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Abstract Perfluoroalkyl and polyfluoroalkyl sub-

stances (PFAS) are environmental contaminants of

concern. We previously described biodegradation of

two PFAS that represent components and transforma-

tion products of aqueous film-forming foams (AFFF),

6:2 fluorotelomer sulfonamidoalkyl betaine (6:2

FTAB) and 6:2 fluorotelomer sulfonate (6:2 FTSA),

by Gordonia sp. strain NB4-1Y. To identify genes

involved in the breakdown of these compounds, the

transcriptomic response of NB4-1Y was examined

when grown on 6:2 FTAB, 6:2 FTSA, a non-fluori-

nated analog of 6:2 FTSA (1-octanesulfonate), or

MgSO4, as sole sulfur source. Differentially expressed

genes were identified as those with ± 1.5 log2-fold-

differences (± 1.5 log2FD) in transcript abundances in

pairwise comparisons. Transcriptomes of cells grown

on 6:2 FTAB and 6:2 FTSA were most similar (7.9%

of genes expressed ± 1.5 log2FD); however, several

genes that were expressed in greater abundance in 6:2

FTAB treated cells compared to 6:2 FTSA treated

cells were noted for their potential role in carbon–

nitrogen bond cleavage in 6:2 FTAB. Responses to

sulfur limitation were observed in 6:2 FTAB, 6:2

FTSA, and 1-octanesulfonate treatments, as 20 genes

relating to global sulfate stress response were more

highly expressed under these conditions compared to

the MgSO4 treatment. More highly expressed oxyge-

nase genes in 6:2 FTAB, 6:2 FTSA, and 1-octanesul-

fonate treatments were found to code for proteins with

lower percent sulfur-containing amino acids compared

to both the total proteome and to oxygenases showing

decreased expression. This work identifies genetic

targets for further characterization and will inform

studies aimed at evaluating the biodegradation poten-

tial of environmental samples through applied

genomics.
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Introduction

Perfluoroalkyl and polyfluoroalkyl substances (PFAS)

represent a diverse group of anthropogenic com-

pounds of concern due to their widespread use,

potential toxicity (Borg et al. 2013; Piekarski et al.

2020; Rand and Mabury 2017; Stanifer et al. 2018),

and resistance to complete removal from sewage

(Choi et al. 2019; Dimzon et al. 2017; Lazcano et al.

2019; Stroski et al. 2020), drinking water (Hu et al.

2016; Li et al. 2020; Rahman et al. 2014), landfills

(Hamid et al. 2018; Hepburn et al. 2019; Knutsen et al.

2019) and environmental reservoirs (Ahrens et al.

2015; Ahrens and Bundschuh 2014; Barzen-Hanson

et al. 2017; Codling et al. 2020; Janousek et al. 2019;

Ross et al. 2018). Much of what is known about

microbial PFAS metabolism has been derived from

chemical analyses of soil, water, groundwater and

sediment, mass balance studies of sewage treatment

systems (reviewed by Ahrens and Bundschuh 2014;

Liu and Mejia Avendaño 2013), and in vitro micro-

cosm studies using aerobic (D’Agostino and Mabury

2017; Liu and Liu 2016; Liu et al. 2010; Wang et al.

2005; Zhang et al. 2016) or anaerobic (Zhang et al.

2016) mixed cultures taken from these environments.

Pure culture studies have detected similar suites of

metabolic products from PFAS such as 4:2, 6:2 and 8:2

fluorotelomer alcohols, 6:2 polyfluoroalkyl phos-

phates, 6:2 fluorotelomer sulfonamidoalkyl betaine

(6:2 FTAB) and 6:2 fluorotelomer sulfonate (6:2

FTSA) (Key et al. 1998; Kim et al. 2012, 2014; Lewis

et al. 2016; Liu and Mejia Avendaño 2013; Presentato

et al. 2020; Shaw et al. 2019; Van Hamme et al. 2013),

although no studies have identified proteins involved

in the generation of these metabolites.

Microbial community metabarcoding tools and

quantitative polymerase chain reaction have been

applied in an effort to correlate changes in microbial

community structures to PFAS contamination in order

to form hypotheses about the main microbial players

involved in PFAS transformations (Bao et al. 2018;

Fitzgerald et al. 2019; Ke et al. 2020; O’Carroll et al.

2020; Zhang et al. 2019a, b, 2020). O’Carroll et al.

(2020) observed an increase in the relative abundance

of Gordonia spp. at a decommissioned firefighting

training centre in western Canada where aqueous film-

forming foams (AFFF) for hydrocarbon firefighting

had been used over 40 years, suggesting that this

genus may be actively metabolizing PFAS in soil and

groundwater environments. While multi-omic studies

examining DNA, RNA, protein and metabolite pro-

files of microbial communities in PFAS-impacted

environments will be valuable for guiding bioremedi-

ation, in order to make sense of these complex

datasets, fundamental knowledge of the biochemical
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mechanisms of specific PFAS metabolic steps is

needed.

