roughly the same extent of diversity. The decreased
distance for some scaffolds suggests that not all sequence space
is functional in evolving novel binding function for some
scaffolds but proves the results of our assay are not dominated
by single binding motifs. Additionally, the mutational rate of
the conserved residues of the binding proteins was 5% (relative
to 1.1% in the naiv̈e library), suggesting some mutations
outside of the paratope may benefit binding evolution.
We then analyzed the evolution of paratope composition to

assess the impact of particular amino acids on the creation of
binding function (Figure 5B). Tryptophan and tyrosine,
increased by 12% and 3%, respectively, have been previously
reported to interact specifically across many interfaces because
of the ability to partake in different bonds including π-stacking,
hydrogen-bonding, and cation−π interactions.46−48 Arginine,
which often serves as a hot-spot residue for key interactions
but has also been previously associated with nonspecific
interactions, increased by 3%.46−48 Glycine increased abun-
dance by 3% perhaps by adding flexibility to the loop regions.49

Proline increased in abundance by 2%, perhaps by improving
scaffold stability by reducing the conformational entropy of the
unfolded state.49 Interestingly, serine has previously shown to
be upregulated in binding variants but was greatly reduced in
this study.46−48 The raw abundance for each residue in the
various sequencing populations is depicted in Figure S7.

Developability Impacts Scaffold Performance. In
addition to evolving novel binding function upon mutation,
the developability of a protein scaffold is also important for
utility as a molecular targeting agent. We define a developable
protein to possess high producibility, stability, solubility, and
other usability factors. While the preceding experimental
evolution did not directly select for developability, we sought
to provide an introductory analysis of developability metrics of
the studied scaffolds. We produced protein scaffold variants
recombinantly in Escherichia coli to determine if recombinant
yield was predictive of scaffold performance (Figure 6).
Parental proteins, evolved binding variants, and random
variants from the naiv̈e library were expressed via pET
plasmids in T7 Express E. coli. The identification of soluble
protein was performed via PAGE gel analysis, FPLC
purification, and anti-His tag ELISA. We found that modifying
temperature and time of induction impacted protein yield for

Figure 5. Binding variants describe functional amino acid space. (A) The diversity of sequenced variants based upon matched residues per position.
NNK distribution was estimated via 5000 random NNK paratope-diversified sequences with a 1/1000 chance of framework mutations (Q30). The
Hamming distance was then summarized by 20 bins based upon the number of mismatched residues per paratope size. Error bars represent
standard deviation of Hamming distance frequencies across scaffolds (n = 17 for NNK and initial, n = 12 for binding). (B) The change in amino
acid frequencies of binding variants relative to the initial library for all paratope sites across all scaffolds.
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producible clones but did not recover any poorly produced
proteins.
On the basis of the detection of parental protein in the

soluble fraction of T7 E. coli, scaffolds whose parental protein
is effectively produced in the soluble fraction have a higher
probability of evolving a strong binding variant (one-tailed
two-sample proportion test, p = 0.057). Under the hypothesis
that proteins expressed must be stable, have low aggregation
propensity, and readily fold, this data suggests that well-
behaved proteins will serve as a better starting point for
scaffold discovery. Additionally, the data recommend that

protein scaffolds should be derived from highly developable
proteins, rather than engineering developable parameters
postidentification of binding functionality. Interestingly, the
ability of a parental clone to produce was not indicative of
variant producibility (p = 0.3).

Proteolytic Stability. We then sought to characterize the
stability of scaffold variants on the surface of yeast, where
binding function was observable and more complex protein
production machinery exists. Using proteinase K, flow
cytometry, and deep sequencing, the relative proteolytic
stability of 1300 unique scaffold variants were determined by
analyzing the amount of protease required to cleave the distal
epitope tag on a yeast surface displayed scaffold variant (Figure
7A). The method could be influenced by protein aggregation
protecting variants from cleavage. Notably, the scaffold A
parental variant was resistant to cleavage yet found in
multimeric states on PAGE gels and mass spectrometry upon
recombinant soluble expression. Nevertheless, this high-
throughput analysis informs on stability as recently validated.41

