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Abstract Size-advantage and low-density models have been
used to explain how mating systems favor hermaphroditism or
gonochorism. However, these models do not indicate histori-
cal transitions in sexuality. Here, we investigate the evolution
of bidirectional sex change and gonochorism by phylogenetic
analysis using the mitochondrial gene of the gobiids 7rimma
(31 species), Priolepis (eight species), and Trimmatom (two
species). Trimma and Priolepis formed a clade within the sis-
ter group Trimmatom. Gonadal histology and rearing experi-
ments revealed that Trimma marinae, Trimma nasa, and
Trimmatom spp. were gonochoric, whereas all other Trimma
and Priolepis spp. were bidirectional sex changers or inferred
ones. A maximum-likelihood reconstruction analysis demon-
strated that the common ancestor of the three genera was
gonochoristic. Bidirectional sex change probably evolved
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from gonochorism in a common ancestor of 7rimma and
Priolepis. As the gonads of bidirectional sex changers simul-
taneously contain mature ovarian and immature testicular
components or vice versa, individuals are always potentially
capable of functioning as females or males, respectively.
Monogamy under low-density conditions may have been the
ecological condition for the evolution of bidirectional sex
change in a common ancestor. As 7. marinae and T nasa
are a monophyletic group, gonochorism should have evolved
from bidirectional sex change in a common ancestor.
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Introduction

The evolution of sequential hermaphroditism in fish has been
studied in relation to a central hypothesis called the size-
advantage (SA) model. This model predicts that protogyny
(sex change from female to male) and protandry (sex change
from male to female) are favored by polygynous and random
mating, respectively (Ghiselin 1969; Warner 1975, 1984). The
reproductive success of larger males may be higher than that
of smaller males in a polygynous system, resulting from fe-
male mate choice for larger males or male—male competition.
Protogynous sex change is adaptive under this condition, with
fish functioning as females at a smaller size and as males at a
larger size. In contrast, male reproductive success is equal
among size classes under conditions in which both sexes mate
randomly with no mate choice. Protandrous sex change is
favored under this condition because female fecundity in-
creases linearly with size, and reproductive success is usually
higher in larger females than in males of the same size.
Empirical studies (e.g., in Labridae, Platycephalidae,
Pomacanthidae, Pomacentridae, and Serranidae) show that
these predictions correspond well with the observations
(Kuwamura and Nakashima 1998; Munday et al. 2006).

In addition to these types of sex change, information on
bidirectional sex change (sex change from female to male
and male to female) has been accumulating in Epinephelinae
(Serranidae), Cirrhitidae, Gobiidae, Labridae, Pomacanthidae,
Pomacentridae, and Pseudochromidae (Munday et al. 2010;
Kuwamura et al. 2015). Labroides dimidiatus (Labridae),
Centropyge ferrugata (Pomacanthidae), Dascyllus aruanus
(Pomacentridae), and Cirrhitichthys falco (Cirrhitidae) are
harem polygynous species that change sex from female to
male when a dominant male disappears, as in protogynous
fishes. However, sex change from male to female takes place
in the smaller male of male—male pair under low-density con-
ditions induced by experimental removing a female
(Kuwamura et al. 2011, 2014, 2015) or natural disappearance
of females (Kadota et al. 2012). In the monogamous coral
dwelling gobiid fish Paragobiodon echinocephalus and
Gobiodon histrio, bidirectional sex change takes place in
male—-male and female—female pairs. This system is adaptive
if the closest individual is of the same sex after loss of a mate
because long-distance movement between host corals may
risk increased predation (Kuwamura et al. 1994; Munday
2002).

