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Traditional Chinese medicine (TCM) has played an indispensable role in clinical diagnosis and treatment. Based on a patient’s
symptom phenotypes, computation-based prescription recommendation methods can recommend personalized TCM
prescription using machine learning and artificial intelligence technologies. However, owing to the complexity and
individuation of a patient’s clinical phenotypes, current prescription recommendation methods cannot obtain good
performance. Meanwhile, it is very difficult to conduct effective representation for unrecorded symptom terms in an existing
knowledge base. In this study, we proposed a subnetwork-based symptom term mapping method (SSTM) and constructed a
SSTM-based TCM prescription recommendation method (termed TCMPR). Our SSTM can extract the subnetwork structure
between symptoms from a knowledge network to effectively represent the embedding features of clinical symptom terms
(especially the unrecorded terms). The experimental results showed that our method performs better than state-of-the-art
methods. In addition, the comprehensive experiments of TCMPR with different hyperparameters (i.e., feature embedding,
feature dimension, subnetwork filter threshold, and feature fusion) demonstrate that our method has high performance on
TCM prescription recommendation and potentially promote clinical diagnosis and treatment of TCM precision medicine.

1. Introduction

For thousands of years, traditional Chinese medicine (TCM)
has played a fundamental role in protecting the health of
Chinese people. The treatment process of TCM can be
termed as “Li-fa-fang-yao” [1, 2], referring to theory, treat-
ment, prescription, and herb, respectively; that is, the cause
and mechanism of the disease are determined according to
the patient’s clinical information (such as age, gender, his-
tory of present illness, and chief complaint), and then, the
corresponding treatment method is determined according
to the disease mechanism, and finally the prescription and
appropriate herbs are selected for the patient [3]. During this
process, the quality of prescriptions issued by TCM doctors
directly determines the therapeutic effect of TCM. In TCM,
prescription can best mirror the doctor’s clinical experience
and medical knowledge level. In recent years, a large amount

of TCM clinical prescription data has not been fully utilized,
and there is a serious imbalance between the number of
experienced clinicians and the number of patients. If we
can make good use of the existing TCM clinical prescription
data, combine artificial intelligence methods for mining, and
carry out intelligent prescription recommendation method
for TCM, it will be very favourable for assisting doctors in
diagnosis and treatment.

n recent decades, many scholars have done relevant work
in the field of TCM prescription recommendation. Zhou
et al. [4] extracted the key compatibility of herbs and other
knowledge from a large amount of TCM clinical data, indicat-
ing that herbs are not independent but closely related. Mi et al.
[5] used logistic regression, decision tree, and other classical
machine learning algorithms and established a prediction
model for prescription recommendation. Zhou et al. [6] pro-
posed an intelligent prescription recommendation system
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(FordNet), fusing phenotype and molecule information. Yang
et al. [7] proposed a multistage method combining complex
network analysis, propensity case matching, and herb enrich-
ment analysis to identify effective prescriptions for specific dis-
eases (e.g., insomnia). To identify the useful relationships
among herbs, Li et al. [8] established a distance-based mutual
information model method in numerous herbal prescriptions.
Poon et al. [9] used statistical validation methods to recognize
effective high-order herb interactions. Zhang et al. [10] used a
latent tree model to analyse TCM prescription data. He et al.
[11] proposed a method for discovering functional groups of
herbs. Yao et al. [12] established the evolution system of
TCM prescriptions, and the relationship between TCM pre-
scriptions can be discovered from the prescription literature.

