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a b s t r a c t

A basic problem for contemporary biology and medicine is exploring the correlation between human

disease and underlying cellular mechanisms. For a long time, several efforts were made to reveal the

similarity between embryo development and disease process, but few from the system level. In this

article, we used the human protein–protein interactions (PPIs), disease genes with their classifications

and embryo development genes and reconstructed a human disease-embryo development network to

investigate the relationship between disease genes and embryo development genes. We found that

disease genes and embryo development genes are prone to connect with each other. Furthermore,

diseases can be categorized into three groups according to the closeness with embryo development in

gene overlapping, interacting pattern in PPI network and co-regulated by microRNAs or transcription

factors. Embryo development high-related disease genes show their closeness with embryo develop-

ment at least in three biological levels. But it is not for embryo development medium-related disease

genes and embryo development low-related disease genes. We also found that embryo development

high-related disease genes are more central than other disease genes in the human PPI network. In

addition, the results show that embryo development high-related disease genes tend to be essential

genes compared with other diseases’ genes. This network-based approach could provide evidence for

the intricate correlation between disease process and embryo development, and help to uncover

potential mechanisms of human complex diseases.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

One of the important challenges for contemporary biology and
medicine is to understand the relationship between human dis-
eases and underlying cellular mechanisms (Argmann et al., 2005;
Giallourakis et al., 2005; Kann, 2007; Lage et al., 2007; Lamb et al.,
2006; Loscalzo et al., 2007; Oti et al., 2008; Schadt et al., 2005).
During the past decade, many efforts have been dedicated to
identifying disease-related genes, proteins and metabolites, which
directly or indirectly interact through genetic or physical behavior
(Albert, 2005; Almaas, 2007; Alon, 2007; Barabasi and Oltvai, 2004;
Basso et al., 2005; Gerstein et al., 2002; Yildirim et al., 2007). In
recent years, researchers concentrate on the embryo development
in disease process (Groenendijk et al., 2008; Relaix, 2006; Sharma
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et al., 2006; Tutarel et al., 2005). Some evidences suggest that
cellular mechanisms during the embryogenesis are similar with
what occur in some disease process such as cancer (Davidson, 2009;
Giuffrida et al., 2009; Ma et al., 2010; Navarro and Monzo, 2010;
Ruiz-Vela et al., 2009). For instance, Navarro et al. reviewed some
complex relationships between embryo development and cancer.
However, it is increasingly comprehended that those gene-by-gene
or protein-by-protein approaches, even genome-wide studies,
although tremendously successful, are far from achievement,
because the complicated cellular mechanisms are executed through
an intricate network comprising regulatory and protein interaction
(Albert, 2005; Barabasi and Oltvai, 2004; Cusick et al., 2005; Zhu et al.,
2007). Exploring such systematic relationship among cellular net-
works and disease patterns could possibly open a brand-new
boulevard for understanding the interactome, and may help discover
underlying mechanisms of diseases (Braun et al., 2008; Ergun
et al., 2007; Goh et al., 2007; Lee et al., 2008; Loscalzo et al., 2007).

More investigations have focused on network-based approaches
to study human diseases with the increasing high-throughput data
(Feldman et al., 2008; Friedman and Perrimon, 2007; Goh et al.,
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2007; Ideker and Sharan, 2008; Lee et al., 2008; Li and Agarwal,
2009; Tu et al., 2006; Wang et al., 2009). For instance, Goh et al.
(2007) constructed the disease phenome network (human disease
network, HDN) and disease genome network (disease gene net-
work, DGN), using disease-gene association pairs extracted from
the Online Mendelian Inheritance in Man (OMIM) database. Thus,
Lee et al. (2008) created a metabolic disease network (MDN), and
explained that metabolic diseases trend to be co-morbid in the
population if the enzymes and their related diseases are linked
through metabolic pathways. Recently, Wang et al. (2009) demon-
strated a close association between aging and diseases.

