
cells

Article

Dysbindin deficiency Alters Cardiac BLOC-1
Complex and Myozap Levels in Mice

Ankush Borlepawar 1,2, Nesrin Schmiedel 1,2, Matthias Eden 1,2, Lynn Christen 1,
Alexandra Rosskopf 1,2, Derk Frank 1,2, Renate Lüllmann-Rauch 3, Norbert Frey 1,2

and Ashraf Yusuf Rangrez 1,2,*
1 Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel,

24105 Kiel, Germany; ankush.borlepawar@uksh.de (A.B.); nesrin.schmiedel@uksh.de (N.S.);
matthias.eden@uksh.de (M.E.); lynn.christen@web.de (L.C.); alexandra.rosskopf@uksh.de (A.R.);
derk.frank@uksh.de (D.F.); norbert.frey@uksh.de (N.F.)

2 DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck,
24105 Kiel, Germany

3 Institute of Anatomy, Christian-Albrechts-University Kiel, 24118 Kiel, Germany; r.lullmann@anat.uni-kiel.de
* Correspondence: ashraf.rangrez@uksh.de; Tel.: +49-431-500-22966; Fax: +49-431-500-22938

Received: 24 September 2020; Accepted: 30 October 2020; Published: 31 October 2020
����������
�������

Abstract: Dysbindin, a schizophrenia susceptibility marker and an essential constituent of
BLOC-1 (biogenesis of lysosome-related organelles complex-1), has recently been associated with
cardiomyocyte hypertrophy through the activation of Myozap-RhoA-mediated SRF signaling.
We employed sandy mice (Dtnbp1_KO), which completely lack Dysbindin protein because of a
spontaneous deletion of introns 5–7 of the Dtnbp1 gene, for pathophysiological characterization of the
heart. Unlike in vitro, the loss-of-function of Dysbindin did not attenuate cardiac hypertrophy, either
in response to transverse aortic constriction stress or upon phenylephrine treatment. Interestingly,
however, the levels of hypertrophy-inducing interaction partner Myozap as well as the BLOC-1
partners of Dysbindin like Muted and Pallidin were dramatically reduced in Dtnbp1_KO mouse
hearts. Taken together, our data suggest that Dysbindin’s role in cardiomyocyte hypertrophy is
redundant in vivo, yet essential to maintain the stability of its direct interaction partners like Myozap,
Pallidin and Muted.
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1. Introduction

Cardiac hypertrophy may be reversible and beneficial, adapting according to systemic demands
such as exercise or pregnancy. In contrast, its maladaptive form, termed “pathological hypertrophy”,
is associated with maladaptive molecular changes ranging from epigenetic to translational level that
eventually may lead to the heart failure [1,2]. Pathological hypertrophy induces cardiac remodeling
including interstitial fibrosis, capillary rarefaction, increased production of pro-inflammatory cytokines,
and cardiomyocyte dysfunction leading to advanced cardiomyopathy [3,4]. Among the multiple
signaling pathways investigated over the last decades that are involved in cardiomyocyte hypertrophy
and cardiomyopathy pathogenesis, induction of the cardiomyocyte hypertrophic gene program via the
master transcription factor-serum response factor (SRF) is of crucial importance [5–7]. A cardiac enriched
intercalated disc (ID) protein Myozap was reported to be a strong inducer of SRF-mediated cardiac
hypertrophy [8]. Over time, our group revealed several other key players like Dysbindin, GTPases
like RhoA/Rnd1, and TRIM family members like TRIM24/TRIM32, which lead to either induction or
inhibition of SRF-signaling mediated cellular hypertrophy in neonatal rat cardiomyocytes. We initially
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discovered Dysbindin via a yeast two-hybrid screen of Myozap against human cardiac cDNA library
that we later found to be interacting with almost all these proteins [9–11], suggesting the involvement of
an orchestrated, multi-protein complex in the induction of SRF-mediated cardiomyocyte hypertrophy.