A topic model method has been wildly used in the field
of TCM prescription recommendation in the past few years.
Zhang et al. [13] proposed a symptom-herbal-diagnostic
theme (SHDT) model to automatically extract common
relationships between symptoms, herbal combinations, and
diagnoses from large-scale TCM clinical data. Jiang et al.
[14] applied LinkLDA to automatically extract the underly-
ing thematic structure containing symptoms and their corre-
sponding herbal information. Yao et al. [3] established a
thematic model of TCM prescription, which describes the
generation process of prescriptions in TCM theory. In recent
years, with the rise of deep learning, some scholars began to
use deep learning methods to solve the problem of TCM
prescription recommendation. Li and Yang [15] explored a
potential end-to-end method to the TCM prescription
generation task by combining seq2seq models. Wang [16]
constructed the recommendation system based on a knowl-
edge graph and recommended prescription by combining
the diagnostic process of TCM. Wen et al. [17] proposed a
TCM prescription recommendation based on constructing
a tongue image dataset. Jin et al. [18] developed a GCN-
based model for herb prediction via heterogeneous herb-
symptom networks.

The electronic medical records (EMR) of the patient
usually contain the chief complaint, history of present
illness, and other information about patient. The recording
of phenotypic information in EMR is usually subjective. In
the prescription recommendation system, it is almost impos-
sible to precode all possible terms due to the variety of
descriptions of clinical phenotypes, and there will always
exist some terms that have not been precoded (i.., unre-
corded terms). However, many clinical phenotypes are syn-
onymous, and most of the terms that have not appeared
before can be formed based on the words in the existing phe-
notypic terms. For example, the term “foot pain” is synony-
mous with the term “foot sore,” but they are treated as two
different characteristics. Based on this problem, we need to
propose a symptom term mapping method to map new
terms and associate them with existing terms as far as
TCM semantics and medical knowledge.

To solve this problem, we proposed a subnetwork-based
symptom term mapping (SSTM) method and we proposed a
SSTM-based TCM prescription recommendation method
TCMPR (see Figure 1). Our work mainly includes the
following aspects: (1) we used TCM clinical case data to
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construct a herb-symptom-related knowledge graph (HSKG),
which contains 5 types of entities and 5 types of relationships.
(2) We constructed a symptom network by combining a
metapath [19] method and HSKG. (3) We proposed a
subnetwork-based symptom term mapping method, which
can map symptom words into a symptom term set, containing
more relevant information of the original symptom words,
and the corresponding embedded representation of the set is
used as the feature representation of the original symptom
words. (4) Based on the SSTM method, we proposed TCMPR.
The main idea is to form the patient symptom vector based on
original symptom words and SSTM method and then employ
a training model through the CNN framework. Finally, the
prediction probability of each herb is the output, so as to
obtain the recommended prescription.

In this study, our contributions include the following
aspects: (1) we made use of the metapath idea to construct
a symptom network and made fully use of the potential
information of HSKG. (2) We proposed the SSTM method
based on subnetwork extraction, and our method can make
better use of the potential information of symptom features
(especially for unrecorded symptom terms). Experiments
showed that the performance is improved based on our
method, and our method can obtain more potential infor-
mation to assist in recommending prescriptions. (3) We
proposed the TCMPR method, and experimental results
showed that our method performs better than baseline
methods in terms of performance.

2. Materials and Methods
2.1. Datasets

2.1.1. Clinical Case Dataset. First, we collected clinical case
data for training and evaluation of the prescription recom-
mending model. Clinical case data were derived from the
classic clinical diagnosis and treatment cases of TCM. The
original clinical case data mainly contains the title of the
medical case, author, doctor’s name, and basic information
of the patient after desensitization, as well as clinical diagno-
sis and treatment information. We obtained clinical diagno-
sis and treatment information of patients from these medical
records, including syndromes, treatment methods, diagnosis
of TCM and western medicine, chief complaints and symp-
toms, prescription name, and herb. The original data con-
tained a total of 15,845 pieces of consultation information,
involving more than 150 journal sources and 753 classic
medical cases of national famous TCM practitioners.