We first examined the stability of the parental variants for
each scaffold and observed a positive correlation with the
scaffold’s binding performance during MACS sorting (Spear-
man’s ρ = 0.56, p < 0.05; Figure 7B). The shape appears to
suggest a threshold of stability is required to obtain high
binding performance. We then tested the hypothesis that the
stability of random diversified variants could correlate to
parental protein stability. We measured the stability of an
average of 60 variants per scaffold (range = 14−73; Figure S8).
A large range of stabilities were observed among the naive
variants without any evident correlation with parental stability
(Spearman’s ρ = 0.43, p = 0.1). This outcome could be

Figure 6. Limited protein producibility highlights the importance of
scaffold developability. Each scaffold is classified by the ability to
develop a strong binder (abundance > 1% in at least one campaign)
and the parental protein producibility (ability to produce in T7 E. coli
in detectable soluble yields). If applicable, the producibility of scaffold
variants are shown as no. produced/no. attempted.

Figure 7. Proteolytic stability assay identifies stability requirement for binding. (A) Protein scaffold variants were exposed to various levels of
proteinase K and sorted based on degree of cleavage on the surface of yeast. The slope of the protease resistance (i.e., collection bin) versus
protease concentration is correlated to protein stability. (B) The proteolytic stability of the parental scaffold is correlated to the binding
performance of the scaffold. (Note: n.d. for Scaffold K.) (C) Violin plot comparing stabilities of naiv̈e variants and binding variants. A Wilcoxon
one-tailed signed rank test indicates that binding variants are less stable than naiv̈e variants (p = 0.034).
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explained by the substantial diversification of the initial pool,
which is likely to contain variants both close and far from the
parental clone.
A final comparison was performed between stabilities of

naiv̈e variants and binding variants for each scaffold.
Interestingly, the protease stability of binding variants is
significantly lower than that of nonbinding variants (one-tailed
Wilcoxon signed-rank test on set medians, p = 0.034; Figure
7C). This suggests there is a trade-off between binding
functionality and stability, as previously hypothesized.50,51

Paired with the relationship between parental protease
stability and scaffold binding function, we hypothesize that
protein scaffolds with high protease stability will more
efficiently evolve binding variants because they can “sacrifice”
stability while remaining folded. This suggests that the search
for future protein scaffolds should first involve a comprehen-
sive study of protein stabilities and expression. This additional
test may aid in the differentiation of proteins with otherwise
similar biophysical properties when predicting evolvability as
protein scaffolds.

■ CONCLUSION

The current study develops a computational-experimental
platform to identify successful protein scaffolds and provides
insight on the topological and biophysical parameters that
dictate evolvability. However, the ability to develop specific
binding function is not enough for a scaffold to be useful in
downstream applications. The stability and producibility of the
proteins also determine scaffold utility. Interestingly, these
developability factors also correlate to binding evolvability of
the protein scaffold. Future work in this field should combine
the predictive biophysical model and the observed relationship
between protein stability and scaffold functionality to narrow
the assayed candidates.
We also note that this method of computationally calculating

biophysical parameters of proteins to relate to desired
functionality is applicable beyond protein scaffold identifica-
tion. A similar analysis could be completed to determine
predictive performances of protein developability metrics,
enzyme efficacy, and antimicrobial peptide activity. The
current limitation in such studies is the collection of a
sufficiently rich data set to build a robust computational model.

