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Abstract

Background: Visceral leishmaniasis is a considerable public health burden on the Indian subcontinent. The disease
is highly endemic in the north-central part of Bangladesh, affecting the poorest and most marginalized communities.
Despite the fact that visceral leishmaniasis (VL) results in mortality, severe morbidity, and socioeconomic stress in the
region, the spatiotemporal dynamics of the disease have largely remained unexplored, especially in Bangladesh.

Methods: Monthly VL cases between 2010 and 2014, obtained from subdistrict hospitals, were studied in this work.
Both global and local spatial autocorrelation techniques were used to identify spatial heterogeneity of the disease. In
addition, a spatial scan test was used to identify statistically significant space-time clusters in endemic locations of
Bangladesh.

Results: Global and local spatial autocorrelation indicated that the distribution of VL was spatially autocorrelated,
exhibiting both contiguous and relocation-type of diffusion; however, the former was the main type of VL spread
in the study area. The spatial scan test revealed that the disease had ten times higher incidence rate within the
clusters than in non-cluster zones. Both tests identified clusters in the same geographic areas, despite the differences in
their algorithm and cluster detection approach.

Conclusion: The cluster maps, generated in this work, can be used by public health officials to prioritize areas for
intervention. Additionally, initiatives to control VL can be handled more efficiently when areas of high risk of the
disease are known. Because global environmental change is expected to shift the current distribution of vectors
to new locations, the results of this work can help to identify potentially exposed populations so that adaptation
strategies can be formulated.
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Background
Visceral leishmaniasis (VL) is a neglected tropical dis-
ease [1] that claims the lives of 20,000 to 40,000 people
worldwide every year [2]. The disease is prevalent on the
Indian subcontinent, largely affecting impoverished
communities [3]. Estimates reveal that more than 67% of
global VL cases occur in India, Bangladesh, and Nepal
[4] and around 200–300 million people are at risk of de-
veloping VL in South Asia [3], with an estimated annual
economic burden of US$350 million [5]. Because VL

cases are the main driver for transmission in South Asia
[6], knowledge of spatial heterogeneity is valuable for
understanding its spatial and temporal patterns [7, 8].
Understanding the local or global spatial heterogeneity

(clustering) of a disease can support a range of activities
relevant to public health management, including disease
surveillance [9], determining underlying spatial risk factors
[10, 11] or causal mechanisms affecting the distribution of
disease [12], understanding spatiotemporal dynamics [13],
and disease control planning [2, 14]. Studies demonstrated
that local and global clustering techniques are very useful
for identifying statistically significant “hot” and “cold”
spots of a disease, which can then be used to provide valu-
able insights about causative factors affecting its
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distribution [15, 16], particularly in regions where infec-
tion is already a concern. In a resource-poor health care
system like Bangladesh, mapping disease clusters would
be highly useful in planning effective strategies for control
and elimination programs [17]. These maps would provide
distinct information about the spatial patterns of a disease
or its spatiotemporal dynamics [13, 18], which is crucial
for public health officials to prioritize their activities at
specific sites.
Despite VL being a major public health concern for

the last few decades, little is known about the spatial
heterogeneity of this disease in Bangladesh [3]. Based on
the high rates of VL in Mymensingh district, a case-
control study by Bern et al. [3] was possibly the first to
reveal the household-level clustering of the disease in
sections of a community (called paras). In a follow-up
review paper, Bern et al. [19] assert that the VL inci-
dence begins to diffuse in contiguous locations once
areas within a village become saturated; as a result, clus-
tering of the disease at both the household level and on
a larger scale is a prominent feature. Although the work
of Bern et al. [3] is useful for understanding the distribu-
tion of VL at the household (micro) level, it is unclear
whether the degree of local clustering is equal across the
study area or the risk of VL is equal to every spatial unit
in the area of interest. In addition, Kothari et al. [20]
demonstrated that the results obtained at the micro level
are difficult to generalize for an entire study area owing
to the fact that the “realized” niche for the sand fly vec-
tor is not equally distributed across the study area [21].
Because the incidence of VL in Bangladesh is mostly lo-
cated in remote rural areas, especially in the areas with
dilapidated infrastructure [22], geographical constraints
often preclude an immediate response to a local epi-
demic. Therefore, understanding of the spatial hetero-
geneity of VL may help develop more effective health
care systems for marginalized rural populations who are
at greater risk of this fatal disease.
This study primarily aimed to assess the spatiotempo-

ral pattern of VL cases in endemic locations of
Bangladesh. Specifically, two research questions were
tested in this work. First, is there any spatial heterogen-
eity or clustering of VL cases at the regional scale in
Bangladesh? If so, to what degree does this clustering in-
crease the risk and likelihood of disease occurrence rela-
tive to non-cluster areas?