These studies explain how these types of sex change are
adaptive in each social system. However, such observations
do not explain the genealogical aspects of hermaphroditism.
Sequential and simultaneous hermaphrodites have been re-
ported in 27 teleost families of seven orders (Sadovy de
Mitcheson and Liu 2008). Large-scale fish phylogeny studies
indicate that hermaphroditism evolved independently in vari-
ous taxa (Ross 1990; Mank et al. 2006). Fortunately, recent
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advances in phylogenetic analysis have clarified historical as-
pects of hermaphroditism in detail (Erisman et al. 2013).
Protogynous sex change in the humbug damselfish
(Dascyllus) may have evolved once in the ancestor of the
genus, and the ability to change sex was lost in the ancestor
of one of the clades (MacCafferty et al. 2002). Reconstruction
of the phylogeny of the sexual patterns in Serranidae showed
that gonochorism and simultaneous hermaphroditism evolved
from protogyny as the ancestral condition (Erisman et al.
2009; Erisman and Hastings 2011). A comparative phyloge-
netic tree analysis in Epinephelinae (Serranidae) and Labridae
indicated that the type of mating system, either polygyny or
group spawning, is important in the evolution of protogyny or
gonochorism, respectively, as predicted by the SA model
(Molloy et al. 2007; Erisman et al. 2009; Kanzancioglu and
Alonzo 2010).

Trimma, Priolepis, and Trimmatom are small colorful
gobiid fishes, including 92, 34, and seven valid species, re-
spectively, distributed on rocky and coral reefs of temperate
and tropical waters in the Indo-Pacific Ocean; Priolepis also
has an extended distribution into the Atlantic Ocean
(Winterbottom and Emery 1981; Winterbottom 2001;
Nogawa and Endo 2007; Hoese and Larson 2010; Suzuki
et al. 2012; Winterbottom et al. 2015). Winterbottom et al.
(2014) analyzed cryptic Trimma spp. using partial nucleotide
sequences from the cytochrome ¢ oxidase I (COI) gene and
revealed 94 potential species. These genera are very closely
related and comprise a monophyletic group in Gobiidae
(Winterbottom and Burridge 1992; Thacker 2009).

Bidirectional sex change has been reported previously in
T grammistes, T. kudoi, T. okinawae, T. yanagitai, P. akihitoi,
P cincta, P. latifascima, and P. semidoliata. In most cases,
larger individuals of these species change to males and smaller
individuals change to females in female—female and male—
male pairs, respectively (Sunobe and Nakazono 1993;
Shiobara 2000; Manabe et al. 2008, 2013; Sakurai et al.
2009). Harem polygyny is the Trimma okinawae mating sys-
tem under natural conditions. Sex change from female to male
occurs after the male disappears or becomes solitary; a solitary
male changes sex to female when it joins another group as a
subordinate (Sunobe and Nakazono 1990; Manabe et al.
2007). The P. cincta mating system is monogamous (Sunobe
and Nakazono 1999), and male—female pairs of P. akihitoi and
P. semidoliata appear in caves or rocky crevices, suggesting a
monogamous system (Manabe et al. 2013). The gonads of
these species simultaneously comprise ovarian and testicular
portions, which are apparently separated by a thin wall of
connective tissue (Sunobe and Nakazono 1993; Shiobara
2000; Manabe et al. 2008, 2013; Sakurai et al. 2009). Our
recent study revealed that Trimma marinae is a gonochore
with a monogamous mating system (Fukuda et al. 2017).
However, no information is available on the sexuality or re-
productive ecology of Trimmatom.
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In this study, we analyzed the phylogenetic relationships of
Trimma (31 species), Priolepis (eight species), and
Trimmatom (two species), based on the nucleotide sequences
from the mitochondrial ND4/5 gene region. We also present
the sexuality of these species based on gonadal histology and
rearing experiments. Lastly, we discuss the historical transi-
tions of sexuality and the mating systems of species in these
three genera.

Materials and methods
Taxon sampling

To reconstruct the evolution of bidirectional sex change and
gonochorism in the three closely related gobiid genera, we
sampled 31, eight, and two species of Trimma, Priolepis,
and Trimmatom, respectively. We also sampled additional sev-
en species as gobioid outgroups, and final rooting of the tree
was made with a member of one of the most basally diverged
families (Rhyacichthyidae: Rhyacichthys aspro) (Thacker
2009; Aggorreta et al. 2013) (Supplementary Table 1).