■ EXPERIMENTAL PROCEDURES

Scaffold Parameter Calculation. Protein Data Bank files
were obtained for files containing a protein chain ranging from
30 and 65 amino acids. Chains were then parsed for unique
sequence and secondary structure as determined by the
depositor. Paratope loop regions were assigned as continuous
stretches of at least four amino acids without secondary
structure. Terminal amino acids were removed if located at 3
or more residues from the outermost secondary structure.
Homemade Python scripts were then used to calculate 20
parameters. Scripts are available online on GitHub: https://
github.com/HackelLab-UMN.
Protein Connectivity. We hypothesize that a more

connected protein is correlated to increased stability but
decreased mutational stability. The distances between residue
β-carbons (or α-carbon for glycine) are measured for all
residues in the terminal-trimmed protein. Residues with
Euclidian distances of ≤8 Å are considered contacts, consistent

with ranges found in literature.37 Three parameters are
calculated: (1) contact degree, the total number of contacts;

∑ ∑=
≤

=

−

= +

l
m
ooo
n
ooo

contact degree
1 AA , AA 8 Å

0 elsei

N

j i

N
i j

1

1

1

(2) contact order, the sum across all contacts of the difference
in primary sequence index, normalized by contact degree and
the total number of residues;

=

∑ ∑
− ≤

×

=
−

= +

i

k

jjjjjj
l
m
oo
n
oo

y

{

zzzzzz
j i

N
contact order

AA , AA 8 Å

0 else
contact degree

i
N

j i
N i j

1
1

1

and (3) long-range contact degree, the number of contacts
with difference in primary sequence index greater than 12,
normalized by the total number of residues.
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Paratope Connectivity. We hypothesize that less connected
and more flexible paratopes will be more accepting of
diversification required to obtain binding function by limiting
the destabilization of the entire protein. Contacts were
calculated between paratope residues and conserved residues
within 8 Å. Normal mode analysis52,53 was used to estimate the
flexibility of the paratope as determined by its connectivity to
the remainder of the protein. Three parameters are calculated:
(4) paratope contact degree, the number of contacts between a
paratope residue and a conserved residue;
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(5) paratope contact order, the sum of paratope contacts’
difference in primary sequence index, normalized by paratope
contact degree and the number of paratope residues;
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(6) paratope stiffness, the average of the z-score transformed
mean mechanical stiffness spring constant of paratope residues’
α-carbon calculated by an anisotropic network model38high
stiffness suggests a less flexible and more connected residue.

Conserved Surface Area Chemical Nature.We hypothesize
that the type of conserved exposed surface area will affect
protein scaffold stability. The solvent accessible surface area
(SASA), as determined by the radius of a water molecule in
PyMOL, was summed for each residue based upon chemical
nature. Chemical categorization led to three parameters: (7)
charged (D, E, K, R) SASA, which may aid in protein stability
by creating surface intramolecular salt bridges; (8) hydro-
phobic (A, F, G, I, L, M, P, V) SASA, which is likely
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destabilizing because of the entropic cost of solvation; (9)
polar (C, H, N, Q, S, T, W, Y) SASA, which may contribute to
stabilization in polar solvents.
Paratope Size and Topology. We hypothesize that two

large and spatially close paratope regions will maximize the
binding surface and increase the total energetics of binding
toward the molecular target. Three parameters were based
upon 3D structural data: (10) paratope angle, the [paratope 1:
entire protein: paratope 2] angle based upon the atomic center
of volume; (11) paratope SASA, calculated after mutating all
paratope residues to alanine in PyMOL; (12) paratope
separation, the distance between atomic center of volumes of
the paratopes. A 2D projection, created by modifying
PyMOL’s depth cue, fog, and lighting, was also used for two
2D parameters: (13) projected paratope area, the sum of the
pixels containing the paratope residues’ projection and (14)
projected paratope perimeter, the number of paratope pixels
bordered by a non paratope pixel. To obtain the 2D
projections, the protein was rotated to determine the
projection with the maximum area of the paratope. The
background and conserved residues are colored black with the
epitope colored white. A ray-traced image is populated, and the
pixel intensity is counted using Python’s Image Library. Both
area and perimeter were normalized by the pixel area of a
pseudoatom placed at the center of the paratope regions.
Computational Stability. We hypothesize that protein