Dysbindin, which is expressed in several tissues including the heart [11], is part of the ubiquitously
expressed BLOC-1 complex (biogenesis of lysosome-related organelles complex 1), also consisting
of proteins Pallidin, Snapin, Cappucino, Muted, along with 1-3 BLOS proteins [12]. This octet is
essential for the normal biogenesis of various organelles that are part of the endosomal–lysosomal
system, protein sorting along with complex -2/3, membrane biogenesis and vesicular trafficking [13–15].
Two stable sub-complexes were furthermore defined as trimers of Pallidin-Cappuccino-BLOS1 and
Dysbindin-Snapin-BLOS2 [16]. The defects in the proteins belonging to the BLOC-1 complex have
been credited with numerous diseases like variations of Hermansky–Pudlak syndrome (HPS) [17].
Moreover, Dysbindin has previously been a well-studied protein in the neuronal context, where it plays
a central role in neurite outgrowth and cargo trafficking via both pre- and post-synaptic neurons [18–20].
Reduced Dysbindin protein levels in the brain eventually promote to schizophrenia, establishing
Dysbindin as a prominent Schizophrenia susceptibility protein [18,21,22].

With such a widely studied role in neuronal pathophysiology, we recently also performed a
detailed characterization of Dysbindin in neonatal rat cardiomyocytes, where it was found to play a
distinct role in the induction of hypertrophic cardiac signaling, in particular, RhoA–SRF axis-dependent
transcription [11]. In the current manuscript, we used Dysbindin-deficient mice to study cardiac
(patho)physiology at baseline and under stress conditions like TAC and PE treatment. Surprisingly,
the loss-of-function of Dysbindin in vivo did not attenuate cardiac hypertrophy induced by TAC/PE
infusion. Interestingly, however, the levels of hypertrophy-inducing interaction partner Myozap and
BLOC-1 partners of Dysbindin like Muted and Pallidin were dramatically reduced in Dtnbp1_KO
mouse heart. Taken together, these data suggest that Dysbindin likely plays an important role in
maintaining the integrity of its interaction partners like Myozap, Pallidin and Muted in the heart.

2. Materials and Methods

2.1. Experimental Animals

All animal experiments were performed in male Dtnbp1_KO mice in C57BL/6J genetic
background [23] in accordance with the institutional guidelines of the Kiel University and regulations
of the local ethical committee (Ministerium für Energiewende, Landwirtschaft, Umwelt und
Ländliche Räume Schleswig-Holstein (MELUND)) of the state Schleswig-Holstein, Germany. All the
animal experimental protocols were approved by the ethical committee at MELUND (reference
number—V242-7224.121-4(72-6/14)). Tail snips from all animals were genotyped using a duplex PCR
procedure yielding PCR products across the deleted Dtnbp1 segment in Dtnbp1_KO mice.

2.2. Genotyping

To confirm the absence of Dysbindin in the Sandy mice, we performed genotyping PCR on DNA
obtained from tail-clippings of mice. The primer composition consisted of a mixture of four different
primers specific for Wild-type (Wild-type_Fw: 5′-ATA CCG GAG ATC ATG CAA GC-3′, _Rv: 5′-AGC
TCC ACC TGC TGA ACA TT-3′) and Dtnbp1_KO (Dtnbp1_KO_Fw: 5′-TCC TTG CTT CGT TCT CTG
CT-3′, _Rv: 5′-CTT GCC AGC CTT CGT ATT GT-3′) mice. The PCR conditions applied for genotyping
were 3 min at 94 ◦C for primary denaturation, followed by 31 cycles of 30 s at 94 ◦C for denaturation,
45 sec at 56 ◦C for annealing and 1 min at 72 ◦C for the extension. The product lengths for Dysbindin
achieved after loading the PCR product on agarose gel were 472 bps in Wild-type and 274 bps in
Dtnbp1_KO mice, confirming the knock-out of the gene (Figure S1A).
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2.3. Antibodies

The antibodies used for various immunoblotting experiments in this study were as follows:
GAPDH, mouse monoclonal (1:20,000; Sigma, St. Louis, MO, USA); Muted, rabbit polyclonal (1:1000,
Proteintech, Manchester UK); Myozap, mouse monoclonal (1:150; Progen, Heidelberg, Germany);
Pallidin, rabbit polyclonal (1:1000, Proteintech); Rnd1, rabbit polyclonal (1:1000, LSBio via Biozol,
Seattle, WA, USA); SERCA2A, mouse monoclonal (1:1000, Thermo Scientific, Waltham, MA, USA);
α-Tubulin, mouse monoclonal (1:8000, Sigma).