We have focused on understanding the molecular

biology underlying PFAS metabolism in the aerobic

soil bacterium, Gordonia sp. strain NB4-1Y, with

interest in desulfonation reactions that liberate sulfite

from 6:2 fluorotelomer sulfonamidoalkyl betaine (6:2

FTAB) and 6:2 fluorotelomer sulfonate (6:2 FTSA)

(Shaw et al. 2019; Van Hamme et al. 2013). The

Gordonia genus is related to Rhodococcus and, as a

group, these organisms have relatively large, GC-rich

genomes that include a diversity of oxygenases and

degradative enzymes allowing them to access an array

of natural and anthropogenic organic compounds for

energy and nutrients (Arenskotter et al. 2004; Brooks

and Van Hamme 2012; Drzyzga 2012; Hara et al.

2007; Larkin et al. 2005; Martinkova et al. 2009;

McLeod et al. 2006; Van Hamme et al. 2004).

6:2 FTAB is a key ingredient in some AFFF

formulations, used in commercial, military, naval and

aviation applications; in turn, the suspected environ-

mental source of 6:2 FTSA is as a byproduct of 6:2

FTAB degradation (D’Agostino and Mabury 2017;

Moe et al. 2012). Following AFFF use, these and other

PFAS contaminated aquatic and terrestrial environ-

ments (Baduel et al. 2015, 2017; Dauchy et al. 2017;

Munoz et al. 2017). NB4-1Y transforms both 6:2

FTAB and 6:2 FTSA to 16 observable metabolites

over 7 days of laboratory incubation when the com-

pounds are provided as sole sulfur sources (Shaw et al.

2019).

Here we examine the transcriptomic responses of

Gordonia sp. strain NB4-1Y to 6:2 FTAB or 6:2 FTSA

as sole added sulfur source in pure laboratory cultures.

RNA sequencing (RNA-seq) enables the quantitative

analysis of transcription across all genetic elements in

a genome. This genome-wide perspective is useful for

finding genes that are differentially expressed in

response to compounds such as 6:2 FTAB or 6:2

FTSA. To find coordinated metabolic programs in

NB4-1Y, global gene expression in the presence of 6:2

FTAB or 6:2 FTSA was compared to NB4-1Y cultures

growing on either MgSO4 as a sulfate rich control, or

the sodium salt of 1-octanesulfonate as a non-fluori-

nated structural analogue of 6:2 FTSA. Through these

analyses we identified, for example: 20 genes associ-

ated with the transport and metabolism of sulfur

compounds more highly expressed with 6:2 FTAB,

6:2 FTSA and OCT compared to MgSO4; three genes

associated with carbon–nitrogen bond cleavage more

highly expressed with 6:2 FTAB; three alcohol

dehydrogenases, three monooxygenases, and three

genes associated with acetyl-CoA metabolism, as

being more highly expressed with 6:2 FTAB and 6:2

FTSA. These data are being used to identify target

genes that will be cloned and expressed so that the

activity of purified enzymes against 6:2 FTAB, 6:2

FTSA, and breakdown products can be characterized.

Materials and methods

Chemicals and culture media

The ammonium salt of 6:2 FTSA (Synquest Labora-

tories; 98.0% pure by NaOH titration), a technical

grade solution of 6:2 FTAB (0.27 g mL-1; Shanghai

Kingpont Industrial Co. Ltd., Shanghai, China),

sodium 1-octanesulfonate and magnesium sulfate

(Millipore Sigma, St. Louis, MO, USA) were prepared

at 4 mM in a 50:50 mixture of anhydrous ethanol

(Commercial Alcohols, Brampton, ON, Canada) and

18 MX water. The 6:2 FTSA solution was heated to

55 �C and stirred overnight to dissolve. All other

chemicals were from Millipore Sigma.

Van Hamme et al. (2004) was followed for the

preparation of liquid sulfur-free acetate (SFA) med-

ium with, per liter: 0.40 g potassium dibasic phos-

phate (KH2PO4), 1.60 g potassium monobasic

phosphate (K2HPO4), 1.55 g ammonium chloride

(NH4Cl), 5.00 g sodium acetate (NaCH3COO),

0.165 g magnesium chloride (MgCl2), 0.090 g cal-

cium chloride dihydrate (CaCl2�2H2O), 5.00 mL

Wolfe’s minerals, and 1.00 mL Pfenning’s vitamin

solution. KH2PO4, K2HPO4, NH4Cl and NaCH3COO

were autoclaved in 18MXwater at 121 �C for 20 min,

cooled to room temperature, and a 0.22 lM pore sized

filter sterilized solution of MgCl2, CaCl2�H2O,

Wolfe’s minerals and Pfenning’s vitamin solution

was added aseptically. Difco Nutrient Agar was used

for the preparation of solid medium (BD Biosciences,

San Jose, CA, USA).