Methods
Description of the study area
The study was conducted in four subdistricts or upazilas
(Fulbaria, Trishal, Gaffargaon, and Sreepur) located in
the hyperendemic Mymensingh district and relatively
low-endemic Gazipur district [23]. The study area loca-
tion is 24.19°–24.62° N latitude and 90.26°–90.54° E

longitude (Fig. 1). The four upazilas together have a
total area of 1594.93 km2 and population of 1,791,313,
with a mean population density of 1127 people/km2.
The average literacy rate is 46.6%, with approximately
equal rates between men (47.8%) and women (45.4%).
On average, 18.2% people live in pucca or semi-pucca
houses, and 23.4% of the total population lack potable
water. More than 52.1% of the people in the study area
do not have access to safe sanitation [24].
Of the total 15,850 VL cases reported during 2008–

2014 in Bangladesh, 69.12% occurred in the three upazi-
las (e.g., Fulbaria, Trishal, and Gaffargaon) in Mymen-
singh district and 1.8% were located in Sreepur upazila
in Gazipur district [25]. Therefore, the study area com-
prises 70.92% of the nation’s total reported VL cases in
preceding years, thus providing a unique opportunity to
investigate spatial heterogeneity of the disease.

Disease data
Data of reported VL cases between 2010 and 2014 were
obtained from the respective upazila (analogous to sub-
district) health complex (UHC) in the study area. Al-
though there is a national kala-azar treatment center,
called Surya Kanta Kala-Azar Research Center (SKKRC),
in Mymensingh district, we used VL cases recorded at
the UHCs for a few reasons. The SKKRC hospital was
established in 2012, and it started maintaining VL re-
cords from 2012 [26]. This means the use of the SKKRC
database in our work would have missed a large number
of VL cases from 2010 to 2011 that were recorded in the
UHCs [25]. A cross-sectional study conducted on
health-seeking behavior of Post-kala-azar dermal leish-
maniasis (PKDL) patients in SKKRC reported that ma-
jority (88%) of the VL patients were referred from the
respective UHCs who were at their second or third
phase of treatment [27]. Therefore, the VL cases treated
at SKKRC were very likely to have registered earlier with
the respective UHCs. In addition, our database repre-
sented only the hospitalized cases, and no outpatients
were included due to the fact that the outpatient data re-
cording system lacked the multiple information checking
which was however present in case of inpatient record-
ing system [28]. Furthermore, consultation with relevant
health professionals revealed that the outpatient data-
base of a typical UHC also contains significant fake ad-
dresses. Many VL patients outside the area of interest
come and register with false addresses in the UHCs of
the study area, for instance, Fulbaria UHC, for availing
subsidized treatments like the AmBisome (amphotericin
B) treatment provided by Médecins Sans Frontières
(MSF) [29].
Demographic data in the UHC log books, as well as

the corresponding year and date of cases, was checked
to avoid data duplication. Data of patient attributes
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including place of residence, date of admission/dis-
charge, age, and sex were considered. Three out of the
four upazilas in our study area were hyperendemic, and
the UHCs received VL patients from adjacent districts
and subdistricts [21, 25, 28]. We included 2082 VL cases
pertaining to study area, out of 5762 cases. The excluded
3680 VL cases were from various locations and,

importantly, outside from our area of interest. Inclusion
of these records would have misled the cluster detection
process, as respective UHC databases could not be
added into our analysis, thus affecting local and global
mean of VL incidences [30–32]. Finally, using a unique
identifier, all VL cases were aggregated and matched
with the lowest census tract polygon features (i.e., village

Fig. 1 Location of the study area, showing four upazilas in the Mymensingh and Gazipur districts. The inset map shows the location of the study
area with respect to Bangladesh
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or mauza shapefile), obtained from the Bangladesh Bur-
eau of Statistics (BBS). The resultant database included
annualized VL cases according to each spatial unit, from
which the aggregated value for the entire study period
(2010–2014) was derived by manipulating the attribute
table. Likewise, population of the study area was ob-
tained from population and housing census of 2011 [24]
and linked with the appropriate geographic unit.