DNA methods

The mitochondrial ND4/ND5 gene region outperforms com-
monly used mtDNA genes, such as COI, cyt b, and 12S/16S
rRNA genes in phylogenetic analyses at broad taxonomic
scales because it is relatively long (ca. 3.4 kb) and contains
more phylogenetically informative variation at the first and
second codon positions (Miya and Nishida 2000; Miya et al.
2006). Accordingly, we designed new polymerase chain reac-
tion (PCR) primers to effectively amplify the gobioid ND4/
ND5 region with reference to available whole gobioid
mitogenomic sequences (Miya et al. 2003, 2013;
Supplementary Fig. 1). We generated new ND4/5 gene region
sequences from the 48 species using a combination of long
and short PCR and direct sequencing techniques following the
protocol suggested by Miya et al. (2006) (Supplementary
Table 2).

Phylogenetic analysis

Nucleotide sequences from the 48 species were concatenated
and subjected together to multiple alignment using MAFFT
ver. 6 (Katoh and Toh 2008). Unambiguously aligned se-
quences (total, 3679 bp) were used to construct a dataset that
excluded quickly saturated transitional changes in the third
codon position by converting purine (A/G) and pyrimidine
(C/T) nucleotides to A and C, respectively, following Saitoh
et al. (2006). Only transversions are considered by retaining
all available positions in the dataset, so “noise” is effectively
removed and the apparent loss of signals is avoided. The

dataset was divided into four partitions (three partitions for
the protein-coding genes and one partition for the tRNA
genes) and subjected to partitioned maximum-likelihood
(ML) analysis using RAXML ver. 7.2.8 (Stamatakis 2006).
A general time-reversible model with sites following a dis-
crete gamma distribution (GTR + I') was used, and a rapid
bootstrap analysis was conducted with 1000 replications (—f a
option).

Tracing character evolution

The evolution of bidirectional sex change and gonochorism
was reconstructed based on the best-scoring ML tree under the
ML optimality criterion using Mesquite ver. 2.6 (Maddison
and Maddison 2010). Two character states of sexuality were
assigned: gonochorism (character state 0) and confirmed or
likely bidirectional sex change (state 1).

Determining sexuality

Rearing experiments were conducted with 7. caesiura,
T. maiandros, T. naudei, and Trimmatom sp. to confirm sex
change. Five, three, and three 7. caesiura, T. naudei, and
T. maiandros individuals, respectively, were collected on
April 14 and 15, 2014, at Atetsu, Amami Island, Japan, and
12 Trimmatom sp. were collected on May 8 and 9, 2009, at
Tsuchihama, Amami Island, Japan. The fish were brought to
the laboratory, anesthetized in 100 ppm quinaldine, measured
in total length (TL) to the nearest 0.1 mm, and identified by
body size. Sex was determined from the shape of urogenital
papilla: bulbous with several processes at the opening in fe-
males or tapered posteriorly in males, as determined in other
gobiid species (Sunobe and Nakazono 1993; Kuwamura et al.
1994; Shiobara 2000; Manabe et al. 2008, 2013; Sakurai et al.
2009) (Fig. 1 shows urogenital papillae of 7. kudoi, which is
conspecific with Trimma sp. in Manabe et al. [2008]).

Fig. 1 Urogenital papillac of female (a) and male (b) in Trimma kudoi.
Scale 1 mm
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Table 1

Results of the Trimma caesiura, Trimma maiandros, and Trimma naudei rearing experiments

Individual name Date of spawning Sex role Date of removal Date of spawning Sex role Date of return Date of spawning Sex role TL at end

(mm TL)