Gordonia sp. strain NB4-1Y growth conditions

Gordonia sp. strain NB4-1Y was isolated from

vermicompost for its ability to cleave subterminal

alkyl carbon–sulfur bonds, and has been shown to
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metabolize 6:2 FTAB and 6:2 FTSA (Shaw et al. 2019;

Van Hamme et al. 2013). Pure culture stocks are

maintained on Microbank beads (Pro-Lab Diagnos-

tics, Inc., Richmond Hill, ON, Canada) stored at

- 80 �C and, prior to each experiment, a single bead is

streaked onto nutrient agar and incubated at 30 �C
until isolated colonies are visible.

Next, single isolated colonies from nutrient agar

plates were used to prepare inoculum cultures in sterile

20-mL culture tubes containing 5 mL SFA medium

and 75 lL of sulfur source stock solution (i.e., 4 mM

6:2 FTSA, 4 mM 6:2 FTAB, 4 mM OCT, 4 mM

MgSO4, or a no sulfur added control consisting of 50%

ethanol). Sterile controls for each sulfur source were

also prepared. All cultures were incubated on a tissue

culture roller drum (New Brunswick Scientific,

Enfield, CT, USA) set to 150 rotations per minute at

30 �C.
Experimental cultures were prepared in sterile

125-mL Erlenmeyer flasks containing 25 mL SFA

media with 375 lL of sulfur source stock solution

(final concentration 60 lM) and inoculated with 250

lL of the respective inoculum culture (i.e. 6:2 FTSA

inoculum culture used to inoculate the 6:2 FTSA

experimental culture, etc.). These were plugged with

foam stoppers and covered with aluminum foil, and

incubated in an orbital shaker at 30 �C with 150

rotations per minute.

Biomass collection and RNA stabilization

Once cultures reached the mid-log phase, 10 mL of

freshly prepared 5% (vol/vol) phenol in absolute

ethanol was added to each 25 mL culture in order to

neutralize cellular activity and stabilize RNA prior to

extraction. These were incubated on ice for 1.5 h and,

following this, 1.4 mL aliquots were centrifuged in

microcentrifuge tubes for 5 min at 82009g to pellet

biomass. Supernatants were removed, pellets flash

frozen in liquid nitrogen, and shipped on dry ice to the

University of Regina for RNA extraction and

sequencing.

Bacterial lysis and total RNA isolation

A number of methods were tested, with limited

success, for extracting RNA from Gordonia sp. strain

NB4-1Y, an organism which is difficult to lyse.

Protocols developed for Rhodococcus sp. strain

RHA1, TRIzol, RNA Powersoil Total RNA Isolation

Kit (Mo Bio Laboratories, Inc.), and EZNA Bacterial

RNA Kit (Omega Bio-Tek, Inc., Norcross, GA, USA)

methods did not yield sufficient RNA for sequencing.

In the end, sample pellets stored at – 80 �C were

thawed on ice and all subsequent steps were performed

at 4 �C. Thawed pellets were resuspended in 1.2 mL

of RLT buffer (Qiagen); RLT buffer was prepared

fresh by addition of 10 lL of b-mercaptoethanol to

1 mL of RLT buffer. To prepare lysis beads, 500 lL
of RLT buffer was added to Lysing Matrix B (MP

Biomedicals—MP116911050) in 2-mL tubes, fol-

lowed by vortexing to remove trapped air, then

addition of 1.2 mL of bacterial suspension. Bacteria

were lysed using a Fastprep-24 classic (MP biomed-

ical), beating at 4 m s-1 for 40 s a total of three times

with incubation of tubes on ice for 5 min between each

bead beating step. The samples were centrifuged for

4 min at 21,1309g and supernatant transferred to a

fresh 2-mL microcentrifuge tube. It is important to

note that the cell debris from lysis of Gordonia

behaves oddly; cell debris is buoyant and settles

between beads and the supernatant. Thus, removal of

the supernatant requires very careful pipetting to not

disturb the pellet. In the clean tube, an equal amount of

pre-chilled 70% ethanol was added to the supernatant

and mixed well by pipetting. RNA was isolated and

cleaned on an RNeasy Mini (Qiagen) spin column as

per manufacturer’s guidelines (RNeasy Mini Kit. ID:

74104); if a sample volume was[ 700 lL, the total

sample volume was passed serially through a column

until all sample was purified. Total RNA was eluted in

30 lL of RNase free water. The concentration of RNA

was measured using the Qubit RNA BR kit (Thermo

Fisher Scientific).