We constructed the prescription recommending model
using the clinical symptoms and prescriptions of patients
in clinical cases, so the symptoms and herbs in the original
data were manually standardized. Meanwhile, aiming at
the phenomenon of “long-tailed distribution” [20] (i.e., the
number of symptoms and herbs in a few medical case data
is too much), we screened clinical cases according to the
number of symptoms and herbs. Screening thresholds were
the number of symptoms less than 40 and the number of
herbs less than 20. After screening, 8,218 pieces of data were
obtained as experimental data. The average number of
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FIGURE 1: An overview of our methods. First, we constructed the HSKG and symptom network (a). Second, comprehensive embedding of
patient symptoms was formed with the SSTM and symptom network (b). Finally, the patient’s comprehensive embedding vector was used
for TCM prescription recommendation (c); the predicted probability of each herb is the output, so as to obtain the recommended

prescription.

symptoms per patient in the original data is 13.40, the
average number of herbs is 12.06, the average number of
symptoms per patient in the filtered data is 11.45, and the
average number of herbs is 11.31.

We compared the symptom distribution and herb distri-
bution of the original data with the 8,218 experiment data.
Original data included 15,845 samples, 36,847 symptom
description categories, and 3,359 herb categories. After
screening according to the above threshold, 8,218 samples
were reserved, including 36,145 symptom description cate-
gories and 2,827 herb categories. The number of symptoms
approximately presented the Poisson distribution, and the
number of herbs approximately presented the Poisson distri-
bution, as shown in Figures 2(a) and 2(b).

2.1.2. The Construction of HSKG. We constructed herb-
symptom-related knowledge graph (HSKG), which includes
the following types of entities and relationships: (1) herb-
symptom relationships (HB-SY)—data were from “Chinese

herbs”; (2) herb-efficacy relationships (HB-EF), herb-
property relationships (HB-PP), and herb-meridian relation-
ships (HB-MD)—data from the “Chinese Pharmacopoeia
2015” and “Chinese herbs”; and (3) symptom-symptom
relationships—data from symptom ontology, which mainly
included data from 6 sources, including TCM symptomatol-
ogy, TCM symptom differential diagnosis, and UMLS. After
construction, HSKG contains 18,537 entities, involving herb,
symptom, efficacy, meridian, and property, and contains
102,120 relationships (see Table 1).

2.2. TCMPR Framework. The framework of TCMPR is
shown in Figure 1, which mainly includes the following
processes. (1) The construction of the symptom network is
performed by combining the metapath method and HSKG.
(2) Embedding the symptom network and forming the
embedding vector of symptoms and symptom words were
conducted. (3) Based on SSTM, the symptom words are
extracted from the subnetwork to form the mapped concept
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FIGURE 2: Symptom distribution, herb distribution, and symptom-herb correlation of clinical samples. (a) The distributions of symptom
number before and after screening are similar to the Poisson distribution. (b) The distributions of the herb number are also similar to
the Poisson distribution. (c) No matter which symptom segmentation algorithm is adopted, the average similarity of symptoms increases
with the increase in prescription similarity, and our SSTM method can achieve the best symptom-herb correlation.

set. (4) Feature fusion of symptoms is carried out by using the
mapped concept set and the symptom embedding vector. (5)
In prescription recommendation, the patient symptom words
are used to form the patient symptom vector through SSTM,
and then, the CNN framework is used for training. Finally,
the predicted probability of each herb to be selected is output,
so as to obtain the predicted prescription.

2.2.1. The Construction of the Symptom Network. The enti-
ties and relationships involved in HSKG are diverse and

cover most of the symptom terms, but it cannot be fully
utilized in real scenes, because in TCM clinical practice,
the information obtained from patients is often only descrip-
tive information. Therefore, it is often more valuable to
establish the association between symptoms. While the
number of symptom synonymous relationships provided in
HSKG is relatively limited, which suggests us to establish
the association of symptoms through other ways, we con-
structed the symptom network based on word disassembling
and metapath method.