Trimma caesiura

TC1 (31.0) Male May 18

TC2 (26.5) May9 Female

TC3 (23.0) May 14 Female May 24
Trimma maiandros

T™MI (27.0) Male May 16

TM2 (26.0) May 16 Female

TM3 (23.0)  April 29 Female May 19
Trimma naudei

TNI (34.0) Male May 13

TN2 (33.5) May7 Female

TN3 (32.0) May?2 Female May 16

TN4 (28.0) May 1 Female May 20

June 7 Male 35.0
Male June 28 Female 33.5
Female June 10 Female 27.6

May 23 Male 29.0
Male May 31 Female 27.5
Female May 23 Female 25.5

June 7 June 26 Female 35.5
Male Male 37.0
Female June 8 Female 34.0
Female June 8 Female 31.0

T caesiura, T. maiandros, and T. naudei specimens were
held together in their respective aquaria (60 x 35 x 30 cm)
(Table 1). The sexual functions of the individuals were deter-
mined by spawning behavior, and the males were removed
and placed in another aquarium (60 x 35 x 30 cm). If sex
change to male was confirmed among the remaining females,
the male previously removed was returned to its former aquar-
ium. Subsequent observations revealed whether male-to-
female sex change had occurred.

Six male and six female Trimmatom sp. were kept in
male—female pairs in six aquaria (30 X 20 x 23 cm)
(Table 2). They were reared until spawning to confirm
sexual function. The fish were then exchanged among
the pairs to establish male-male and female—female pairs
for 1 month. We observed whether spawning occurred or

Table 2 Results of the Trimmatom sp. rearing experiments

not by sex change. If spawning was not observed, sex was
determined by the structure of the urogenital papilla and
gonadal histology.

Water in all aquaria was circulated continuously through
gravel filters and maintained at 24-28 °C. Fish were fed for-
mula food and Artemia salina larvae. A half-cut vinyl chloride
pipe (5 cm inner diameter and 5 cm length) was added to each
aquarium as a spawning nest.

We examined the gonads of the species listed, except
those of 7. grammistes, T. kudoi, T. okinawae, T.
yanagitai, and eight Priolepis spp., whose gonadal struc-
tures have been published (Sunobe and Nakazono 1993;
Shiobara 2000; Manabe et al. 2008, 2013; Sakurai et al.
2009; Cole 2010; Supplementary Table 1). Specimens of
T. caudomaculatum, T. flavatram, T. hayashii,

Individual name  Shape of urogenital ~ Date of Sex role  Exchange Individual name  Shape of urogenital ~ Gonad
(mm TL) papilla at start spawning papilla at end histology
Toml (23.0) Tapered June 30 Male Pairing with the same sex =~ Toml Tapered Testis
Tom2 (22.0) Bulbous Female Tom3 Tapered Testis
Tom3 (23.0) Tapered July 30 Male Tom2 Bulbous Ovary
Tom4 (20.5) Bulbous Female Tom4 Bulbous Ovary
Tom5 (28.0) Tapered May 30 Male Pairing with the same sex ~ Tom5 Tapered Testis
Tom6 (28.0) Bulbous Female Tom?7 Tapered Testis
Tom7 (25.0) Tapered June 2 Male Tom6 Bulbous Ovary
Tom§8 (24.0) Bulbous Female Tom8 Bulbous Ovary
Tom9 (24.0) Tapered July 21 Male Pairing with the same sex ~ Tom9 Tapered Testis
Tom10 (24.0) Bulbous Female Toml1 Tapered Testis
Toml1 (22.0) Tapered July 25 Male Toml10 Bulbous Ovary
Tom12 (23.0) Bulbous Female Tom12 Bulbous Ovary
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Fig. 2 Phylogenetic tree for the

Rhyacichthys aspro

maximum likelihood analysis and

Eleotris acanthopoma

reconstruction of the evolution of
bidirectional sex change and

e @ Bathygobius fuscus
L= Glossogobius olivaceus
Boll, ia boqueronensis

gonochorism. Numbers next to
the branches indicate bootstrap

@ Cabillus sp.
Cabillus tongarevae
@ Trimmatom pharus

100

probabilities >40% based on 1000
replications

===Q0O Bidirectional sex change
=== Inferred bidirectional sex change
Gonochorism