DNase I treatment and depletion of ribosomal

RNA

RNA samples were treated with Ambion Turbo DNA

free kit (Thermo Fisher Scientific) to remove contam-

inating DNA, following the manufacturer’s instruc-

tions. Extracted RNA was stored at - 80 �C.
Ribosomal RNA (rRNA) depletion was carried out

as per manufacturer’s guidelines using the Gram

positive Bacterial Ribo Zero rRNA depletion kit

(Illumina MRZGP126). Post depletion the quantity

and quality of RNAwas checked using Qubit RNABR

kit and the RNA Nano 6000 LabChip kit (Agilent
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Technologies, USA) following the manufacturer’s

instructions.

Library preparation and sequencing

After rRNA depletion, RNA was converted to DNA

for sequencing using the NEBNext Ultra II Directional

RNA Library Prep Kit (NEB #E7760). FTAB and

OCT samples were sequenced on the Illumina MiSeq

platform using the V3 150 cycle paired-end cartridge;

6:2 FTSA and MgSO4 samples were sequenced on the

Illumina MiniSeq using the 150-cycle paired-end

cartridge and MiniSeq 75 cycles protocol,

respectively.

Data analysis and accession numbers

For all libraries, forward read sequence data was

processed with Trimmomatic (Bolger et al. 2014)

using TruSeq3-SE.fa adapters and the parameters:

crop, 75, headcrop 10, leading 3, trailing 3, sliding-

window 4:20, minlen 36. The output was examined in

FastQC prior to passing to Salmon (Patro et al. 2017)

for indexing (k = 21, p = 8), and quantification (–

validateMappings). Bowtie2 (Langmead et al. 2009)

was used for alignments (-q -p 8 -X 400 –phred33–

very-sensitive) prior to generating counts in HTSeq

(Anders et al. 2015) using htseq-count (-m union -s no

-i ID -t gene), and passing the SAM file generated by

Bowtie2 to SAMtools (Li et al. 2009) to generate a

BAM file.

Raw sequencing reads were deposited on NCBI

under BioProject PRJNA17734 with the accession

numbers: FTAB experiment SRX8382511, run

SRR11832043; FTSA experiment SRX8382512, run

SRR11832042; OCT experiment SRX8382513, run

SRR11832041; MgSO4 experiment SRX8382514, run

SRR11832040.

Throughout the manuscript, genes are referred to by

locus tags from GenBank assembly accession

GCA_000347295.2. The corresponding protein iden-

tifiers and full annotations for sulfur metabolism,

oxygenase, dehydrogenase, oxidoreductase, reduc-

tase, CoA transferase and nitrogen metabolism genes

can be found in Tables S1 through S4 in the

supplemental materials. The corresponding informa-

tion for genes represented in Fig. 3a and b can be

found in Table S5 and Table S6, respectively.

Results and discussion

Global gene expression changes for 6:2 FTAB, 6:2

FTSA, OCT and MgSO4

To examine how Gordonia sp. strain NB4-1Y adapts

to using PFAS as a sole source of sulfur for growth,

transcriptome sequencing of mid-log phase cultures

provided with either 6:2 FTAB, 6:2 FTSA, octanesul-

fonate (OCT) or MgSO4 was carried out. In each case,

after NB4-1Y was revived from storage on nutrient

agar plates, inoculum cultures were first grown to early

stationary phase (approximately six generations; 48 to

72 h depending on the substrate) on 6:2 FTAB, 6:2

FTSA, OCT and MgSO4 prior to inoculating exper-

imental cultures and incubating to mid-logarithmic

phase (between four and five generations; 40–60 h

depending on the substrate). Transcriptional output

from each open reading frame was calculated as

transcripts per million (TPM) as this is the most robust

method for normalizing between culture conditions

(Srikumar et al. 2015). Comparing log2-fold-differ-

ences (log2FD) between all combinations of culture

conditions show that gene expression patterns were

most similar between cells provided with 6:2 FTAB

and 6:2 FTSA (Fig. 1), with 393 of 4957 genes (7.9%)

expressed ± 1.5 log2FD between these two condi-

tions. The greatest difference in transcriptional output

was between cultures in OCT compared to MgSO4; in

this comparison, 2451 (49.4%) genes were

expressed ± 1.5 log2FD.

Gene expression in both 6:2 FTAB and 6:2 FTSA

conditions was more similar to OCT than to MgSO4

conditions (Fig. 1), consistent with the structural

similarity between OCT, 6:2 FTAB, and 6:2 FTSA.