Using graphical approaches to study biological problems can
provide an intuitive picture or useful insights for helping analyz-
ing complicated mechanisms in these systems, as demonstrated
by many previous studies on a series of important biological
topics, such as enzyme-catalyzed reactions (Chou, 1981, 1989;
Chou and Forsen, 1980; Zhou and Deng, 1984), protein folding
kinetics (Chou, 1990), inhibition of HIV-1 reverse transcriptase
(Althaus et al., 1993a, 1993b, 1993c), inhibition kinetics of
processive nucleic acid polymerases and nucleases (Chou et al.,
1994), drug metabolism systems (Chou, 2010), analysis of DNA
sequence (Xie and Mo, 2011; Yu et al., 2009) and protein
sequence evolution (Wu et al., 2010). Meanwhile, the ’wenxiang
diagram’ (Chou et al., 1997) has been used to investigate protein–
protein interactions(Chou and Cai, 2006; Smith and Nilar, 2010),
and the graphical representation utilized to identify the hub
proteins from complicated network systems (Gonzalez-Diaz
et al., 2009; Hu et al., 2011; Shen et al., 2010). Recently, the
’cellular automaton image’ (Wolfram, 1984) has also been applied
to study hepatitis B viral infections (Xiao et al., 2006), HBV virus
gene missense mutation (Xiao et al., 2005b), and visual analysis of
SARS-CoV (Wang et al., 2005), as well as representing complicated
biological sequences (Xiao et al., 2005a), and helping to identify
various protein attributes (Xiao et al., 2008, 2009).

In this paper we focus on embryo development, which is one
of the important processes of human being and previous studies
have investigated relationship between embryo development and
disease such as cancer (Doi et al., 2009; Lalli and Alonso, 2010;
Postovit et al., 2008; Takebe and Ivy, 2010; Ullmann, 2010).
Research on embryo development is beneficial to comprehend
the nature of disease by integrating disease and embryo devel-
opment information at a network level. We note that their
relationships have been pointed out for a long time, but seldom
been researched from the systems level. Here we emphasize the
intricate relationships between embryo development and disease
since the embryo development process is gradual development
process from zygote to adult cell and this process is similarity
with some of disease such as cancer, in which the process is
reversed from adult cell to cancer stem cell (Takebe and Ivy, 2010;
Ullmann, 2010). We tried to use the embryo development
genes and disease genes to highlight the intricate correlations
between embryo development and disease process systemati-
cally. We analyzed the association between embryo development
genes and disease genes from PPI network and reconstructed
a disease-embryo development network (DEN) and analyzed
its topological properties. Then according to the relationship
between embryo development genes and disease genes in
different biological levels, we divided the diseases into three
groups: embryo development high-related disease (EHD), embryo
development medium-related disease (EMD) and embryo devel-
opment low-related disease (ELD). In addition, we compared the
differences between the three groups of disease genes from
network centrality, functional enrichment and the proportion
of essential genes. And we also compared the closeness centrality
of embryo development genes in the network of three groups of
diseases.
2. Materials and methods

2.1. Datasets

2.1.1. The human embryo development genes

A list of human embryo development genes was extracted from
two sources. Firstly, we obtained the gene set involving the word
‘‘embryo’’ and ‘‘development’’ in the Entrez Gene description field
(downloaded from the Entrez Gene website ftp://ftp.ncbi.nih.gov/
gene/DATA/GENE_INFO/mammalia/Homo_sapiens.gene_info.gz on
June 30, 2010). Secondly, we obtained the gene set annotated the
Gene Ontology functional terms which include the descriptive word
‘‘embryo’’ and ‘‘development’’ (downloaded from http://www.gen
eontology.org on June 30, 2010). We finally got 643 genes in which
516 genes are contained in the human PPI network.

2.1.2. Disease genes and classification of diseases

The disease genes and their classification were obtained from
previous study (Goh et al., 2007), which were manually classified
into 22 disease classes based on the physiological system affected.
Totally, there are 1777 disease genes in which 1345 are involved
in the human PPI network. Particularly, some diseases, which
have multiple clinical features, were marked ‘‘multiple’’, and
some other diseases were labeled ‘‘unclassified’’ if they could
not be assigned to a clear disease class. ‘‘Multiple’’ class disease
represents that the disease has distinct multiple clinical features
or has no evidence to show which systems the disease affect. And
‘‘unclassified’’ class disease represent that the disease cannot be
classified clearly. Then we constructed the DEN with all 22
diseases class, but did not consider the ‘‘multiple’’ class and
‘‘unclassified’’ class in the following discussion.