BioMed Research International

TaBLE 1: The construction of the herb-symptom-related knowledge
graph.

e e R
Symptom (SY) 8,669 HB-SY 37,528
Herb (HB) 8,464 SY-SY 3,122
Efficacy (EF) 1,177 HB-EF 34,268
Property (PP) 45 HB-PP 22,244
?ﬁggllan 182 HB-MD 4,958
Total 18,537 Total 102,120

First, in a Chinese context, considering that a word is
made up of various characters, the number of characters
commonly used is around 2,000 to 7,000. Narrow down
the field to TCM, where the number of words in common
use is theoretically smaller and more concentrated. At the
same time, it can be found that most symptoms and parts
are combined; in a sense, there is a correlation between
them. For example, the symptom “foot sore” can be divided
into “foot” and “sore”; in the network to establish “foot
sore”-“sore” and “foot sore”-“foot” two edges, the symptom
“foot sore and pain” can also be divided into “foot”, “pain”
and “sore” in the same way, so we can establish “foot sore
and pain”-“foot”, “foot sore and pain”-“sore” and “foot sore
and pain”-"pain” three edges; then, in the 5 edge-based net-
work, symptom words “foot” and “sore” constructed the
relationship between the symptoms “foot sore” and “foot
sore and pain”. All symptoms are processed in this way,
and finally, all symptoms and symptom words they contain
were correlated.

Metapath [19] refers to some artificially defined special
paths based on which specific semantic relationships can
be constructed. First, we give the definition: SY represents
symptoms, HB represents herbs, EF represents efficacy, PP
represents property, and MD represents meridian. For the
metapath “SY1-HB1-EF-HB2-SY2,” the semantic relation-
ship is that HB1 and HB2 can treat symptoms SY1 and
SY2, respectively, and HB2 and HBI1 have the same efficacy
EF, so there is a certain correlation between HB1 and HB2
based on the common efficacy EF, and symptoms SY1 and
SY2 may also be related. Therefore, we can directly construct
symptom-symptom relationships based on efficacy by
removing unnecessary intermediate links. Similarly, we can
construct similar symptom relationships by combining the
information of property and meridian. Based on the above
ideas, we can simplify the complex HSKG into the symptom
network only and preserve the underlying information of the
original HSKG.

We used the above methods to construct a symptom net-
work, which contains two types of entities: symptoms and
symptom words, and contains five types of relations: symp-
tom synonymous relation, symptom word-symptom rela-
tion, symptom relation based on efficacy of herb, symptom
relation based on property of herb, and symptom relation
based on meridian of herb. The relationships in the symp-
tom network we finally formed are shown in Table 2. It

should be mentioned that the number of symptom-
symptom relationships formed by the metapath method is
very large. In order to facilitate embedded representation
learning, we screened the data formed by the metapath
method according to the frequency of the relationship.

2.2.2. Symptom Network Embedding. Network embedding
learning [21] can reduce the structural features of the net-
work to low-dimensional features and still retain the original
network information and structured feature representation.
It is often used in supervised node classification, unsupervised
node classification, link prediction, and other tasks. We embed
the symptom network to obtain the embedding vector of
symptoms and symptom words for the downstream predic-
tion task. The network embedding methods involved in this
paper include DeepWalk [22], node2vec [23], LINE [24],
TransE [25], and One-Hot [26]. Performance comparison of
these methods was conducted in the experiment.

2.2.3. Subnetwork-Based Symptom Term Mapping. To solve
the problem of symptom term mapping mentioned above,
we proposed SSTM based on subnetwork extraction. A sub-
graph is a subnetwork composed of subsets of nodes in the
original network [27]. The subgraph can fully splice the
mapped words into a network to form a new subset and then
make a comprehensive representation of the subset, which can
make the mapping result more accurate. The core idea of this
method is to disassemble the symptom terms into words and
then spread and splice the words through the symptom net-
work constructed above, and the subnetwork obtained is the
mapping result of the original symptom terms.

We take the symptom term “foot sore and pain” as an
example to show the function of SSTM (see Figure 1(b)).
First, divide the term into set {“foot,” “sore,” “pain”} and
then find the first-order neighbor concept of each symptom
word in the set; suppose that the neighbor set we found is
{“itchy feet,” “hand sore,” “foot sore,” “foot pain”}. Next,
we calculate the frequency of each node and keep nodes whose
frequency is greater than 1. Finally, the subnetwork of “sore”-
“foot sore”-“foot”-“foot pain”-“pain” was constructed, and its
nodes were used to represent the input symptom term “foot
sore and pain.” It can be seen that SSTM can map the symp-
tom terms as much as possible and make full use of the poten-
tial information of symptom terms.