stability will impact mutational tolerance50 and sought to
computationally estimate stability based upon existing
correlations. Three parameters were calculated: (15) buried
nonpolar surface area (buried NPSA),41 the sum of solvent
exposed nonpolar amino acids in Gly-X-Gly54 minus the sum
of solvent exposed nonpolar amino acids in the folded protein;
(16) FoldX DDG, the mean difference in force field energy
between mutant and parental variants; and (17) FoldX Energy,
the mean force field energy of predicted scaffold mutants. For
FoldX calculations, 50 variants randomly selected from an
NNK distribution were simulated by FoldX 4,40 which is
sufficient to obtain a 5.1% average coefficient of variation (n =
3 sets of 50 variants).
General Scaffold Properties. We hypothesize that addi-

tional factors, which are not explicitly included in categories
above, may also impact scaffold performance. Three factors
were included: (18) new SASA, the amount of new SASA of
scaffold residues after unstructured tails are removed; (19)
secondary structure percent, the percentage of scaffold residues
categorized as part of an α-helix or a β-sheet; and (20) size, the
number of residues in the scaffold after removal of non-
secondary structured termini.
Binder Discovery. We first sought to select proteins with

small size, strong computed mutational stability, large and
spatially proximal paratopes, minimal newly exposed SASA
upon terminal trimming, and a small ratio of perimeter2 to area
for the projected paratope. The weights assigned to each factor
were randomly assigned and 24 scaffolds were selected for
testing from the 619 initial candidates: 8 containing α-helices,
8 containing β-sheets, and 8 containing both secondary
structures. Twenty-four scaffolds were chosen to balance
breadth of parental proteins and experimentally achievable
depth of scaffold variants. Seven of the 24 synthesized libraries
had less than 3/10 clones match design and were removed
from the study. Genetic combinatorial libraries were
synthesized to encode for the 17 scaffolds with full amino
acid diversity at the paratope sites encoded via NNK codons.

Oligonucleotides for these libraries were purchased from
LabGenius. Genes were amplified via PCR (200 μL, 1 μM
primers, 200 μM dNTPs, 10 U Taq Polymerase, 1×
ThermoPol Buffer, 0.5 μM template gene, 30 cycles) and
concentrated via ethanol precipitation with PelletPaint
(Millipore Sigma). Yeast display plasmid providing an N-
terminal Aga2p, an HA epitope, a flexible (G4S)3 polypeptide
linker, and a C-terminal AU5 epitope (pCT-AU5), was
produced in NEB5α E. coli (New England Biolabs) and
purified via silica spin column (Epoch Life Science) according
to manufacturer’s protocol. The vector was linearized via
restriction digest with NdeI, PstI-HF, and BamHI-HF (New
England Biolabs). Digested vector was ethanol precipitated
and resuspended in deionized water. For each scaffold, 6 μg
digested vector and all ethanol concentrated genes were
transformed into Saccharomyces cerevisiae yeast (EBY100) via
homologous recombination. Transformation followed previ-
ously described protocols,55 with the addition of 30% v/v PEG
8000 in step 39, which was found to increase transformation
efficacy.56 Transformed sequence diversity was estimated by
dilution plating onto selective media assuming all trans-
formants were unique. Anti-AU5 antibodies failed to isolate full
length display constructs; thus, nonsense sequences were
obtained during sequencing, but omitted from analysis.
The 17 scaffold yeast libraries were grown and induced as

previously described,55 and 10× the transformed diversity of
each sublibrary was mixed to create a pooled library. For each
round of magnetic-activated cell sorting (MACS), induced
yeast were rotated with magnetic beads for 2 h at 4 °C and
placed on a magnet for 5 min to isolate binding variants. Each
round of MACS consisted of depletion sorts on two negative
targets followed by enrichment on positive target beads. For
depletion sorts, nonbinding yeast were collected for the next
sort and binding yeast were plated for quantification. For
enrichment sorts, the bound yeast were collected and grown
for subsequent rounds. Yeast binding to both positive and
negative target beads were washed with 1 mL of PBSA (1×
phosphate buffed saline with 1 g/L bovine serum albumin,
once for the first two rounds and thrice for additional rounds),
and resuspended in selective growth media. A diluted fraction
was plated for quantification. Positive selectivity (more yeast
binding to positive target beads relative to negative target
beads) was found after four to five rounds of MACS based
upon plated recovery.
A variety of protein targets were used to represent the