2.1.3. Protein–protein network and essential genes

Human protein–protein interaction (PPI) network is obtained
from HPRD Release 9 (http://www.hprd.org, downloaded on June
30, 2010). Until the download date, the network involved 9611
proteins and 39,118 interactions. Essential genes were down-
loaded from the Mouse Genome Informatics (http://www.infor-
matics.jax.org, downloaded on August 2, 2010). We got 2661
essential genes in which 2191 are in HPRD.
2.2. Measures

2.2.1. Closeness centrality of nodes in network

We used closeness centrality (CC) to measure the centrality of
nodes in a given network. CC is defined by

cv ¼
N�1P

uAvdðv,uÞ
ð1Þ

where v is the node in a given network, N is the total number of
nodes in the network and dðv,uÞ represents the shortest path
between node v and u.

2.2.2. p-Value by overlapping

We used this formula to calculate the significant p-value of
gene sharing, interaction partner of PPI network, co-regulated by
microRNAs and TFs. p-values were calculated by the following
formula:

PðX ¼ k9N,m,nÞ ¼ 1�
Xk

i ¼ 0

m

k
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Consider that a set containing M elements has two subsets S1
and S2 with K and N elements, respectively. We calculate the
probability that there are x overlapping elements with hypergeo-
metric distribution.

2.2.3. Degree-conserved network permutation

To prove whether embryo development genes tend to connect
with disease genes, we performed degree-conserved network
permutation for embryo development genes as following steps:

Step 1: We generated pseudo-embryo development gene
sets for every embryo development genes, where the gene in
the pseudo-embryo development gene sets has the same
degree with corresponding embryo development gene in the
PPI network.
Step 2: For the set of 516 embryo development genes, we
randomly chose a gene from its corresponding pseudo-embryo
development gene sets as pseudo-embryo development gene.
Finally 516 pseudo-embryo development genes were gener-
ated. We used these pseudo-embryo development genes and
disease genes to calculate the max connected components of
pseudo-disease embryo development network.
Step 3: We repeated Step 2 1000 times and generated the
degree-conserved pseudo-disease embryo development network.

We used the 1000 sets of pseudo-disease-embryo develop-
ment network to substitute the disease-embryo development
network as random control and calculated the significance of
max connected components.

2.2.4. Disease co-morbidity index

In this paper, we use F index to measure disease co-morbidity
and try to find out what the role of embryo development genes
in disease co-morbidity. For disease i and disease j, the disease
Fig. 1. The disease embryo development network (DEN). A protein–protein interacting

disease genes are colored based on the disease categories to which it belongs, and embr

multi-disease class is labeled by ‘‘MD’’, and colored by pink. The size of each node is p
co-morbidity index was defined as

Fij ¼
NNij�NiNjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NiNjðN�NiÞðN�NjÞ
p ð3Þ

where Fij is co-morbidity index of disease i and j. N¼ 13,039,018
elderly patients and Ni represent the number of patients, who
catch disease i.
3. Results

3.1. Construction of embryo development-related human disease

network

We used embryo development genes and disease genes to
construct a disease-embryo development network (DEN). The
association pairs between diseases and genes were from the
Online Mendelian Inheritance in Man (OMIM) (Hamosh et al.,
2000, 2002; Supplementary Table S1). Human embryo develop-
ment genes were extracted from Gene Ontology (GO) (Ashburner
et al., 2000) and Entrez Gene (Maglott et al., 2005) by the
keywords ‘‘embryo’’ and ‘‘development’’ (Supplementary Table
S2). We generated the network, in which nodes represent known
embryo development genes and disease genes, and two genes are
connected if they associate with each other in Human Protein
Reference Database (HPRD; Peri et al., 2004), and then extracted
the maximum connected component of network as DEN (Fig. 1).
In the DEN, nodes with black border represented embryo devel-
opment genes, and the color of the nodes represents the disease
class (Goh et al., 2007). In addition, if a disease gene belongs to
more than one category, it will be labeled as ‘‘MD’’.

If the embryo development and disease processes are related to
the cellular mechanisms, then embryo development genes and
disease genes should be connected with each other in the network.
network connects the disease genes and embryo development genes. In the DEN,

yo development genes are colored in white with blank border. A gene belonging to

roportional to the number of interactions in the DEN.
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As shown in Fig. 1, DEN contains 1257 nodes and 3617 edges, and
the number of nodes and edges are significantly larger than
random (p-values, 3.5e�3 for nodes and 3.6e�7 for edges, were
calculated by 1000 degree-conserved network permutations, as
shown in Fig. 2D and E). This indicates that embryo development
genes and disease genes tend to connect with each other.