2.4. Protein Isolation and Western Blotting

Protein extraction and immunoblotting was performed as previously described [9]. Briefly, mouse
hearts were homogenized using a Precellys homogenizer with coarse and fine plastic beads in RIPA
buffer (1.0 mM Tris, 5 mM EDTA, pH 7.5, 1% NP-40 (v/v), 0.5% sodium deoxycholate (w/v), 0.1% SDS
(w/v)) supplemented with protease inhibitor cocktail (Roche Applied Science, Penzberg, Germany) and
phosphatase inhibitors 2 and 3 (Sigma). Protein concentration was determined by the DC assay kit
according to the manufacturers’ instructions (Bio-Rad, Hercules, CA, USA). Protein samples prepared
with Laemmli buffer were resolved by SDS-PAGE with a 10% polyacrylamide gel and transferred to
nitrocellulose membranes. Membranes were then incubated overnight at 4 ◦C with target-specific
primary antibodies diluted in 5% milk/BSA prepared in TBST buffer. Subsequently, the incubation in the
HRP-coupled secondary antibody was carried out for 1 h at room temperature. Proteins were visualized
with the help of a GelDoc using the chemiluminescence kit (ECL-select; GE Healthcare, Chicago, IL,
USA) and bands were detected by the FluorChem Q imaging system (Biozym, Hessisch Oldendorf,
Germany). Densitometry analyses were performed with the ImageJ software version 1.46 by measuring
specific proteins against the cellular housekeeping proteins like Tubulin or GAPDH for normalization.

2.5. RNA Isolation and qRT-PCR

Total RNA was isolated from mice hearts using TRIzol-based QIAzol lysis reagent (Qiagen, Hilden,
Germany) and a Precellys homogenizer with coarse and fine plastic beads. Reverse transcription
into cDNA was carried out from 1 µg of DNA-free RNA using the Superscript III first-strand cDNA
synthesis kit (Life Technologies, Inc., Carlsbad, CA, USA). A CFX96 real-time cycler (Bio-Rad) was used
for performing the PCR-based amplification using EXPRESS SYBR Green ER reagent (Life Technologies,
Inc.) in the qRT-PCR setup. Cycling conditions used were as follows: 3 min at 95 ◦C for denaturation,
followed by 40 cycles of 15 s at 95 ◦C for annealing and 45 s at 60 ◦C for the extension. Housekeeping
gene Rpl32 was used for the normalization.

2.6. Transverse Aortic Constriction, Phenylephrine (PE) Osmotic Pump Implantation and Echocardiography

TAC and echocardiography were performed in 8-week-old male Dtnbp1_KO mice and their
wild-type counterparts as described previously [9,24]. Briefly, mice were anesthetized with a
combination of ketamine (120 mg/kg i.p.) and xylazine (15 mg/kg i.p.). Mice were then orally
intubated with a 20-gauge tube and ventilated (Harvard Apparatus, Holliston, MA, USA) at 120 breaths
per min (0.2 mL tidal volume). The aortic constriction was performed via a lateral thoracotomy
through the second intercostals space. A suture (Prolene 6-0) was placed around the transverse
aorta between the brachiocephalic and left carotid artery and ligated against a 27-gauge needle.
The needle was later removed leaving discrete stenosis, the chest was sutured and the pneumothorax
evacuated. Sham-operated animals underwent the same procedure except for ligation. For PE
treatment, osmotic mini-pumps filled with Phenylephrine (20 µg/kg body weight/min) prepared
in PBS with 1mg/mL L-ascorbate (Sigma) were implanted subcutaneously [9]. The Control group
received vehicle L-ascorbate in PBS. Cardiac function of experimental animals was examined by
echocardiography 2 weeks post-surgery or -minipump implantation before sacrificing mice to collect
heart for downstream applications.
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2.7. Electron Microscopy