OCT is a non-fluorinated structural analogue of 6:2

FTSA (Fig. 2); 6:2 FTAB and 6:2 FTSA are also

structurally very similar, with the former having a

sulfonamidoalkyl betaine functional group where the

latter has a sulfonate. Owing to the structural similar-

ity of the three metabolites, all subsequent analyses

used culture with MgSO4 as the reference condition.

The consistency between gene expression responses to

the two PFAS is illustrated in Venn diagrams exam-

ining which genes are more expressed at different

levels in 6:2 FTAB and 6:2 FTSA cultures compared

to MgSO4 cultures. Specifically, 82% of genes show-

ing increased expression in 6:2 FTSA cultures were

shared with 6:2 FTAB cultures (Fig. 3a). Similarly,
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there is significant overlap in genes showing decreased

expression in PFAS cultures, with 93% of the genes

with reduced expression in 6:2 FTAB cultures also

exhibiting reduced expression in 6:2 FTSA cultures

(Fig. 3b).

As described below, examination of the putative

function of genes with higher levels of expression in

PFAS-containing cultures compared to OCT and

MgSO4 cultures identified genes involved with the

transport and metabolism of organosulfur compounds,

carbon–nitrogen bond cleavage (in the case of 6:2

FTAB), dehalogenation, formation of acetyl-CoA

adducts, and oxidation of the shared C8 backbone in

6:2 FTAB and 6:2 FTSA. While changes in gene

expression relating to stress in response to PFAS were

not detected, putative desulfonation genes that were

more highly expressed when NB4-1Y was exploiting

6:2 FTAB and 6:2 FTSA for sulfur were found to code

for proteins with reduced cysteine and methionine

contents.

Highly expressed genes in the 6:2 FTAB and 6:2

FTSA conditions includes 23 hypothetical proteins

and three proteins annotated as ‘domain of unknown

function’. Similarly, of the 79 genes more highly

expressed upon exposure to 6:2 FTAB, 15 were

annotated to code for hypothetical proteins, and one

was annotated as ‘domain of unknown function’; for

the 36 genes more highly expressed under 6:2 FTSA

conditions, there were nine annotated to code for

hypothetical proteins and three annotated as ‘domain

of unknown function’. These data imply that more

detailed analyses in the context of PFAS metabolism

may allow us to assign function to genes that are not

well annotated in the NB4-1Y genome.

As a control for consistency of core metabolic

functions between the four culture conditions, the

expression levels of 23 genes associated with a

complete citric acid cycle and glyoxylate shunt were

examined; these genes would be expected to be similar

across treatments given that all cultures had access to

the same major carbon sources (acetate and ethanol)

under all conditions. There were no striking differ-

ences between conditions (Figure S1 in the supple-

mental materials), with all log2FD compared to

MgSO4 being between - 0.14 and 1.47 (6:2 FTAB

0.97 ± 0.29, 6:2 FTSA 0.78 ± 0.29, OCT

1.08 ± 0.33).

Sulfur transport and metabolism

NB4-1Y provided with 6:2 FTAB, 6:2 FTSA or OCT

are under sulfate limitation, so a global sulfate stress

12108642024681012

log2(fold difference TPM)

FTAB 

OCT 

FTSA 

MgSO4 

40 

466 

353 

645 

4564 

FTAB OCT 507 266 4184 

FTSA OCT 1163 167 3627 

FTAB MgSO4 466 413 4078 

FTSA MgSO4 1095 284 3578 

3848 

Fig. 1 Differences in genome wide gene expression changes

when NB4-1Y was provided with 6:2 FTAB, 6:2 FTSA,

octanesulfonate (OCT) or MgSO4 as sole added sulfur source

(a)

(b) (c)

Fig. 2 Structures of a 6:2 FTAB, b 6:2 FTSA, c octanesulfonate
(OCT)
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response would be expected (Kertesz 2000; Scott et al.

2007; Zhang et al. 2008). Indeed, 20 genes relating to

transport of sulfur compounds, desulfonation and

desulfurization, sulfite oxidation, and sulfur transfer

were highly expressed across these three conditions as

a group when compared to MgSO4 (Fig. 4), with some

commonalities.

For 6:2 FTAB, a sulfate ABC transporter ATP-

binding protein (RS14045) and a sulfurtransferase

(RS22035) were more highly expressed when com-

pared to other conditions, while for 6:2 FTSA a

cysteine desulfurase (RS04970) and an alkyl sulfatase

(RS13185) were more highly expressed. Bacterial

sulfate ABC transporters consist of sulfate binding

proteins, membrane components, and an ATPase to

drive the transport reactions. In Escherichia coli,

SuBP binds sulfate, CysP binds thiosulfate, CysT and

CysW are the membrane components, and CysA is the

ATPase (Eitinger et al. 2011). RS14045 in NB4-1Y is

adjacent to cysT, cysW, and a cation transporter gene.