2.2.4. Feature Fusion. In the last stage, we use SSTM to form
the symptom term mapping set of symptom words. We use
the mapped term set and symptom embedding vector for
feature fusion and form the fusion representation vector of
symptom words, so as to facilitate model training and learn-
ing in the future. The fusion methods we use include maxi-
mum pooling and average pooling, and the performance of
the two methods is compared in the experiment.

For symptom SY, its mapped set set; through SSTM is
{8183, -+*,s,} and the embedding set of set; is f,={f,f>»
-+, f,}; then, the formula of maximum pooling can be
represented by

Fgy =arg maxf,. (1)
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TasBLE 2: The construction of the symptom network.

Source Relationship type Threshold Relationship amount
HB-SY SY-SY_word / 3,038

SY-SY SY-SY (synonymy) / 3,122
SY-SY_word SY-SY_word / 12,542
HB-EF, HB-SY SY-SY (EF) 1,000 52,729
HB-MD, HB-SY SY-SY (MD) 1,000 51,394
HB-PP, HB-SY SY-SY (PP) 100 45,248

Total 168,073

And the formula of average pooling can be repre-
sented by

k
Fo = ) @

2.2.5. SSTM-Based TCM Prescription Recommendation.
The main process of TCMPR is shown in Figure 1(c).
The input is all symptoms of patients, and the number
of symptoms is #; then, map these symptoms into g sub-
graphs by using SSTM and then constitute g embedding
vectors of d-dimension; through the attention layer, the
embedding vectors will be converted into factors which
represent the importance of every feature; then, put them
into a convolutional layer and training which contains k
convolutional kernels; after max-pooling fusion by the
pooling layer, we will get the comprehensive symptom
embedding of the patient. Next, the obtained vector is
put into a 3-layer fully connected neural network (FCN)
for training. The neural number of the first FCN layer
is 256, the second FCN layer’s neural number is 64,
and the third FCN layer’s neural number is the same as
the total number of herbs. Finally, a softmax activation
function layer is used to convert the FCN’s output result
into probability, so as to obtain the probability result of
each herb being recommended.

2.3. Experiment Settings. The experimental data were 8,218
clinical case data described above, and the training set and
test set were randomly divided into 8:2, that is, 6,574 train-
ing samples and 1,644 test samples.

We compared TCMPR with two baseline methods,
including MLKNN [28] and ML-DT [29]. MLKNN draws
on the idea of the KNN algorithm, by looking for the K
nearest neighbor samples and using Bayesian conditional
probability to calculate the probability of the current label
of 1 or 0, and the label with high probability will be the pre-
diction category of the sample. We carry out three experi-
ments on the nearest neighbor number k of 1, 5, and 10,
respectively. ML-DT uses a decision tree algorithm to pro-
cess multilabel data. The main idea is to use information
gain criterion based on multilabel entropy to construct a
decision tree recursively [30]. In the experiment, we set the
minimum size of leaf node as 40.

We also conducted performance comparison experi-
ments on hyperparameter (feature dimension of embedded

representation and subnetwork filter threshold) and differ-
ent implementation methods (feature fusion ways and fea-
ture embedding representation methods) in the proposed
prescription recommendation framework. For feature fusion
methods, we compared the max-pooling method and avg-
pooling method. For the subnetwork filter threshold, we
set it as 1, 2, and 3. For the feature dimension, we set it as
100, 200, 300, 400, and 500. As for the feature embedding
representation method, we compared the five methods of
One-Hot, DeepWalk, node2vec, LINE, and TransE.