diversity of potential molecular targets of protein scaffolds.
Biotinylated green florescent protein (GFP), and Gaussia
princeps luciferase (luciferase) were purchased from Avidity.
Biotinylated human PD-1 extracellular domain and human
CTLA4 extracellular domain were purchased from G&P
Biosciences. Biotinylated R-phycoerythrin (PE) was purchased
from AssayPro. Biotinylated human VEGF121 was purchased
from ACROBiosystems. Protein targets were either added to
Dynabeads Biotin Binder (ThermoFisher) or Dynabeads M-
270 Carboxylic Acid beads, as described below. For selections
on carboxylic acid beads, counter-sorts included bare
carboxylic acid beads, tris(hydroxymethyl)aminomethane
(Tris)-quenched carboxylic acid beads, or Dynabeads Protein
A (ThermoFisher). For selections on avidin-coated Biotin
Binder beads, counter-sorts included bare avidin beads and
biotinylated goat IgG (Rockland Immunochemical) on avidin
beads.
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Campaigns 1−3 were completed with 16.5 pmol/bead
biotinylated protein targets conjugated to avidin beads.
Campaigns 4−7 were completed with 33 pmol/bead targets
conjugated to avidin beads for the first and third round and to
carboxylic acid beads for the second and fourth rounds (and
fifth round for campaign 4). Campaigns 1, 5, 6, and 7 isolated
binders toward luciferase, GFP, PE, and VEGF121, respec-
tively. Campaigns 2, 3, and 4 isolated binders toward CTLA4/
Avidin, PD 1/Avidin, and CTLA4/Tris. Though binding was
observed toward two molecules, the specificity over a third
negative target signifies an enriched population with binding
functionality. For avidin-based sorts, 10 μL of beads were
mixed with 5 or 10 μL of 3.3 μM target in 100 μL of PBSA;
beads were rotated at room temperature for 1 h, isolated via
magnet, aspirated, and washed with 1 mL of PBSA before cells
were added to the tube. For carboxylic acid sorts,
manufacturer’s two-step coating protocol (without NHS) was
followed except for the following modification: 2 μL of beads
were used for each target to match total beads to avidin sorts.
Evaluation of Binder Performance via Deep Sequenc-

ing. DNA encoding for scaffolds was isolated from yeast using
Zymolyase (Zymo Research). Briefly, 1 × 108 cells are
incubated in 200 μL of lysis solution (50 mM phosphate
buffer, 1 M sorbitol, 10 mM β-mercaptoethanol, and 75 U/mL
zymolyase longlife) for 30 min at 37 °C after which DNA is
extracted via silica spin column. PCR addition of Illumina
adapters was performed to sequence scaffold genes in the
initial and binding pools using Illumina MiSeq. Sequences
were filtered using PANDASeq57 with a confidence threshold
value of 0.9 for primer and assembled reads. Scaffold
identification was completed via homemade MATLAB scripts
available on GitHub. Briefly, sequencing reads were translated,
and filtered for sequences matching 70% of the (G4S)3 linker
and AU5 tag. The scaffold was identified by sequences of the
same length and 70% match of conserved residues. Unique
sequence counts were based upon translated sequences.
Three independent sequencing runs of the initial unsorted

pool were completed, with at least 10 000 scaffold variants
identified in each sample. The distribution of paratope residues
reasonably matched the intended NNK diversity (median
absolute deviation = 1.2%, Figure S7). The conserved residues
had a mutational rate of 1.1%. To determine the distribution of
sequences analyzed, the Hamming distance was calculated
between all observed sequences. Comparison to computation-
ally simulated NNK sequences indicated diverse sequence
sampling with 15 of 17 libraries not significantly more
clustered in sequence space than designed (Figure 4, P >
0.05, one-tailed Kolmogorov−Smirnov test with Bonferroni
correction for multiple comparisons).
Binding populations were individually barcoded and

sequenced, yielding 280 000 full length reads across the
seven binding populations. The binding performance of each
scaffold is a function of the number of unique binders and the
strength of binders. However, utilizing the raw read counts
leads to descriptions of binding pools dominated by the
strongest binding variants. One such method of combining
diversity and binding functionality is exponential dampening.43