Ultrastructure of Dtnbp1_KO mice was observed by electron microscopy as previously
described [24]. In brief, Dtnbp1_KO mice were weighed and anesthetized with an intraperitoneal
injection consisting of ketamine (12 mg/mL) and xylazine (1.6 mg/mL) (10 µL/g body weight). The heart
was pre-perfused with 1% procaine in 0.1 M PBS and fixed with 6% glutaraldehyde in 0.1 M PBS by
transcardial vascular perfusion before harvest papillary muscles for further examination. Tissue blocks
were post-fixed with 2% osmium tetroxide and embedded in Araldite. Ultra-thin sections were
processed with uranyl acetate and lead citrate and viewed with Zeiss EM900 microscope (Carl Zeiss,
Jena, Germany).

2.8. Statistical Analyses

All the presented results are the means ± S.E. unless stated otherwise. Statistical analyses were
performed using a two-tailed Student’s t-test or two-way ANOVA (followed by Student–Newman–Keuls
post-hoc tests when appropriate), respectively. P values ≤ 0.05 were considered statistically significant.

3. Results

3.1. Dysbindin-Deficient Mice do not Exhibit Altered Cardiac Phenotype at Baseline

We previously reported Dysbindin as a robust inducer of cellular hypertrophy via induction of
RhoA-mediated SRF signaling in neonatal rat cardiomyocytes [11]. To gain a deeper understanding of
the cardiac function of Dysbindin, we used Dysbindin-deficient ‘sandy’ mice (Dtnbp1_KO, Figure S1A,B).
Sandy is an autosomal recessive coat mutation that spontaneously occurred in 1983 at The Jackson
Laboratory in the inbred DBA/2J strain [23]. For this study, however, the mutation was transferred
to the C57BL/6J (B6) genetic background by 11 generations of backcrossing into B6 to remove
the strong abnormal behavioral, mental and locomotor phenotypes in DBA/2J compared to B6
background [23], which we believed might alter cardiac function. We characterized these mice
at the age of 12 weeks and 1 year for the cardiac phenotype in unstressed mice. The phenotypic
and morphometric characteristics observed by ratios of heart weight and lung weight against the
bodyweight, and functional observations stating percentages of left ventricular ejection fraction and
fractional shortening by echocardiography in 12 weeks old mice did not project any hypertrophy-related
characteristics (Figure 1A–D). Similarly, there was no effect of Dysbindin deficiency on hypertrophic
gene program as assessed by the expressions of natriuretic peptides Nppa and Nppb and some of
the known SRF gene targets (Figure 1E,F and Figure S1C). Moreover, electron microscopy-based
myocardial investigation revealed no obvious ultrastructural abnormalities in the Dtnbp1_KO mouse
heart compared to wild-type littermates (Figure 1G). Cardiac function in 1-year-old Dtnbp1_KO mice
was indifferent from wild-type littermates (data not shown). These data thus suggest no deleterious
effects of Dysbindin deficiency on cardiac structure and physiological function at baseline.
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Figure 1. Basal characterization of Dtnbp1_KO mice. Morphometric characterization comparing
parameters of 3-month-old Dtnbp1_KO and wild-type mice (n = 6 each) for heart wt.: body wt.
(A), lung wt.: body wt. (B), percentage of left ventricle ejection fraction (C), percentage of left ventricle
fractional shortening (D). Expression of hypertrophic genes Nppa (E) and Nppb (F) was determined by
quantitative real-time PCR. (G) Electron microscopic images at various optical magnifications showing
the architecture of cardiac muscle. ID: intercalated disc; Mi: mitochondria. Statistical significance was
calculated by Student’s t-test. Error bars show mean ± S.E.
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3.2. Dysbindin Deficiency Does not Alter Cardiac Hypertrophy Due to Pressure Overload