Analyzing spatiotemporal patterns
To examine spatial and temporal patterns of VL occur-
rence in the study area, both local and global clustering
techniques [33] were used. The spatial autocorrelation
and the extent of global clustering were evaluated using
Moran’s I statistic. This was done separately for each
year as well as for the entire study period (2010–2014).
We used the first-order Queen’s case contiguity rule
with Euclidian distance to conceptualize the spatial rela-
tionship and compensate for the irregular sizes and
shapes of the mauza boundaries used in this study. The
global test examines the existence of clustering (positive
or negative autocorrelation) over the area being consid-
ered and whether objects with similar values are in
spatial proximity to each other [32]. Moran’s I ranges
from + 1 (positive autocorrelation) to − 1 (negative auto-
correlation), and a value of 0 corresponds to spatial ran-
domness in distribution [34]. If global clustering was
found, then a local autocorrelation algorithm was ap-
plied to the database to identify statistically significant
locations of hot spots among positively autocorrelated
areas (p < 0.05) and their spatial extent.
To examine local autocorrelation for individual years

and for the entire period, the local Gi* statistic [35] was
used, which takes into account VL concentration values
in the neighborhood of a spatial unit [33]. To determine
the statistically significant location of high or low values,
the local mean infection rate is compared with the global
mean rate by examining each feature within the context
of neighborhood features [34]. The first-order Queen’s
case polygon contiguity rule was applied to define spatial
adjacency relationships among features. Use of this algo-
rithm subsequently outputted two statistics: z score and
p value for each spatial unit [36], based on which hot
and cold spots of a disease could be determined. A fea-
ture with a high positive z score denotes a statistically
significant hot spot, meaning that the spatial unit under
scrutiny has a high concentration of cases and is also
surrounded by features (e.g., mauza) with high values.
When a feature produces a statistically significant negative
z score, it has a concentration of low values and is sur-
rounded by features with low values (cold spots) [35, 36].
In addition to the global Moran’s I and local Gi* statis-

tic, we also employed a spatial scan statistic to determine
space-time clusters, for several reasons. The first is to

examine whether the two local methods produce con-
sistent outcomes because different spatial techniques
tend to produce different spatial patterns of a geographic
phenomenon, such as a disease [37]. Second, the clusters
identified through this algorithm are not defined by ad-
ministrative boundaries, which minimizes preselection
bias [31]. Third, because of its sensitivity to local cluster
detection, statistically significant and precise clusters can
be efficiently identified [9, 37]. Finally, if clusters are
picked up in the same location by the two local algo-
rithms, then the results are said to be more robust and
consistent [12]; this constitutes part of our objectives.
To determine space-time clusters over the study

period (2010–2014), a centroid data file was first created
using the mauza polygon shape file that contained cases,
population, and coordinate data (latitude/longitude) of
each spatial unit. The Poisson probability disease model
embedded in SaTScan (v. 9.4) [38] was then used to de-
tect local clusters by scanning the entire area of interest
with a cylindrical window shape. In this window, the
base of the scanning cylinder represents geographic
space (the radius of the window varies from zero to a
user-defined upper limit) whilst the height of the cylin-
der represents some interval in time [11]. The scan cen-
tered the cylinder at the mauza’s centroid and
progressively increased the radius to include 50% of the
total population of each mauza, such that large and
small clusters could be detected [10]. The default setting
of no geographic overlap was used; consequently, statis-
tically significant clusters would not overlap each other.
Based on the calculated log-likelihood ratio values, the
primary and secondary space-time clusters were de-
termined [33]. For statistical significance, a simulated
p value of the clusters was obtained through Monte
Carlo testing with 999 replications [38], and cluster
assessment was conducted by comparing the number
of reported cases within the window with the number
of expected cases.