It should be noted that, for controlling variables, the
above experiments were carried out based on the following
environment. The learning rate used in the neural network
is le—4, and the Adam gradient descent method is used
for backpropagation. The default value of epoch is 100.
However, if the hit ratio of loss and test set remains
unchanged after several epochs during the training, the
training will be stopped in advance. All models were imple-
mented based on the tensorflow2 framework, using NVIDIA
GTX 1080Ti for GPU acceleration training.

We adopted the Top@K evaluation index for the test set
sample prediction results. Assume that the total number of
samples contained in test set D is N. For the i-th test
sample d;, R(i) represents the herb set predicted by the algo-
rithm and T(i) represents the real herb set of d,. Then, the
precision rate (Precision@K), recall rate (Recall@K), and
F1-score (F1-score@K) are as follows:

i1 [R(D) N T(i)|

Precision@K = _ (3)
Y IRG)|
N . .
Recall@QK = —Zizl |§(l) D.T(l” ) (4)
it | T(0)]
Fl-score@K = 2 * Precision@K = Recall@K. (5)

Precision@K + Recall@K
3. Results

3.1. Correlation Analysis between Clinical Symptoms and
Prescriptions. Prescription symptom similarity is an empiri-
cal evaluation index. Theoretically, if two samples have sim-
ilar prescription sets, they also have similar symptom sets.
First, we calculated the prescription of similarity between
samples, with 0.1 as the interval for grouping samples
according to the prescription similarity (i.e., divided into
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F1GURE 3: Performance of TCMPR and baselines.
TABLE 3: Performance comparison of TCMPR and baseline methods.
Methods Top@5 Top@10 Top@15
Precision Recall Fl-score Precision Recall Fl-score Precision Recall Fl-score
MLKNN_1 0.2519 0.1118 0.1549 0.1832 0.1596 0.1706 0.1541 0.1990 0.1737
MLKNN_5 0.2773  0.1217  0.1692 0.2272  0.1987  0.2120 0.1897  0.2477  0.2148
MLKNN_10 0.2805  0.1262  0.1741 0.2304  0.2058 0.2174 0.1970  0.2630  0.2252
ML-DT 0.2799 0.1264 0.1742 0.2251 0.1996 0.2116 0.1949 0.2597 0.2227
TCMPR (ours) 0.2823 0.1298 0.1778 0.2311 0.2095 0.2197 0.1989 0.2692 0.2288
Improvement (TCMPR vs. MLKNN_1) 12.1% 16.1% 14.8% 26.1% 31.3% 28.8% 29.1% 35.3% 31.7%

10 groups), and then, we calculated the mean of curated
data’s symptom similarity and the mean of filtered data’s
symptom similarity and analysed their correlation. Among
them, similarity calculation was carried out according to
the one-hot vector of symptoms and prescriptions, and
cosine similarity [31] was adopted for calculation.

We evaluated the similarity of prescription symptoms
using n-gram [32], FMM [33], BMM [34], and SSTM and
compared the results with the similarity of prescription
symptoms based on original data, as shown in Figure 2(c).
The results showed that in the mapping mode, the average
similarity of symptoms also increased with the increasing
similarity of prescription, which indicated the logical cor-
rectness of our experimental data. All of these concept map-
ping methods can maintain a positive correlation with the
original data, especially our SSTM method, which can refine
the concept words after mapping (when the prescription
similarity is 0.9 to 1.0, the average symptom similarity after
mapping reaches 0.6). It indicates that our SSTM can pro-
vide more realistic feature representation for subsequent
prescription recommendation.

3.2. Experimental Comparison with Baselines. We compared
our TCMPR with MLKNN and ML-DT, 2 multilabel classi-
fication baseline methods. For the nearest neighbor number
K of the MLKNN algorithm, we conducted three experi-
ments using 1, 5, and 10, respectively. In this experiment,

the feature fusion method is avg-pooling, the feature dimen-
sion is 200, the feature mapping method is SSTM, and the
feature embedding method is DeepWalk. Under this condi-
tion, the performance of TCMPR, MLKNN, and ML-DT is
compared (see Figure 3 and Table 3).