In the DEN, the degree of nodes followed power-law distribu-
tion (PðkÞpk�1:66; Fig. 2A), which indicates that the DEN is a scale
free network, and can still maintain its connectivity, when a gene
is removed randomly. Moreover, the average degree of embryo
development genes is 7, which is larger than the average degree of
disease genes 5.6 with a p-value 0.02 in the DEN (Wilcoxon rank
sum test). Also, the average degree of genes, which are related to
both embryo development and diseases, is 8.9, and higher than
that of all genes 5.8 with a p-value 1.4e�3 in the network
(Wilcoxon rank sum test). The results suggest that the embryo
development genes may play an important role in the DEN.

Additionally, we calculated the clustering coefficient and topo-
logical coefficient of the DEN. In the theory of Barabasi AL and
Oltvai ZN (Barabasi and Oltvai, 2004), the clustering coefficient
measured the tendency of nodes to form clusters or groups in the
network, and the topological coefficient is to describe the extent to
which the node shares interaction with the other in the network.
As shown in Fig. 2B, clustering coefficient of the node in DEN
reduces with the increase the degree of node, implying the
neighbors of high degree node do not tend to connect with each
other, and DEN is a hierarchical network. In addition, the topolo-
gical coefficient decreases with the link of nodes (see Fig. 2C). It
obviously shows that either embryo development or disease hub
Fig. 2. The global topological properties of disease embryo development network (DE

(D) The number of nodes in DEN, which is significantly larger than that of degree-con

which is significantly larger than that of degree-conserved random networks with p-v

depicted in Section 2.
genes do not share common interaction partners. We then used
closeness centrality to measure which type of nodes are more
‘central’ in the network and found that the mean closeness
centrality value of embryo development genes is larger than that
of disease genes (p-value 8.0e�6).

3.2. Closeness between embryo development and diseases in many

biological levels

To explore the relationship between embryo development and
diseases, we firstly calculated the number of overlapping genes
between them. 153 out of 516 embryo development genes in the
PPI network are verified to be associated with some disease
classes, significantly higher than expected (p-value o1.0e�20),
indicating the close connection between embryo development
and diseases (Supplementary Figure S1A). We then chose all
human genes as a background set to recalculate the intersection
between embryo development and diseases genes, and found that
the count of overlapping genes between them are obviously
higher than expected with p-value less than 1.0e�30 (Supple-
mentary Figure S1B). In addition, we checked the link between
embryo development and diseases genes. In total 39,118 edges in
the PPI network, there are 858 edges belong to embryo develop-
ment genes interactions, and 2304 edges belong to diseases gene
interactions. The number of interactions between nodes which
belong to both embryo development and disease is 152, three
times as many as expected 50 (Supplementary Figure S1D).

The result of above shows indeed the close relationship
between embryo development and disease, but is that all types
N). (A–C) Basic network features of disease embryo development network (DEN).

served random networks with p-value 3.5e�3. (E) The number of edges in DEN,

alue 3.6e�7. The process of generating the degree-conserved random network is



Fig. 3. The closeness between embryo development and disease in many different biological levels. (A–D) Bar graph to show the statistical significance of closeness

between embryo development and disease in gene overlapping (A), interacting partner of human PPI network (B), sharing microRNA (C) and sharing TF (D). Refer to Section

2 for details. (E) Detailed closeness in many ways. According to the number of significant closeness in different biological level, all kinds of disease are categorized into

three groups of diseases. High-related embryo development disease (red shadow), which is significant in more than three levels. Medium-related embryo development

disease (green shadow), which is significant in two levels. And low-related embryo development disease (blue shadow), which is significant in less than one level. ‘‘NaN’’

represents that the disease classed are not enriched in any of the microRNAs.
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of diseases relate to embryo development process? To answer this
question, we calculated the overlapping between embryo devel-
opment and all disease classes from different biological levels,
including gene sharing, interaction partner of PPI network, post-
transcriptional modification by microRNAs and transcriptional
regulation by transcription factors (TF).

The significance of overlapping between embryo development
genes and disease genes is shown in Fig. 3A. Ten diseases,
including cancer, developmental disorder etc., are significantly
related with embryo development (po0.05, see Section 2). Then
we checked the association between disease classes and embryo
development by calculating the percentage of interaction partners
in the human PPI network. The result indicates that eleven
disease classes tend to associate with embryo development (see
Fig. 3B). Furthermore, we investigated co-regulated relationship
between disease classes and embryo development. As shown in
Fig. 3C and D, four classes of disease and embryo development are
co-regulated by microRNA; two classes of disease and embryo
development are co-regulated by TF (see Section 2).