Results
The result of global Moran’s I (Table 1) showed that the
distribution of VL cases was spatially autocorrelated.
The largest value of Moran’s I was 0.315 in 2010
followed by 0.182 in 2014. Statistically significant clus-
tering (0.195, p < 0.001) of the disease over the entire
time span (2010–2014) was also observed (Table 1).
Even though the value of Moran’s I decreased between
2010 and 2013, a three-time increase in Moran’s I was
observed in 2014 compared with the preceding year,
2013.
Hot and cold spot analysis revealed that local clustering

of VL cases varied both spatially and temporally across the
study area. The spread of statistically significant (≥ 90%
confidence interval) hot spots can be visualized in Fig. 2.
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This shows that major VL hot spots were located in
Trishal upazila in 2010. Fulbaria upazila in Mymensingh
district was free from VL incidence, but small pockets of
clusters become visible in Fulbaria in 2011. The magni-
tude of the disease seemed to have reversed in 2012, with
large clusters appearing in Fulbaria and few clusters in
Trishal. This pattern continued in 2013; however, a pat-
tern similar to 2011 reappeared in 2014, suggesting that
Trishal had more clusters than Fulbaria, as many mauzas
experienced higher concentrations of VL cases. Over the
study period, statistically significant hot spots were found
in Trishal upazila, with scattered small clusters in Ful-
baria. The analysis suggests that the spread of VL in the
study area exhibited both contiguous and relocation pat-
terns; however, a contiguous pattern appears to be prom-
inent, rather than the relocation type (Fig. 2). Cold spots
of the disease were observed in Gaffargaon upazila; how-
ever, there were no hot and cold spots detected in Sreepur
upazila of Gazipur district.
The spatial scan test identified one primary and three

secondary space-time clusters (Fig. 3), located in Trishal
and Fulbaria upazilas. The three clusters comprised 16
mauzas in the study area. The most likely cluster, which
included four mauzas, was observed in Trishal upazila,
centered at 24.6° N, 90.5° E, with a relative risk of 11.102
(p < 0.001). The characteristics of the identified clusters
in the study area can be found in Table 2. The log-
likelihood ratio of these clusters suggests that popula-
tions within the cluster zones are at significantly greater
risk of VL than those outside of clusters. Figure 3 further
indicates that high-risk clusters detected by SaTScan ei-
ther included or overlapped with those delineated by
local Gi*.
Out of the total 1,791,313 people in the study area,

680,730 people lived within the VL-affected mauzas.
SaTScan calculated an average annual case rate of 61 per
100,000 population within the study area. Table 2 dem-
onstrates an annual case rate of 649.5 cases per 100,000
population within the primary cluster. This high annual
case rate was followed by the three secondary clusters as
well which were 652.2, 458.5, and 235.1. Hence, the pri-
mary cluster and the most significant secondary cluster
demonstrated about 11 times higher annual case rate

than the gross average in the study area. The observed
to expected ratio for the first, second, third, and fourth
clusters were 10.617, 10.660, 7.494, and 3.843, respect-
ively. The relative risk (Table 2) also shows that the
population within the clusters is significantly at higher
risk of VL than the population outside the cluster.

Discussion
Use of global and local spatial statistics revealed strong
evidence of VL cases being spatially autocorrelated.
Local Gi* indicated the spatial extent of hot and cold
spots of VL infection in endemic areas of Bangladesh
(Fig. 2). These maps may be of substantial value for de-
termining the etiology of VL from a spatial viewpoint
[39]. Even though our study did not consider how the
disease dispersed in the study area, close inspection of
hot spot maps (Fig. 2) obtained via local Gi* provided
clues that may be used to interpret the diffusion pattern
of VL over space and time. It is notable, however, that
contiguous and relocation types [13, 18] of VL infection
seemed to predominate throughout the study period.
Examination of individual years may provide evidence