Since Dysbindin is significantly upregulated in mouse models of pressure overload due to TAC
or PE treatment (Figure S2A,B), despite no cardiac abnormalities in Dtnbp1_KO mice at the baseline,
we aimed to determine whether Dysbindin is necessary for cardiac adaptation against cardiac pressure
overload due to TAC. At first, no significant differences were observed in the survival of Dtnbp1_KO
and wild-type mice after TAC (Figure S2C). The phenotypic characteristics measured by parameters like
heart:body (Figure 2A) or lung:body (Figure 2B) weight ratios, left ventricular functions like ejection
fraction (Figure 2C) and fractional shortening (Figure 2D) strongly portrayed the hypertrophic condition
of heart upon due to pressure overload. The TAC operations also induced expected hypertrophy at
the molecular level as evidenced from increased expression of markers like natriuretic peptides Nppa
(Figure 2E), Nppb (Figure 2F), myosin heavy chain-7 (myh7) (Figure 2H), and downregulation of myh6
(Figure 2G). Notwithstanding, the lack of Dysbindin did not alter the pathological outcome of the
heart after TAC (Figure 2A–H). Interestingly, though, the expression of collagens, fibrosis markers,
was significantly higher in Dtnbp1_KO than respective control mice (Figure 2I–K). Similarly, Dysbindin
deficiency strongly reduced protein levels of SERC2A not only after TAC but also in sham-operated
mice (Figure 2L, M). Interestingly, however, activation of ERK1/2 was significantly attenuated in
Dtnbp1_KO mice after TAC, whereas only a trend of downregulation of pERK1/2 was observed in
wild-type littermates (Figure 2N,O).