3.3. The difference among three groups of diseases

If there are close relationships between embryo development
and some classes of diseases, the closeness between embryo
development genes and diseases genes will be reflected in
different biological levels. In our study, some kinds of disease
show unequal closeness with embryo development in different
biological levels. So we divided all disease classes into three
groups, as shown in Fig. 3E, embryo development high-related
disease (EHD), medium-related disease (EMD) and low-related
Fig. 4. The difference among EHD, EMD and ELD in network closeness centrality. (A) T

human PPI network. (B) The difference of network closeness centrality of embryo deve

Table 1
Different GOA enrichments among EHD genes, EMD genes and ELD gene.

GO-ID High Medium

p-value p-value

3676 6.9e�8 –

5634 9.3e�11 –

3690 2.3e�12 40.01

22403 7.2e�10 40.01

5654 1.6e�8 40.01

45776 40.01 4.3e�11

7404 40.01 4.7e�9

6575 40.01 4.7e�7

55072 40.01 40.01

9056 40.01 40.01

2250 40.01 40.01

EHD genes, EMD genes and ELD genes display difference in GOA enrichment. p-v

overrepresentation.
disease (ELD), according to the closeness with embryo develop-
ment in different biological levels. From previous investigations,
cancer has shown close relationship with embryo development in
many aspects (John et al., 2008; Kim et al., 2010; Lalli and Alonso,
2010; Monzo et al., 2008; Navarro and Monzo, 2010; Ullmann,
2010). And as results shown, cancer has very better significance
than other kinds of disease in each level, which is consistent with
previous investigations. Also, skeletal diseases are significant in
gene overlapping and interact pattern level and some research
support it (Merrick et al., 2009; See et al., 2008). But some of
them, like metabolic disease, show few or even none relationship
with embryo development. Anyway, we combined different
p-values in each level to classify the disease and analyzed the
difference between them.

Firstly, the comparison of the closeness centrality among them
in the human PPI network shows that the EHD genes are central
in human PPI network, but EMD genes and ELD genes are not. As
shown in Fig. 4A, EHD genes have a significantly higher closeness
centrality (0.2697) than EMD genes (0.2493) and ELD genes
(0.2423) with p-value 3.1e�11 and 3.0e�21, respectively. We
also compared the percentage of essential genes in three groups,
and found that 60.8% of EHD genes are essential genes, which is
significantly higher than 50.4% of EMD genes (p-value 7.1e�3)
and 38.9% of ELD genes (p-value 1.6e�8).

Secondly, we performed a GO enrichment to analyze the
biological functions of EHD genes, EMD genes and ELD genes. As
shown in Table 1, EHD genes are significantly enriched in DNA
binding and cell cycle phase; EMD genes are significantly
enriched in negative regulation of blood pressure and cell differ-
entiation; and ELD genes are enriched in cellular carbohydrate
he comparison of network closeness centrality among three groups of disease in

lopment genes in the network of three groups of diseases genes.

Low Description

p-value

2.1e�6 (under) Nucleic acid binding

1.3e�5 (under) Nucleus

40.01 Double-stranded DNA binding

40.01 Cell cycle phase

40.01 Nucleoplasm

40.01 Negative regulation of blood pressure

40.01 Glial cell differentiation

40.01 Amino acid derivative metabolic process

1.7e�19 Cellular carbohydrate metabolic process

5.8e�13 Catabolic process

1.1e�14 Adaptive immune response

alues followed by ‘‘under’’ represent underrepresentation, while others mean
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metabolic process, adaptive immune response, etc. Also, we
compared the closeness centrality of embryo development genes
in the network which constructed by three groups of genes
respectively. For each of the three groups of diseases, networks
are constructed in which two genes are connected if they
associate in HPRD. As shown in Fig. 4B, the median of closeness
centrality of embryo development genes in network of EHD is
0. 3249, and significant higher than that in network of EMD which is
0.1681 (p-value 1.2e�3, rank sum test) and ELD which is 0.1909
(p-value 3.0e�3 rank sum test). This indicates that embryo develop-
ment genes tend to be the central of EHD network.