of distinct spatial pattern, which is crucial to prevent
further spread of disease [18]. For instance, the 2010 hot
spot map featured contiguous movement, but the dis-
ease appeared to have expanded in 2011 with single foci.
It then expanded to new locations in 2012 and 2013; as
a result, new hot spots emerged in areas that had no VL
incidence in 2010. El-Masum et al. [40] noted a major
resurgence of VL in the 1990s following the cessation of
DDT (dichlorodiphenyltrichloroethane). However, a re-
location type of spread to the earliest locations again be-
came evident in 2014, and mauzas that were hot spots
in 2013 experienced relatively few cases, resulting in the
least significant hot spots (p < 95%). Thus, this study
finding is partially in agreement with that of Bern et al.
[19]. This spatial pattern may have resulted from human
mobility due to work-related movement or visiting rela-
tives. VL cases are the main driver for transmission in
and around Bangladesh [6]; the role of human mobility
in the spread of disease is highly likely as human migra-
tion is shown to enhance sand fly diffusion and density
in areas that were previously free from infection [41].
Thus, the westward progression of hotspots during
2011–2012 and northward progression between 2012
and 2013 in Fulbaria, resulting in relocation-type diffu-
sion of the disease, may be linked with work-related
movement within the villages of the study area. Similar
to our observations, Desjeux [42] identified cross-border
migration as an important risk factor in transmitting VL
to the Nepalese Terai region from India. In addition,
ceasing of indoor residual spraying, after declines in VL
incidence as reported by household members, may also
account for the alternating spatiotemporal distribution

Table 1 Global autocorrelation of VL (2010–2014)

Year Moran’s I z score p value Pattern

2010 0.315 10.997 0.001* Clustered

2011 0.141 5.687 0.001* Clustered

2012 0.079 2.795 0.013** Clustered

2013 0.057 2.051 0.035** Clustered

2014 0.182 6.982 0.001* Clustered

2010–2014 0.195 7.582 0.001* Clustered

*p < 0.01; **p < 0.05
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of VL in the area; this however requires further investi-
gation. Moreover, increased interaction between an ever-
growing population and the natural environment in
Bangladesh is providing a niche that could potentially
enhance the likelihood of insurance/resurgence into new
locations [21, 25]. In addition, probable ceasing of the
residual spraying that had been found to be greatly ef-
fective in vector control strategies [43], with the decline
of VL incidence, could account for the alternating spa-
tiotemporal distribution of VL in the area; this however
requires further investigation.
We found that both of the local clustering algorithms

(e.g., Gi* and SaTScan) identified statistically significant
clusters in the same locations (Fig. 3), suggesting that

the results of our work are robust [12]. This means the
disease did not occur at random. On closer inspection of
Table 2, it can be observed that the number of reported
cases was significantly higher than the number of ex-
pected cases within the clusters. This is important be-
cause the distribution of VL has not been spatially
analyzed prior to the intervention design, similar to most
interventions in Bangladesh [44]. However, our findings
suggest that the actual nature of the disease can be heav-
ily influenced by both spatial and temporal aspects, and
areas within a cluster are exposed to greater risk than
those outside of the clusters. Therefore, for most inter-
vention programs that are simply based on the total
number of reported cases, there is a risk of overlooking

Fig. 2 Statistically significant hot and cold spots of VL in the study area, between 2010 and 2014
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Fig. 3 Space-time clusters (2010–2014) with respect to hot and cold spots of VL; circles represent clusters identified by SaTScan
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areas with persistent severity of disease. Out of four sta-
tistically significant clusters identified by the spatial scan
test, three were located in Trishal upazila, a persistent
VL hot spot (Fig. 3) and a very impoverished subdistrict
in the study area.
Space-time analysis added additional features of VL

occurrence that could otherwise be missed (e.g., only
with global and local autocorrelation analyses). For ex-
ample, the SaTScan analysis showed the rate of annual
VL cases inside the two most significant detected clus-
ters were 11 times higher than the average rate in the
study area. Similar to our result, Singh et al. [45] re-
ported that VL incidence in Bihar showed focal distribu-
tion with respect to space and time and found high
prevalence rates within these foci [45]. Figure 3 suggests
that within endemic locations, having very high VL case
rates, the spatial patterns of a disease may be quite dif-
ferent from a space-time pattern due to the variations in
incidence rate and relative risk over time. That is to say,
not all the spatial clusters (2010–2014) from local Gi*
statistic was identified as space-time clusters by SaTS-
can. This is an important finding because it shows that
simply targeting areas with high VL cases might not al-
ways be sufficient for intervention as the spatial and
temporal aspects of the disease may portray a different
scenario.
This study has several limitations. First, the findings of