Equivocal

T. maiandros, T. marinae, T. milta, T. taylori, Trimmatom
sp., Trimmatom pharus, Cabillus sp., and Bathygobius
fuscus were collected by hand net using scuba or by snor-
keling, and Trimma rubromaculatum was obtained from
an ornamental fish shop. The fish were brought to the
laboratory, anesthetized in 100 ppm MS-222, measured
in TL to the nearest 0.5 mm, and sexed by the above
methods. These specimens were fixed in Bouin’s solution
for 24 h and preserved in 70% ethanol. The abdomens
were embedded in paraffin, and whole gonads were sec-
tioned serially at 5 pum and stained with hematoxylin and
eosin. We examined the gonads of 19 Trimma spp. and
T. pharus specimens deposited in the Royal Ontario
Museum, the Yokosuka City Museum, and Kanagawa
Prefectural Museum of Natural History (Supplementary
Table 1). We dissected and extracted the abdominal or-
gans containing the gonads after determining sex by the
urogenital papilla structure and prepared the tissues fol-
lowing the method outlined above.

100

@ Trimmatom sp.
QO Priolepis borea
Q Priolepis latifascima

O Priolepis semidoliata ~ Monogamy

QO Priolepis fallacincta
O Priolepis akihitoi
O Priolepis cincta
Q Priolepis hipoliti
QO Priolepis inhaca
O Trimma cana
O Trimma annosum
EO Trimma fucatum
O Trimma rubromaculatum
O Trimma grammistes
O Trimma caesiura
O Trimma naudei
O Trimma lantana
QO Trimma taylori
Q Trimma yanagitai
QO Trimma gigantum
QO Trimma caudomaculatum Polygyny
QO Trimma flavatram
@ 7rimma nasa
@ 7rimma marinae
O Trimma maiandros
QO Trimma emeryi
O Trimma kudoi
O Trimma stobbsi
QO Trimma necopinum
QO Trimma benjamini
O Trimma milta
QO Trimma preclarum
QO Trimma tauroculum
Q Trimma okinawae
QO Trimma hayashii
O Trimma striatum
QO Trimma fangi
QO Trimma sheppardi
QO Trimma macrophthalma
QO Trimma flammeum

Monogamy
Monogamy

Polygyny

Polygyny

Monogamy

Polygyny
Polygyny

Polygyny
Polygyny

Results
Phylogenetic relationships

Trimma, Priolepis, and Trimmatom were recovered together
as a monophyletic group in the ML tree by only 42% boot-
strap probability (BP), and Trimma and Priolepis formed a
clade within the sister group Trimmatom with a 54% BP value.
However, monophyly of each genus was strongly supported
by a 100% BP value (clades A, B, and C) when the most
basally diverged Trimma cana was excluded from the genus
(Fig. 2).

Rearing experiments and gonad histology
The T. caesiura, T. maiandros, and T. naudei rearing experi-
ments showed that larger and smaller individuals functioned

as males and females, respectively. After removing the males
(TC1, TM1, and TN1), the largest females (TC2, TM2, and

@ Springer



15 Page 6 of 11

Sci Nat (2017) 104: 15

Fig. 3 Gonadal structures of
females (a, ¢, e) and males (b, d,
f) in Trimma caesiura (a, b),
Trimma hayashii (¢, d), and
Trimma sheppardi (e, f). O ovary,
T testis, AGS accessory gonadal
structure. Scale 0.5 mm

TN2) changed sex to males. When the males were returned,
TC2, TM2, and TN1 changed back to females. These obser-
vations indicate that these species change sex bidirectionally
and that their sex role is determined by body size; larger fish
are males and smaller fish are females (Table 1). The gonadal
structures in these species simultaneously consisted of both
ovarian and testicular portions separated by a thin wall of
connective tissue and an accessory gonadal structure (AGS;
Cole 1990, 2010) (Fig. 3a, b shows T caesiura gonads as an
example). In female, the ovary contained oocytes in various
stages of development. The testis and AGS were undeveloped
(Fig. 3a). In male, the testis was filled with spermatozoa. The
AGS was developed, and ovarian tissue was filled with young
oocytes (Fig. 3b). The same gonadal structure as that de-
scribed for the above species was also found in the other
Trimma spp., except T. marinae and T. nasa (Fig. 3c—f shows
T hayashii and T. sheppardi gonads as examples).