Sulfurtransferases and cysteine desulfurases are impli-

cated in the biosynthesis of sulfur-containing

(a) (b)Fig. 3 Shared a upregulated
and b downregulated genes

for 6:2 FTAB, 6:2 FTSA and

octanesulfonate (OCT) as

compared to MgSO4

Fig. 4 Differential expression levels of sulfur metabolism

genes for 6:2 FTAB, 6:2 FTSA and octanesulfonate (OCT) as

compared to MgSO4. Letters following accession numbers

indicate grouping corresponding to those shown in Fig. 3:

(a) FTAB; (b) FTSA; (c) FTAB and OCT; (d) FTAB and FTSA;

(e) FTSA and OCT; (f) FTAB, FTSA and OCT
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biomolecules from cysteine (Kessler 2006), and alkyl

sulfatases cleave sulfate ester bonds (Furmanczyk

et al. 2018). Given that both 6:2 FTAB and 6:2 FTSA

contain a sulfonate sulfur, the higher expression levels

of these genes may be related to sulfate starvation

rather than specific transport and metabolism of these

compounds. Having said that, the alkyl sulfatase may

be active against the putatively identified 6:2 FTOH

sulfate reported in NB4-1Y cultures provided with 6:2

FTAB or 6:2 FTSA (Shaw et al. 2019).

As noted, in order for NB4-1Y to liberate sulfur

from 6:2 FTAB for growth, a number of attack points

are available on the sulfonamidoalkyl betaine func-

tional group. The situation is more straightforward

with 6:2 FTSA, as the sulfonate is the terminal

functional group adjacent to two hydroxylated carbon

atoms. Bacterial desulfonation of non-fluorinated

sulfonates, such as OCT, has been characterized

showing that desulfonation mediated by two-compo-

nent alkanesulfonate monooxygenase systems (e.g.

SsuDE in E. coli) in the presence of O2 and FMNH2

generates an aldehyde and sulfite (Zhan et al. 2008).

The sulfite would then be chemically or biologically

oxidized to sulfate prior to entering reductive sulfate

assimilation pathways to generate hydrogen sulfide for

incorporation into the amino acid cysteine, fromwhich

other sulfur-containing macromolecules such as

methionine, iron sulfur cluster containing proteins,

thiamin, biotin, and lipoic acid (Kessler 2006) are

synthesized. For non-fluorinated substrates, the

remaining aldehyde could be oxidized to a carboxylic

acid by an aldehyde dehydrogenase prior to the

generation, via ß-oxidation, of acetyl-CoA for entry

into the citric acid cycle, as is observed in alkane

metabolism where an alcohol intermediate precedes

the aldehyde (Van Hamme et al. 2003).

We have not observed 6:2 FTAL (aldehyde) in

NB4-1Y cultures, either as a product of the 6:2 FTOH

that is generated, or as a consequence of an alkane-

sulfonate monooxygenase-like desulfonation of 6:2

FTSA (Shaw et al. 2019; Van Hamme et al. 2013).

However, Martin et al. (2005) noted that 8:2 FTAL

was transiently produced as a product of 8:2 FTOH

metabolism in rat hepatocytes, being quickly con-

verted to 8:2 FTUAL (unsaturated aldehyde) through

non-enzymatic hydrogen fluoride elimination. In order

to observe 8:2 FTAL, they had to chemically trap it

using 2,4-dinitrophenylhydrazine. 8:2 FTAL was also

observed as the first product of 8:2 FTOH metabolism

by recombinant human cytochrome P450s, human

liver microsomes, and human liver cytosol extracts (Li

et al. 2016).

With the exception of a cysteine synthase gene

(cysM; RS01125) and a sulfurtransferase (RS18310)

that were more highly expressed when NB4-1Y was

provided either 6:2 FTAB or OCT, the remaining 12

sulfur metabolism genes were more highly expressed

with all three substrates when compared to MgSO4.

These include four sulfurtransferases, a methionine

ABC transporter ATP-binding protein, a sulfite oxi-

dase-like oxidoreductase, and a cysteine dioxygenase.

An aliphatic sulfonate ABC transport protein

(RS20390) was more highly expressed in 6:2 FTAB,

6:2 FTSA and OCT cultures with TPM[ 10 (6:2

FTAB, 76.3; 6:2 6:2 FTSA 34.6; OCT, 45.4; MgSO4

0.83). The alkanesulfonate monooxygenase

(RS14690) that appears in Fig. 4 passed the log2FD

threshold, but in all cases the TPM was\ 10,

suggesting that the gene may not be significantly

transcribed and may not be involved in desulfonation

of any of the substrates.