3.3. Dysbindin Deficiency Does not Alter Cardiac Hypertrophy Due to Phenylephrine (PE) Treatment

Earlier, we observed a strong inhibition of cellular hypertrophy induced by PE when Dysbindin
was knocked down in NRVCMs [11]. To determine if similar inhibitory action translates in vivo,
we treated mice with PE using a subcutaneous introduction of osmotic mini-pumps. Control mice
received PBS. As anticipated, PE induced the alpha-adrenergic stimulation hypertrophic signature
in the mice hearts, with upregulation of phenotypic, functional and molecular markers mentioned
earlier (Figure 3A–H). However, again much against anticipation, there was no significant difference
between Dtnbp1_KO and wild-type PE treated mice in most of the parameters except for significant
upregulation of Myh7 and significant downregulation of collagens (Figure 3H,J,K). Change in the
hypertrophic signature was observed in accordance with the absence of Dysbindin, strongly suggesting
non-translation of in vitro effects. The majority of the parameters, like heart/body (Figure 3A) or
lung/body (Figure 3B) weights, left ventricular functions like ejection fraction (Figure 3C) and fractional
shortening (Figure 3D), or the expression of hypertrophic genes (Figure 3E–H) in PE-treated Dtnbp1_KO
mice were not indifferent from the respective wild-type groups. The vasopressor like PE is also known
to induce the fibrotic markers like Col1a, Col3a and Col4a; interestingly, however, Col3a and Col4a were
markedly downregulated by the absence of Dysbindin (Figure 3I–K) after PE-induced hypertrophy,
implying a possibly beneficial effect of Dysbindin deficiency. Moreover, SERCA2A (Figure 3L,M),
which was dysregulated after TAC operations in Dtnbp1_KO mice, was also found unaltered after PE
treatment. Moreover, activation of ERK1/2 was robustly reduced in PE treated mice of both genotypes,
this effect was however persistent in PBS treated Dtnbp1_KO mice as well (Figure 3N,O).
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Figure 2. Characterization of Dtnbp1_KO mice in biomechanical stress-induced cardiomyopathy. TAC
or sham operations were performed on 8-week old wild-type (WT) and Dtnbp1_KO mice. Post two
weeks of operations (n = 7 (WT-SHAM), 8 (WT-TAC), 8 (KO-SHAM), 8 (KO-TAC)). Morphometric
characterization showing ratios of heart weight (wt):body wt (A) and lung wt:body wt (B), functional
characterization using the percentage of left ventricle ejection fraction (C) and percentage of left
ventricle fractional shortening (D). Expression of hypertrophic genes Nppa (E), Nppb (F), myosin heavy
chain (Myh7) (G), myosin light chain (Myh6) (H) and fibrotic markers Col1a (I), Col3a (J) and Col4a (K)
was determined by quantitative real-time PCR. Representative Immunoblots display cardiac levels
of SERC2A (L), with its densitometry analysis in (M). Representative Immunoblots display cardiac
levels of ERK1/2 and pERK1/2 (N), with its densitometry analysis in (O). Statistical significance was
calculated by two-way ANOVA. Error bars show mean ± S.E. ns, non-significant; *, p < 0.05; **, p < 0.01;
***, p < 0.001.
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Figure 3. Characterization of Dtnbp1_KO mice in pharmacologically induced alpha-adrenergic
stimulation -induced cardiomyopathy. 8-week old wild-type (WT) and Dtnbp1_KO mice underwent
PE or PBS (control) introduction using osmotic minipumps implantation. Post two weeks of implant
(n = 4 (WT-PBS), 5 (WT- PE), 5 (KO- PBS), 10 (KO- PE)), phenotypic characterization was performed
by measuring morphometric characters, ratios of heart weight (wt): body wt (A), lung wt: body wt
(B), functional characters like percentage of left ventricle ejection fraction (C) and percentage of left
ventricle fractional shortening (D). Expression of hypertrophic genes Nppa (E), Nppb (F), myosin heavy
chain (G), myosin light chain (H) and fibrotic markers Col1a (I), Col3a (J) and Col4a (K) was determined
by quantitative real-time PCR. Representative Immunoblots display cellular levels of SERC2A (L), with
its densitometry analysis in (M). Representative Immunoblots display cardiac levels of ERK1/2 and
pERK1/2 (N), with its densitometry analysis in (O). Statistical significance was calculated by two-way
ANOVA. Error bars show mean ± S.E. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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3.4. Myozap and BLOC-1 Complex Are Dysregulated after Knock-Out of Dysbindin

To find the potential molecular causes of inconsistent in vitro and in vivo observations in the
role of Dysbindin in cardiomyocyte hypertrophy, we determined the expression levels of some of the
known interaction partners of Dysbindin. We initially identified Dysbindin as an interaction partner
of ID-specific Protein Myozap, both involved in Rho-dependent SRF-signaling [11]. Dysbindin is
also a known constituent of biogenesis of lysosome-related organelles complex 1 (BLOC-1), which is
associated with activities like endosomal-lysosomal regulation, protein sorting, etc. [25]. Interestingly,
although the transcript level of Myozap was unaltered, Myozap was dramatically reduced at the
protein level in Dysbindin-deficient mice, independent of surgery performed (TAC/Sham) or treatment
given (PE/PBS) (Figure 4A–C and Figure S3A–C). Similarly, both Muted and Pallidin BLOC-1 members
were strongly downregulated in Dtnbp1_KO mice at protein levels (Figure 4D–F), but not at transcript
levels (Figure S3D,E). Overexpression of Dysbindin in NRVCMs however did not affect Pallidin or
Myozap levels (Figure 4F–H). Overall, these data strongly suggest the importance of availability of
Dysbindin in maintaining the integrity of its interaction partners.
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4. Discussion