No spawning was observed in any pair during the
Trimmatom sp. exchange experiments. At the end, shape of
urogenital papillae of the individuals did not change, and there
was no signal for sex change by gonad histology (Table 2). We
did not detect intersexual gonads in 7 marinae, T. nasa,
Trimmatom sp., and T. pharus. The male gonads consisted
of testes with the AGS, and the female gonads are composed

@ Springer

of only ovaries (Fig. 4). The gonadal structures of outgroup
species Cabillus sp. and B. fuscus were the same as those of
these four species.

Discussion
Phylogenetic relationships

Thacker (2009) analyzed the phylogeny of Gobioidei using
the ND1/2 and COI regions and reported that Trimma
caesiura, Priolepis cincta, Priolepis eugenius, and
Trimmatom eviotops form a monophyletic group with strong
support. These results suggest a close relationship among
these three genera. Winterbottom et al. (2014) presented the
relationships among cryptic Trimma species using partial COI
gene nucleotide sequences. Species in clade D, except
T gigantum and T. caudomaculatum, and those in clade E
(Fig. 2), which were supported by a high BP value,
corresponded with the grouping reported by Winterbottom
etal. (2014), although the detailed topologies within the group
differed. The concordance of these results using different
methods suggests that the relationships among these species
have been correctly deduced.
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Fig. 4 Gonadal structures of
females (a, ¢, e, g) and males (b,
d, f, h) in Trimma marinae (a, b),
Trimma nasa (¢, d), Trimmatom
sp. (e, f) and Trimmatom pharus
(g, h). O ovary, T testis, AGS
accessory gonadal structure. Scale
0.5mm (a, b, ¢, d, e, g) and

0.2 mm (f, h)

As mentioned above, there are 92, 34, and seven valid
species in Trimma, Priolepis, and Trimmatom, respective-
ly, but in this study, we examined only 31, eight, and two
species, respectively. In addition, we did not investigate
the related genera Egglestonichthys and Paratrimma
(Winterbottom and Burridge 1992) due to difficulty to
obtain specimens. Future studies will examine their phy-
logenetic relationships by analyzing a greater number of
species and genera, using other genes as well as mito-
chondrial gene ND4/5.

Determination of sexuality

The results show that 7. caesiura, T. maiandros, and T. naudei
exhibited bidirectional sex change, and the gonadal structures

i

\v

simultaneously consisted of both ovarian and testicular por-
tions. The same gonadal structures are also reported in
T. grammistes, T. kudoi, T. okinawae, T. yanagitai,
P akihitoi, P. cincta, P. latifascima, and P. semidoliata in
which bidirectional sex change has been confirmed previously
(Sunobe and Nakazono 1993; Shiobara 2000; Manabe et al.
2008, 2013; Sakurai et al. 2009).

This type of gonadal structure is also found in the male
phase of protandrous species, Amphiprion akallopisos
(Pomacentridae), Acanthopagrus schlegelii (Sparidae), and
Thysanophrys celebica (Platycephalidae). The testicular part
is active, while the ovarian part is inactive. However, the tes-
ticular part disappears after sex change from male to female,
and the active ovarian part remains (Fricke and Fricke 1977,
Chang and Yueh 1990; Sunobe et al. 2016).

@ Springer
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A similar gonadal structure is reported in the simultaneous
hermaphrodites Serranus scriba (Serranidae) and
Kryptolebias marmoratus (Rivulidae). Gonads of these spe-
cies are composed of simultaneously active ovarian and tes-
ticular part. In these species, one individual can function as
male and female at the same time (Tuset et al. 2005; Sakakura
et al. 20006).