A search for oxygenases with TPM[ 10 in the

transcriptomic datasets generated a list of 12 genes

that, for some conditions, yielded log2FD[ 1.5

(Fig. 5). Of particular interest is an alkanesulfonate

monooxygenase gene (RS02630) that, unlike

RS14690 mentioned above, was expressed under all

conditions, with the strongest response in 6:2 FTAB

and OCT cultures when compared to MgSO4 (TPM

values: 6:2 FTAB, 756.7; 6:2 FTSA, 369.6; OCT,

1095.8; MgSO4, 166.8). Two FMN-dependent

monooxygenases, RS09755 and RS09775 (discussed

further below), were more highly expressed in 6:2

FTAB, 6:2 FTSA and OCT containing cultures, and

the TPM values were higher than for the alkanesul-

fonate monooxygenase. In addition to these genes, one

taurine dioxygenase gene was expressed under all

conditions, although the log2FD compared to MgSO4

was only above 1.5 for 6:2 FTAB, and not for 6:2

FTSA or OCT. Taurine dioxygenases are 2-oxoglu-

tarate-dependent enzymes that cleave 2-aminoethane

sulfonate (taurine) to release sulfite, aminoacetalde-

hyde, succinate and CO2, and are active against other

organosulfonates including butane-, pentane- and

hexanesulfonic acids (Eichhorn et al. 1997).
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Sulfur starvation response

We previously observed in two-dimensional differen-

tial in-gel electrophoresis (2D DIGE) experiments that

two FMN-dependent monooxygenases (RS09755 and

RS09775) that were produced when NB4-1Y was

provided with 6:2 FTSA as a sole added source of

sulfur, had a lower percentage of sulfur-containing

amino acids (0.2 and 0.67%, respectively) than the

overall predicted proteome (Van Hamme et al. 2013).

It has been broadly observed in bacteria, yeast and

algae that proteins involved in sulfur acquisition are

lacking in cysteine and methionine to ensure contin-

ued growth under sulfur limiting conditions (Mazel

and Marliére 1989; Merchant and Helmann 2012). To

explore this further in NB4-1Y, the percent sulfur

containing amino acids for oxygenase, oxidoreductase

and sulfur metabolism proteins associated with genes

that were expressed at both higher and lower levels

when compared to MgSO4, was calculated (Fig. 6).

Calculations were also made for all genes that were

expressed at both higher and lower levels when

compared to MgSO4, regardless of function, and for

the overall predicted proteome. The most striking

trend observed is that the more highly expressed

oxygenase genes, when compared to MgSO4, for 6:2

FTAB, 6:2 FTSA and OCT, code for proteins with

1.24 (n = 13), 0.88 (n = 10) and 1.33 (n = 11) percent

sulfur-containing amino acids, respectively, compared

to the overall proteome average of 3.01% (n = 4351).

Furthermore, oxygenases that were expressed at lower

levels for these three conditions averaged 4.41 (n = 4),

3.48 (n = 8) and 3.82 (n = 7) percent, respectively.

Carbon–nitrogen bond cleavage

It has been hypothesized that 6:2 FTSA may be a

degradation product of 6:2 FTAB (D’Agostino and

Mabury 2017), although no direct experimental evi-

dence is available in support of this. Presumably, the

sulfonamidoalkyl betaine functional group could be

attacked at the terminal carboxyl group, the subtermi-

nal methyl groups, by direct attack of the sulfur–

nitrogen bond, or cleavage of one of the carbon–

nitrogen bonds. Three genes that were expressed only

upon NB4-1Y exposure to 6:2 FTAB that may be

implicated in carbon–nitrogen bond cleavage are: a

carbon–nitrogen hydrolase family protein gene

Fig. 5 Expression levels of oxygenase genes for 6:2 FTAB, 6:2

FTSA, octanesulfonate (OCT) and MgSO4. Letters following

accession numbers indicate grouping corresponding to those

shown in Fig. 3: (a) FTAB; (b) FTSA; (c) FTAB and OCT;

(d) FTAB and FTSA; (e) FTSA and OCT; (f) FTAB, FTSA and

OCT
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(RS19120: 12.8 TPM compared to between 3.4 and

4.7 for other conditions); an alkaline ceramidase gene

(RS02470: 13.7 TPM compared to 0.23–0.36 for other

conditions); and an amine oxidase (RS07660: 14.1

TPM compared to between 0.76 and 1.58 for other

conditions). Carbon–nitrogen hydrolases are known to

liberate ammonia from organic nitrogen compounds

(Bork and Koonin 1994; Thuku et al. 2009), and this

family of proteins is similar to the characterized

R-amidase in Pseudomonas sp. MCI3434 which

cleaves the carbon–nitrogen bond in (R,S)-piper-

azine-2-tert-butylcarboxamide to form (R)-piper-

azine-2-carboxylic acid (Komeda et al. 2004).