Dysbindin, the name originating from ‘dystobrevin binding protein 1′ was first discovered via
yeast two-hybrid screening as a coiled-coil-domain containing protein that interacts with multiple
dystrobrevins in muscle and brain [25]. Dysbindin is also a part of the BLOC-1 complex, where it
mediates organogenesis and is required for directing protein cargos into the vesicle assembly that can
reach nerve endings [26]. Dysbindin here plays a part in both pre- (impact glutamate synaptic function)
and post-synaptic (works as a receptor component of postsynaptic density) neuronal transport [26].
In cardiomyocytes, we earlier found that Dysbindin interacts with the intercalated disc (ID) protein
Myozap and strongly activates RhoA-mediated SRF-signaling in NRVCMs resulting in significant
hypertrophy [11]. Conversely, knockdown of Dysbindin was effective in attenuating PE-induced
cardiomyocyte hypertrophy [11]. Here, however, we found that these anti-hypertrophic effects were
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not translated in vivo where Dysbindin knockout mice exhibited an indifferent phenotype compared
to that of wildtype counterparts after pressure overload due to transverse aortic constriction (TAC) or
PE treatment. However, a striking finding was the strong downregulation of Myozap, Muted and
Pallidin, direct interaction partners of Dysbindin, which implies that Dysbindin is required for the
stability and proper stoichiometry of these protein complexes.

Pharmacologically induced alpha-adrenergic stimulation using PE or biomechanical stressors
are inducers of cardiac hypertrophy and eventual disease-causing phenotypes. Our previous in vitro
data suggested inhibitory effects of Dysbindin against cardiomyocyte hypertrophy induced due to
either PE or ET in NRVCMs [11]. To study the translation of these in vitro effects in vivo, we employed
pressure overload due to TAC- and PE-mediated hypertrophy induction in mice to assess if the absence
of Dysbindin protects the heart from pathological cardiac hypertrophy in vivo. In contrast to our
anticipation, the lack of Dysbindin did neither protect nor exaggerate cardiac hypertrophy. These data
suggest that compensatory pathways must be at work in vivo, that are not active or inducible in vitro.
Another important consideration is that the mouse model leads to constitutive deficiency throughout
embryonic development. Future studies will have to show whether, e.g., an inducible knockout in
adult mice will yield similar results.

Interestingly, though, a classical marker for cardiac contractility and emerging therapeutic target
against heart failure, SERC2A [27–32], was significantly downregulated in Dysbindin deficient mice.
Furthermore, Dysbindin deficiency strongly reduced the activation of ERK1/2, both in TAC operated
and PE treated mice. Interestingly, it is established that the activation, i.e., phosphorylation of ERK1/2
is involved in the induction of prohypertrophic stimuli, lack of its activation also exhibits similar
effects [26]. We thus believe that this downregulation of SERCA2A and pERK1/2 in Dtnbp1_KO mice
might contribute, at least partly, to the observed cardiac remodeling after TAC or PE treatment.

The most prominent disease pathogenesis role of Dysbindin so far comes in schizophrenia
via its interaction with Muted [33], where it modulates dopamine D2 receptor internalization and
signaling [18,19,34,35]. Since the first reports describing dysbindin as a susceptibility protein for
Schizophrenia it has now recently been investigated as a target for antipsychotic drug treatment [36,37].
On the other hand, various drugs like Clozapine, Quetiapine and Lovastatin, which are widely
prescribed for antipsychotic medications have a possible association with cardiac diseases like
electrocardiographic abnormalities and prolongation of QTc interval [38,39], suggesting an indirect
role of systemic Dysbindin deficiency in drug-associated cardiac pathogenesis. These speculations
however need experimental validations.

Interestingly, we observed that two of the members of this BLOC-1 complex were found to be
downregulated in the heart with the knockout of Dysbindin. As all three, Dysbindin, Muted and
Pallidin, are part of different sub-complexes, downregulation of the latter two along with Dysbindin
points towards complete downregulation of both BLOC-1 complex and associated functions in the
heart. BLOC-1 facilitates the protein trafficking on endosomes via interactions with BLOC-2, BLOC-3,
BORC and AP-3 complexes [12,40–42]. The lack of functional consequences in Dysbindin-deficient mice
is likely due to possible compensation to some extent by other complexes performing similar functions.