Therefore, the number of reads for each unique sequence was
quartic root dampened (a subjective balance to reward clonal
performance, while dampening dominant clones to provide
information from diverse clones), and the abundance of a
scaffold is the total fraction of dampened reads per molecular
target.
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To account for differences in starting abundance, the final
binding performance metric was calculated as the mean
difference in abundance for the seven scaffolds. It should be
noted the binding performance metric is dependent on the
other scaffolds assayed, yet it still provides a relative
performance between scaffolds. To estimate a threshold
value of useful binding performance, scaffolds were classified
by the ability to develop a high affinity binding variant with
>1% campaign abundance (A, E, H, J, K, N, O). A receiver
operating characteristic curve was used to determine a binding
performance threshold of −0.006 (Figures S1 and S2).

Evolutionary Model. With more calculated parameters
than experimental data points (i.e., scaffolds), we sought to
reduce the scaffold parameter space and avoid overfitting of a
predictive model. We believe that some calculated parameters
may be correlated and hypothesized we could describe the
scaffolds using a smaller dimensional space of underlying
features. Reconstructive independent component analysis
(ICA) attempts to identify features by separating the data set
into mutually independent latent variables.58 ICA requires a
whitening transformation of data to remove correlation, which
was achieved via principal component analysis (PCA). PCA
can be used to reduce dimensionality by describing scaffolds
with orthogonal metavariables, which removes low order
correlations.59 Broadly, ICA describes features of protein
scaffolds, whereas PCA describes features that best differentiate
protein scaffolds.
The calculation of the parameters was finalized and

calculated for 787 protein scaffold candidates via scripts
available on GitHub. All parameters were calculated via a
deterministic algorithm with a singular result per scaffold,
except for FoldX calculations described above which were
performed on random library variants. Principal components
were then calculated via singular value decomposition using
the pca function in MATLAB’s Statistics and Machine
Learning Toolbox. The first six components, which individu-
ally explained at least 5% of the variance in scaffold parameters
with a sum of 80% total explained variation, were retained to
predict scaffold performance (Figure S3). Independent
components were then obtained via a modification of ICA
with a reconstructive cost using the rica function in MATLAB
(Figure S4).
We then sought to determine which of the independent

components best predicted scaffold binding performance.
Regularization is a technique used to remove parameters
which are not predictive of a desired characteristic.60 A penalty
term included in the objective function, associated with the
norm of term coefficients, prevents overfitting of data by
driving the coefficients of noisy inputs to zero. The six
independent components for the 17 experimentally tested
scaffolds were used to predict the observed binding perform-
ance using the MATLAB regularization function lassoglm with
leave-one-out estimation of deviance. Elastic net regularization
was performed with various penalty calculations of the L1/L2
norm (α = 0.01, 0.1 0.25, 0.5, 0.75, 1) and maximum number
of model terms allowed (DFmax = 1−6). The performance of
the regularization output was tested via leave-one-out
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prediction of the assayed scaffolds. The model with the lowest
root-mean-squared-error of binding performance prediction
was identified. MATLAB scripts for ICA/PCA analysis and
regularization can be found on GitHub. The ability of the
predictive model to identify functional scaffolds was based
upon the threshold determined by the ability to develop strong
binding variants.
Protein Production. Genes encoding for observed and