The result implied that our TCMPR has the best perfor-
mance in terms of accuracy, recall, and F1-score. Compared
with MLKNN_1, TCMPR has improved accuracy by 29.1%,
recall increased by 35.3%, and F1-score increased by 31.7%
at Top@15. By comparing the results of MLKNN and
ML-DT, we can see that the performance of the ML-DT
algorithm is slightly better than that of MLKNN_1 and com-
parable to that of MLKNN_5, but the performance of
MLKNN_10 is slightly better than that of ML-DT. For
MLKNN, MLKNN_10 is slightly better than MLKNN_5, while
MLKNN'_1 is worse than MLKNN_5 and MLKNN_10. It can
be seen that the selection of the nearest neighbor number k in
the MLKNN algorithm has a certain influence on the
prediction results.

3.3. Performance Comparison with Different Embedding
Features. We compare DeepWalk, node2vec, LINE, One-
Hot, and TransE embedding methods, respectively. In this
experiment, the feature fusion method is avg-pooling, the
feature dimension is 200, and the feature mapping method
is SSTM. Compare the performance of the three embedded
representations under this condition (see Figure 4(a)).
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FIGURE 4: Performance comparison of different hyperparameters. (a) contains the comparison of embedding methods. In (a), DW
represents DeepWalk, NV represents node2vec, LN represents LINE, OH represents One-Hot, and TE represents TransE. (b) is the
comparison of fusion methods, (c) shows the feature dimension experiments, and (d) shows the comparison between different

subnetwork filter thresholds.

The results show that under the same conditions, the
experimental performance of DeepWalk, node2vec, and
LINE is significantly better than that of One-Hot and
TransE, and DeepWalk obtains the best performance.

3.4. Performance Comparison with Different Feature Fusion
Methods. We compared the performance of avg-pooling
and max-pooling in this experiment. To control the factors,
the embedded representation method is DeepWalk, the fea-
ture dimension is 200, and the feature mapping method is
SSTM. Under this condition, the performance of the two
feature fusion methods is compared (see Figure 4(b)).

From the results, we can see that the avg-pooling method
performs better than the max-pooling method. The avg-
pooling method is relatively fair to all characteristic parts, while
the max-pooling approach may result in information loss.

3.5. Performance Comparison with Different Embedding
Dimensions. We explored the feature dimensions and set
the dimension as 100, 200, 300, 400, and 500. In these five
experiments, DeepWalk is adopted for embedding, avg-
pooling is adopted for feature fusion, and SSTM is adopted
for feature mapping. Experiments are carried out under
these conditions (see Figure 4(c)).

As can be seen from the figure, when the dimension is
increased from 100 to 500, it has little impact on perfor-
mance, but the improvement of this dimension requires
more training time. In these five experiments, when the vec-
tor dimension is 200, the training time is relatively small
(about 9 seconds per epoch on average), while in other cases,
the training time is more than 11 seconds per epoch on aver-
age. So we think the embedding dimension under 200 is a
relatively good choice.

3.6. Performance Comparison with Different Subnetwork
Filter Thresholds. Finally, we explored with the subnetwork

filter threshold and we set the threshold as 1, 2, and 3. In
these experiments, the embedding method is DeepWalk,
the feature fusion method is avg-pooling, the feature map-
ping method is SSTM, and the feature dimension is 200.
We carried out 3 experiments under these conditions (see
Figure 4(d)).

From the results, we can see that when the degree
threshold is 2 and 3, better results are obtained than when
the degree threshold is 1, and the best result appeared when
the degree threshold is 2.

4. Discussion

Prescription recommendation is the key to TCM clinical
auxiliary diagnosis and treatment. In recent years, a large
amount of TCM clinical EMR data has not been fully used,
and there is a serious imbalance between the number of
experienced clinical doctors and the number of patients. If
we can make fully use of the existing TCM clinical data,
combine artificial intelligence methods for mining, carry
out TCM intelligent prescription recommendation method,
and develop a prescription recommendation system for
TCM, it will be very favourable for assisting doctors in diag-
nosis, improving the utilization rate of clinical resources,
and promoting the construction of hospital informatization.