the study were based on populations who sought treat-
ment at the respective UHCs; therefore, residents diag-
nosed outside of study area have not been included in
the database. Second, we excluded 3680 cases whose ad-
dresses were outside the area of interest and only con-
sidered hospitalized cases. This would lead to some
selection bias towards severe VL cases. But as opposed
to outdoor patient information, this inpatient database
had to have multiple scrutiny and had less chance of be-
ing a non-resident of our study area. Third, Skelly et al.
[46] noted that passive surveillance data is prone to in-
correct allocation of cases to geographic areas; we had
no method for ascertaining this, so uncertainty about
this issue is likely. Fourth, SaTScan searches for regular-

shaped clusters, but in reality, true clusters can be ir-
regular as well [47]. Finally, the study was based on hu-
man data only and could not integrate sand fly habitat
data into the cluster analysis; therefore, the ecological in-
fluence on disease distribution could not be examined.
As there is a severe lack of vector data in the study area,
use of vector presence-absence data could provide a
clearer picture of human-sand fly interaction and its
contribution to the clustering of VL.
In spite of the limitations listed above, the main suc-

cess of this study is the creation of a fine-scale regional
map of VL hot spots and space-time clusters in highly
endemic areas of the country. The lowest census tract
was used in this work, which is administratively just
above the household but below the subdistrict. Hence,
the findings are easier to interpret as they are neither
too detailed nor too general and can be used to directly
assist policy makers in allocation of resources to VL en-
demic regions using a geographically constrained ap-
proach, such as considering one administrative unit (e.g.,
subdistrict) at a time, when formulating health policies
[48]. Since complete elimination of VL from South Asia
is highly unlikely [5], due to “one-size-fits-all” strategy,
we believe the findings of this study could assist in the
prevention of resurgence in existing areas or transmis-
sion to new areas.

Conclusion
Of the numerous studies examining VL, very few have
attempted simultaneous spatiotemporal analysis to
understand the extent and degree of spatial heterogen-
eity. This is particularly true for Bangladesh, where VL is
a considerable burden for impoverished communities,
and detecting clusters can aid in targeted interventions.
In this work, statistically significant clusters were identi-
fied through spatial analyses, and relative risks and likeli-
hood ratios were calculated to compare VL occurrence
within and outside the clusters, which could greatly as-
sist public health officials to allocate proper resources at
the strategic-planning level. In addition, these results
could be highly useful for designing cost-effective

Table 2 Space-time clustering of VL in the study area

Geographic
locations

Population Reported
cases

Expected
cases

Relative
risk

Log-
likelihood
ratio

p value Number of locations
(mauzas) in cluster

Number of
cases in cluster

Annual cases
(per 100,000)

Most likely
cluster

24.60° N, 90.47° E 15,407 100 9.419 11.102 147.670 0.001 4 435 649.5

Secondary
cluster 1

24.51° N, 90.43° E 8746 57 5.437 10.932 83.887 0.001 5 298 652.2

Secondary
cluster 2

24.64° N, 90.21° E 5020 23 3.069 7.567 26.490 0.001 2 93 458.5

Secondary
cluster 3

24.55° N, 90.47° E 13,622 32 8.328 3.887 19.540 0.001 5 96 235.1
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strategies to control VL. Because global environmental
change is expected to make new areas ecologically suitable
for this fatal disease, the results of this work can help to
identify exposed populations at greater risk so that trans-
mission prevention strategies can be formulated. This
study provided strong evidence of local clusters, which
may be used to target vector control as destroying breed-
ing sites or killing the sand fly vector have been found to
be the most effective means of eliminating VL from South
Asia [6]. Further, the identified clusters can assist in deter-
mining specific environmental and/or sociocultural prop-
erties associated with the distribution of VL. Doing so
would help to reduce the disease burden in endemic areas
of Bangladesh and elsewhere.
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