parental scaffold variants were obtained from Twist Bio-
Science. Genes were ligated into pET production plasmids
with a C-terminal His6 tag and transformed into T7 Express
Competent E. coli (New England Biolabs) following
manufacturer’s protocol. Cells were induced at 37 °C for 2 h
with 0.5 mM isopropyl β-D-1-thiogalactopyranoside, pelleted,
and frozen. The cells were then lysed in (4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid) (HEPES) lysis buffer (50 mM
HEPES, 5 mM CHAPS, 25 mM imidazole, 2 mM MgCl2, 20
mM NaCl, 7 U/μL benzonase, 50 mg/mL lysozyme, EDTA-
free protease inhibitor, and 5% v/v glycerol) and incubated at
37 °C for 30 min before centrifugation and isolation of the
soluble fraction. Protein purification was performed using
HisTrap HP columns on an ÄKTAprime plus (GE Healthcare)
with wash buffer (20 mM HEPES, 500 mM NaCl, 20 mM
imidazole, pH 7.4) and elution buffer (20 mM HEPES, 500
mM NaCl, 500 mM imidazole) flowed at 1 mL/min.
To quantify protein via ELISA, 100 μL of soluble lysate

fraction was incubated in a 96-well plate overnight at 4 °C,
washed 4× with 0.05% v/v Tween 20 in PBS via squirt bottle
and patted dry. Plates were incubated in 100 μL of 0.1 μg/mL
Anti-6X His tag HRP antibody (ab1187, Abcam) in PBS for 1
h at room temperature, washed 4×, treated with 100 μL of
3,3′,5,5′-tetramethylbenzidine (TMB) for 15 min, followed by
100 μL of TMB Stop Solution (ThermoFisher). His-tagged
protein abundance was measured via absorbance at 450 nM
using a plate reader. Known purified biotinylated protein was
spiked into lysate without His-tagged protein to quantify the
limit of detection: 2 mg of protein per liter of bacterial culture.
Identification of produced protein was obtained via PAGE

gel with and without nickel column purification or an Anti-
His6 ELISA performed compared to a non-His tagged control
protein. NuPAGE Bis-Tris Gels were used to identify the
addition of a protein at the expected molecular weight based
upon protein standard following manufacture’s protocol.
Proteolytic Resistance. Genes encoding for observed and

parental scaffolds were transformed into a yeast surface display
construct with N-terminal HA and C-terminal V5 epitope tags
(PCT-V5) as described above, except gene preparation was
performed via 400 μL PCR using Phusion polymerase (New
England Biolabs). One ×106 yeast induced to display protein
were incubated in 50 μL of PBSA with 0, 4 × 10−6, or 22 ×
10−6 U/μL proteinase K at 37 °C for 10 min, and immediately
washed with cold PBSA. Epitope tags were labeled with
chicken anti-HA antibody (ab9111, Abcam) and mouse anti-
V5 antibody (ab27671, Abcam), followed by AlexaFluor488-
conjugated goat antichicken IgY (H+L) (Thermo Fisher
Scientific) and AlexaFluor647-conjugated goat antimouse IgG
(H+L) (Thermo Fisher Scientific). Labeling was performed as
follows: 1 × 106 cells were rotated for 30 min at room
temperature in 50 μL of PBSA with 1 ng/μL primary
antibodies, pelleted at 8000g for 1 min, aspirated, washed
with 1 mL of PBSA, incubated for 20 min at 4 °C in 50 μL of
PBSA with 1 ng/μL secondary antibody; pelleted, washed, and
resuspended at 2 × 107 cells/mL in PBSA for florescence

activated cell sorting (FACS). Cells were sorted into four gates
(bins) based upon C-terminal: N-terminal epitope signal ratio,
with a low ratio suggesting full cleavage of the protein.
Collection bin 3 corresponds to intact protein, and collection
bin 0 corresponds to fully cleaved protein.
Scaffold plasmids were extracted with Zymolase and PCR

amplified with extension to add Illumina adapters as described
above. Two experimental replicates were sorted and separately
sequenced using Illumina HiSeq and processed using
USearch61 by filtering for a maximum 5% error rate per read
and matching to ordered proteins. The mean collection bin of
each protein was calculated for all three protease concen-
trations. For fully displayed proteins without protease, a line
was fit with a fixed intercept corresponding to the no-protease
collection bin. A zero slope indicates no decrease in mean
collection bin (epitope signal ratio) with increasing protease
concentration and suggests protease stability. The normalized
deviation (magnitude trial difference average/range) across
trials is 0.11 (Figure S9).
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