In this study, we proposed a subnetwork-based symptom
term mapping method SSTM and we proposed a TCMPR
method for TCM prescription recommendation based on
SSTM. The advantages of TCMPR are contributed by the two
aspects. On the one hand, our proposed SSTM makes full use
of existing relationship knowledge between herb and symptom
and learns embedding representations of clinical symptoms.
On the other hand, we constructed a deep neural network with
attention and CNN to train the effective prescription
recommendation model. Comprehensive experimental results
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indicated that our method obtains higher performance than
state-of-the-art methods.

With respect to the comparison result between TCMPR
and baselines, we can see that our TCMPR gets the best per-
formance (see Figure 3 and Table 3). With the increase in K,
the number of herbs was considered more, the accuracy of
all methods showed a decreasing trend, and the recall rate
showed an increasing trend, while the F1-score showed an
increasing trend, indicating that with the increase in K, the
prediction results are getting better and better. For the F1-
score, starting from K =12, the results of all methods basi-
cally showed a stable trend, and as K continued to increase,
most algorithms showed a small decrease in the Fl-score,
which may be caused by the data itself. As we mentioned
before, the average number of herbs in experimental data
was 11.31. So it is not hard to understand why this phenom-
enon appears.

In terms of the embedding method for the symptom net-
work, we can see from the result that DeepWalk, node2vec,
and LINE perform better than TransE and One-Hot, and
DeepWalk got the best performance (see Figure 4(a)). In
the process of feature fusion, words with similar semantics
are also very close to the vector of their embedded represen-
tations in space. DeepWalk has the connection of Word2Vec
context semantics, node2vec can also retain the global and
local characteristics of nodes, and LINE can preserve the
first-order and the second-order information, so it is easy
to comprehend that these methods performs well. TransE
does not have the support of relational features, and the
fusion of words it combined may have more noise, so it is
easy to produce fusion bias. One-Hot is a fine fusion of fea-
tures, but its presentation lacks semantic relevance, so it is
slightly inferior in performance.

As for the comparison result between different subnet-
work filter thresholds, it indicated that the filter threshold
of the subnetwork is an important influence factor (see
Figure 4(d)). Subgraph extraction is an important part of
the SSTM method, and the set of symptom terms formed
after extraction determines the effect of subsequent prescrip-
tion recommendation. When the degree threshold is 1, the
set of symptom terms related to the original symptom terms
is selected, but a large number of terms are selected (the
average number of selected terms is more than 60). In the
graph structure, the node with a larger degree reflects the
tightness of its connection and represents its significance.
So increasing the filtering threshold of the degree is a good
method to retain the relatively more important nodes in
the graph structure, that is why the performance is greatly
improved when the degree threshold is 2. However, when
the degree threshold is 3, the number of symptom terms
after screening is less than that of the original symptom
terms, and most of the retained terms are symptom words,
so the performance is slightly inferior to that when the
degree threshold is 2.

Although our method obtains high performance, there
are still several works that need to be conducted in the
future. First, the experimental results showed that the per-
formance of TCMPR is not perfect in the Top@K metric.
In the future, we will combine transfer learning technologies
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to further improve the precision and recall in the Top@K
metric. In addition, the data quantity and quality of the
herb-symptom knowledge graph and clinical case data still
need to be improved. We will pay attention to collect more
high-quality herb- and symptom-related data, in order to
optimize and learn a TCM prescription recommendation
model with higher performance.

5. Conclusion

In this study, we proposed a subnetwork-based symptom
term mapping method (SSTM) and a TCM prescription
recommending method (TCMPR). Comprehensive experi-
mental results indicated that our method obtains higher per-
formance than state-of-the-art methods. In particular, SSTM
partially disposed of the feature construction problem of
unrecorded symptom terms by extracting the subnetwork
of symptoms. Our method has high performance on TCM
prescription recommendation and can potentially promote
clinical diagnosis and treatment of TCM precision medicine.
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