Similar to Muted and Pallidin, another cardiac binding partner of Dysbindin, Myozap,
was dramatically reduced in Dtnbp1_KO mice. Like Dysbindin, we previously found that Myozap
deficiency does not affect cardiac structure or function at baseline [43]. After TAC however,
Myozap-deficiency led to accelerated cardiac hypertrophy, severe reduction of contractile function,
signs of heart failure, and increased mortality. Mechanistically, reduced levels of Myozap might act in
inducing cardiac pathology observed in Dtnbp1_KO mice. Taken together, the present study indicates
that Dysbindin has a complex role in maintaining the stability and integrity of its interaction partners
in forming functional complexes.

Limitations: While we did not observe a dramatic phenotype in mice lacking Dysbindin, either at
baseline or upon stress, we cannot exclude the possibility that more sustained stressors e.g., prolonged
TAC or PE treatment and/or other disease conditions (e.g., myocardial infarction) might reveal adverse



Cells 2020, 9, 2390 11 of 14

consequences of Dysbindin deficiency. Furthermore, impact of Dysbindin deficiency on cardiomyocyte
hypertrophy or death, if any, triggering observed fibrotic response after TAC or PE treatment was not
accounted for in this study. Thus, further studies are needed to get deeper insights into if and how
Dysbindin is involved in these processes.

5. Summary

The protein Dysbindin has been widely studied in the context of the pathogenesis of schizophrenia,
where its downregulation is a cause for the disease. Some years ago, our group established its role in
neonatal heart cells, where it induced pathogenic hypertrophy. The aim of the current study was to
confirm that observation in various mice experiments, to find whether Dysbindin deficiency reduces
cardiac hypertrophy. Although Dysbindin deficiency did not alter cardiac pathology upon cardiac
stress, we observed dramatic reduction of some its interaction partners like Myozap, Muted and
Pallidin, suggesting its important role in the stability of those proteins.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4409/9/11/2390/s1,
Figure S1: (A) Agarose gel image depicting successful knockout of Dtnbp1 gene in the Dtnbp1_KO mice.
(B) Immunoblot indicating the absence of Dysbindin protein in Dtnbp1_ko mice. (C) Transcript levels of SRF
gene targets are not altered in Dysbindin-ko mice. Figure S2: Immunoblots indicating the increased levels of
Dysbindin in the hearts of TAC operated (A) or PE treated (B) mice. (C) Percentage of mice survival post four
weeks of operations. 8-week old wild-type (WT) and Dtnbp1_KO mice underwent TAC or Sham operations. n = 7
(WT-SHAM), 8 (WT-TAC), 8 (KO-SHAM), 8 (KO-TAC). Figure S3: (A) Immunoblots depicting Myozap protein
levels in PBS/PE treated mice, its densitometric analysis against Tubulin shown in (B) and transcript levels in
(C). Transcript levels of Pallidin (D) and Muted (E) are shown in a bar graph in Dysbindin-KO mice compared to
wild-type littermates upon TAC. (F) Immunoblots depicting Dysbindin, Pallidin and Myozap levels in NRVCMs
overexpressing LacZ (control) or Dysbindin, densitometric analysis of which for Myozap and Pallidin against
GAPDH are shown in (G) and (H), respectively. Statistical significance was calculated by two-way ANOVA.
Error bars show mean ± S.E. **, p < 0.01; ***, p < 0.001. Table S1: Raw data for the immunoblot presented in
Figure 2L. Table S2: Raw data for the immunoblot presented in Figure 2N. Table S3: Raw data for the immunoblot
presented in Figure 3L. Table S4: Raw data for the immunoblot presented in Figure 3N. Table S5: Raw data for
the immunoblot presented in Figure 4A. Table S6: Raw data for the immunoblot presented in Figure 4D for
MUTED. Table S7: Raw data for the immunoblot presented in Figure 4D for Pallidin. Table S8: Raw data for
the immunoblot presented in Supplementary Figure S3A. Table S9: Raw data for the immunoblot presented in
Supplementary Figure S3F for Myozap. Table S10: Raw data for the immunoblot presented in Supplementary
Figure S3F for Pallidin.
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