Although both ovary and testis are present at the same time
in one individual in these Trimma and Priolepis spp., either
the ovary or the testis is active or inactive in male and female
phases, respectively (Fig. 3), unlike the above protogynous
and simultaneous hermaphrodite species. As the ovarian part
remains after sex change from female to male, the male can
revert to female.

The same gonadal structure is also found in the other
Trimma spp., except I. marinae and T. nasa in this study,
and in P. borea, P. fallacincta, P. hipoliti, and P. inhaca
(Cole 2010; Manabe et al. 2013). Although we did not con-
firm bidirectional sex change in field observations or rearing
experiments on these species, they are inferred to exhibit bi-
directional sex change.

Cole (2010) shows that a precursor AGS (pAGS) is detect-
able in the ovary of protogynous gobiid fish (Bryaninops,
Elacatinus, Fusigobius, and Lophogobius) as a valid indicator
of protogyny. In 7. marinae, T. nasa, and Trimmatom sp.,
intersexual gonads were not detected, and the female gonads
are composed of only ovaries without a pAGS (Fig. 4a—f).
T marinae did not change sex in male-only or female-only
groups after a 2-month rearing experiment (Fukuda et al.
2017). Female T. nasa are larger than males because growth
rate of the former is faster than that of the latter (Winterbottom
and Southcott 2008), not showing protandrous sex change. At
the end of Trimmatom sp. exchange experiments, any individ-
ual did not spawn, and there was no evidence suggesting sex
change from either changes in the papillae or gonad histology
(Table 2). These data strongly suggest that three species are
gonochores. Although we did not conduct 7. pharus rearing
experiments, we regard this species as a gonochore because
the gonadal structures of all specimens examined were the
same as those of the above species (Fig. 4g, h). For sexuality
of the outgroup species, Cabillus sp. and B. fuscus should be
identified as a gonochore by lack of pAGS in female gonads.

The conclusion for determination of sexuality on the above
species is listed in Fig. 2.

Evolution of bidirectional sex change and gonochorism
and the ancestral mating system

Here, we show the nodes at which bidirectional sex
change or gonochorism evolved, although the proposed
phylogenetic hypothesis potentially could be improved,
as mentioned above.

@ Springer

As a common ancestor of Trimma, Priolepis, and
Trimmatom was predicted as a gonochore, the evolution of
bidirectional sex change from gonochorism should occur in
a Trimma and Priolepis common ancestor (Fig. 2). Although
there is no information on sexuality of outgroup species other
than Cabillus sp. and B. fuscus, these data suggest that the
common ancestors of Trimma, Priolepis, Trimmatom and
these outgroup species are gonochores. The theoretical and
empirical studies indicate that mating system is one of the
main selection pressures favoring sex change (Ghiselin
1969; Warner 1975, 1984; Kuwamura and Nakashima 1998;
Munday et al. 2006, 2010; Sadovy de Mitcheson and Liu
2008). We address the ecological condition for evolution of
bidirectional sex change in the following cases to discuss
which type of mating system was adopted by the common
ancestor.

In polygynous species exhibiting bidirectional sex change,
such as L. dimidiatus, D. aruanus, C. ferrugata, and C. falco,
females change to males after the dominant male disappears or
if a branching harem forms (Kuwamura 1981; Coates 1982;
Sakai 1997; Kadota et al. 2012). Female mate choice for larger
males or male—male competition, which favors protogyny as
predicted by the SA model, should occur in populations which
individuals frequently interact. In this condition, a male can
monopolize several females, and males compete with re-
sources or females. Male-to-female sex change occurs by es-
tablishing a pair between the nearest or second-nearest males
after experimental removal or natural disappearance of fe-
males. The reverse sex change condition seems to correspond
with low density (Kuwamura et al. 2011, 2014, 2015; Kadota
etal. 2012). As territorial males rarely lose their mates, such a
low-density condition could occur near the edge of the distri-
bution (Kuwamura et al. 2011). These results suggest that
female-to-male sex change evolved first in the center of the
distribution and that male-to-female sex change was favored
later.