Finally, we used BLAST alignment sequence program to inves-
tigate the similarity of protein sequences between embryo devel-
opment genes and three types of disease genes. With E-value less
than 1.0e�10, the mean alignment sequence score of EHD genes
with embryo development genes is 232, significantly higher than
EMD genes (score¼181, with p-value 4.2e�54) and ELD genes
(score¼175, with p-value 1.5e�69). And the mean alignment
sequence score of EMD genes is also high than ELD genes with
p-value 3.8e�4. Additionally, we recalculated the same process
with E-value less than 1.0e�5, and the mean alignment sequence
score of EHD genes is also significantly higher than other types of
disease genes. The results indicate that the EHD genes have more
similarity with embryo development genes at sequence similarity.
4. Conclusion and discussion

There is an expectation for clinicians and medical researchers
to explore the relationship between embryo development and
diseases, and a great deal of works have been done for it. Here we
constructed the disease-embryo development network for the
first time, and investigate the relationship between embryo
development and disease. Our results demonstrate that there
are close relationships between disease genes and embryo devel-
opment genes from the perspective of network, which supplies
new biological evidences for disease studies. Also, we divided all
diseases into three groups according to the closeness with
embryo development and compared the differences among them
including closeness of PPI network, enrichment biological func-
tion, percentage of essential genes and protein sequence similar-
ity. In our results, cancer, developmental and connective tissue
diseases show strong correlation with embryo development, and
recent studies coincide with our results. For example, John et al.
(2008) found that embryo development gene DPPA2 is coex-
pressed with cancer testis antigens in non-small cell lung cancer,
and some evidence show that developmental diseases are related
with embryo development (Sinclair and Singh, 2007). At the same
time, we found some evidences to support the correlation
between embryo development and disease in gene expression
level (John et al., 2008; Monk et al., 2008; Wang et al., 2008). All
above these could certificate that embryo development and
disease indeed have association and different kinds of disease
have different relationship with embryo development. The result
can imply that we can further investigate the pathogenesis of
disease from perspective of similarity with embryo development,
especially with high-related embryo development disease.

Previous investigations have demonstrated that different diseases
tend to be co-morbid if they have a similar cellular mechanism,
including component of the genome, transcriptome, proteome and
metabolome in the pathogenesis (Lee et al., 2008). We analyzed the
effect of embryo development genes on disease co-morbidity using
the data from Park et al., 2009 studies, and found that there is a little
difference in co-morbidity incidence of diseases between diseases,
which share or not share embryo development genes. We used F
to represent co-morbidity incidence of diseases (see Section 2).
F¼ 0:013 for diseases that share embryo development genes, and
0.01 for diseases that do not share embryo development genes. It
indicates that the diseases that share embryo development genes are
apt to appearance together in the population.

Certainly, we noted that there is some potential bias in the
source of data such as the preference of disease gene association
and the incompleteness of embryo development genes. For
instance, the co-morbidity incidences have no significant differ-
ence among three groups of diseases, whether or not they share
embryo development genes. One explanation is that the metabo-
lism may be another biological mechanism prompting disease co-
morbidity (Lee et al., 2008) besides embryo development. We
carefully studied the metabolism-related diseases, and found that
66.5% of diseases belong to metabolism-related diseases. In
addition to the influence induced by other biological mechanisms,
a number of influences, such as the environmental factor, lifestyle
and treatment-related factors, may also alter the impact of the
correlation between embryo development and disease. Moreover,
according to a recent comprehensive review (Chou, 2011), to
develop a useful model or predictor for biological systems, the
following things were usually needed to consider: (i) benchmark
dataset construction or selection, (ii) mathematical formulation
for biological sequence samples, (iii) operating algorithm
(or engine), (iv) anticipated accuracy and (v) web-server estab-
lishment. So we used the embryo development genes and disease
genes to prove the relationship between embryo development
and disease based on the steps that we mentioned above. Since
user-friendly and publicly accessible web-servers represent the
future direction for developing practically more useful models,
simulated methods or predictors (Chou and Shen, 2009), we shall
make efforts in our future work to provide a web-server for the
method presented in this paper. Meanwhile, with the develop-
ment of high-throughput molecular biotechnology, especially
mature application of the next-generation sequencing, we can
further study the etiologies and pathobiologies of disease using
embryo development process from systems biology viewpoint.
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