Monogamous gobiid fish, such as P. echinocephalus
and G. histrio, are obligate coral-dwelling species. These
species exhibit female-to-male and male-to-female sex
change by mating with individuals of the same sex. If
the mate is lost or the coral dies, it is more advantageous
for both sexes to re-establish the pair with a nearby con-
sensual individual than to search for a heterosexual fish
over a long distance because it may increase predation
risk (Kuwamura et al. 1994; Nakashima et al. 1995;
Munday 2002). Ghiselin (1969) proposed a “low-density
model” in which simultaneous hermaphroditism is adap-
tive in a species with low mobility or low population
density to reduce mating opportunities. The above cases
are very consistent with this model. As any individual
could function as a male or a female, the evolution of
female-to-male and male-to-female (bidirectional) sex
change may have occurred simultaneously.
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T. okinawae, T. grammistes, T. kudoi, T. yanagitai,
T caudomaculatum, T. hayashii, and T. emeryi inhabit groups
of more than three individuals, and the mating system is po-
lygynous (Sunobe and Nakazono 1990; Shiobara 2000;
Manabe et al. 2007, 2008; Sakurai et al. 2009; Sunobe
unpublished data; see also Fig. 2). Meanwhile, P. akihitoi,
P cincta, and P. semidoliata appear as a pair or singly and
are monogamous under a low-density condition (Sunobe and
Nakazono 1999; Manabe et al. 2013; see also Fig. 2).

Although data on the mating system for both genera are
limited, that of the common ancestor would have been either
polygyny or monogamy. Figure 2 indicates that bidirectional
sex change evolved from gonochorism without protogyny.
The structure of intersexual gonads (Fig. 3) indicates that an
individual could function as a male or a female under any
condition. Therefore, the ecological conditions for evolution
of bidirectional sex change in the common ancestor may cor-
respond to the latter case above, that is, monogamy under low-
density conditions.

T. okinawae is harem polygynous and is the only species in
which bidirectional sex change was confirmed under natural
conditions among 7rimma spp. Female-to-male sex change
occurs when the dominant male disappears or the female loses
its mate. Male-to-female sex change is observed in bachelor
males after mating with larger males (Manabe et al. 2007).
The conditions for sex change are primarily the same as those
in other polygynous species, as mentioned above. However,
Fig. 2 shows that bidirectional sex change was not indepen-
dently favored in 7. okinawae compared to other related spe-
cies. Polygyny may have evolved during speciation from the
common ancestor to 7rimma, but the trait for male-to-female
sex change was not lost. It may be adaptive for T° okinawae to
retain the ability to change sex bidirectionally because the
study described above indicates that a low-density condition
occurs occasionally.

Figure 2 shows that gonochorism should have evolved
from bidirectional sex change in the common ancestor of the
gonochoristic species 7. marinae and T. nasa. Evolution from
hermaphroditism to gonochorism has been reported in
Dascyllus (Pomacentridae), Labridae, Serranidae, and
Sparidae (McCafferty et al. 2002; Erisman et al. 2009, 2013;
Erisman and Hastings 2011). A pairing 7. marinae female
occupies a male and excludes other females, resulting in mo-
nogamy, because the ability to care paternally may be limited
to one clutch. There are two explanations for the adaptive
significance of gonochorism in this species. First, as this spe-
cies forms aggregations, both sexes can easily mate with a
new mate without changing sex. Second, it may be costly to
change sex due to a short lifespan because an individual can-
not spawn during the sex change period (Fukuda et al. 2017).
Data on the reproductive ecology of the species in clade D
(Fig. 2) are needed to clarify the evolution of gonochorism in
the common ancestor of 7. marinae and T. nasa. However,

data on T taylori, T. gigantum, T. flavatram, and T. nasa are
unavailable. Thus, further study is needed to clarify the repro-
ductive ecology of these species.
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