Ceramidases hydrolyze N-acyl linkages in ceramides

generating sphingosine (2-amino-4-trans-octadecene-

1,3-diol) and free fatty acids, and have been isolated

from Pseudomonads associated with dermatitis in

humans (Okino et al. 1998). Bacterial amine oxidases

have been described that use molecular oxygen to

liberate ammonia, hydrogen peroxide and aldehydes

from amines (McGuirl and Dooley 1999; Suzzi and

Gardini 2003).

Two nitrilotriacetate monooxygenase genes

(RS14730 and RS14155) were more highly expressed

in the presence of 6:2 FTAB compared to MgSO4, but

both of these genes were also expressed in the

presence of 6:2 FTSA, and one was expressed in the

presence of OCT. Specifically, RS14730 was not

expressed when MgSO4 was the sole added sulfur

source (TPM\ 5), and the log2FD for 6:2 FTAB, 6:2

FTSA and OCTwere 5.37, 4.91 and 5.85, respectively.

RS14155 was not expressed with OCT or MgSO4

(TPM\ 10 for both), and the log2FD for 6:2 FTAB

and 6:2 FTSA were 4.76 and 4.86, respectively.

Nitrilotriacetate monooxygenases convert nitrilotriac-

etate to iminodiacetate and glyoxylate, and these

enzymes are in a subclass of flavoprotein monooxy-

genases that includes alkanesulfonate monooxyge-

nases (e.g. SsuD) capable of desulfonating a broad

range of sulfonated compounds (Eichhorn et al. 1999;

Ellis 2010, 2011; Endoh et al. 2003; Kahnert et al.

2000; Koch et al. 2005; Robbins and Ellis 2012; van

Berkel et al. 2006; van der Ploeg et al. 1998; Xu et al.

1997). Given this, and our observation that two FMN-

dependent monooxygenases first annotated as nitrilo-

triacetate monooxygenases (RS09755—old locus tag

1222; RS09775—old locus tag 1218) were produced

in 6:2 FTSA cultures, and not MgSO4 cultures, we

hypothesized that this class of enzyme may be able to

cleave carbon–sulfur bonds as well as carbon–nitrogen

bonds (Van Hamme et al. 2013).

0

2

4

6

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
transcript set

%
 S

 a
m

in
o 

ac
id

s

transcript set

1. FTAB_oxidoreductase_down

2. FTAB_oxidoreductase_up

3. FTAB_oxygenase_down

4. FTAB_oxygenase_up

5. FTAB_S_metabolism_down

6. FTAB_S_metabolism_up

7. FTAB_transcripts_down

8. FTAB_transcripts_up

9. FTSA_oxidoreductase_down

10. FTSA_oxidoreductase_up

11. FTSA_oxygenase_down

12. FTSA_oxygenase_up

13. FTSA_S_metabolism_down

14. FTSA_S_metabolism_up

15. FTSA_transcripts_down

16. FTSA_transcripts_up

17. OCT_oxidoreductase_down

18. OCT_oxidoreductase_up

19. OCT_oxygenase_down

20. OCT_oxygenase_up

21. OCT_S_metabolism_down

22. OCT_S_metabolism_up

23. OCT_transcripts_down

24. OCT_transcripts_up

25. oxidoreductase_all

26. oxygenase_all

27. predicted_proteome

28. S_metabolism_all

Fig. 6 Percent sulfur-containing amino acids in the predicted proteome for up- and down-regulated genes for 6:2 FTAB, 6:2 FTSA and

octanesulfonate (OCT) as compared to MgSO4

123

416 Biodegradation (2020) 31:407–422



PFAS backbone metabolism

Previous analytical studies detected eleven quantifi-

able breakdown products in NB4-1Y cultures pro-

vided with either 6:2 FTAB or 6:2 FTSA (Shaw et al.

2019): perfluorobutanoate (PFBA), perfluoropen-

tanoate (PFPeA), perfluorohexanoate (PFHxA), per-

fluoroheptanoate (PFHpA), 4:3 fluorotelomer

carboxylate (4:3 FTCA), 5:3 FTCA, 6:2 FTCA, 6:2

fluorotelomer unsaturated carboxylate (6:2 FTUA),

5:2 fluorotelomer secondary alcohol (5:2 sFTOH), 5:2

fluorotelomer ketone (5:2 FT ketone), and 6:2 fluo-

rotelomer alcohol (6:2 FTOH). In addition to these,

qualitatively identified products included: 4:2 FTCA

in cultures containing either 6:2 FTSA and 6:2 FTAB;

4:2 FT ketone in cultures containing 6:2 FTSA; and

4:2 FTUA in cultures containing 6:2 FTAB. Further,

6:2 FTOH sulfate was tentatively identified in both 6:2

FTSA and 6:2 FTAB cultures. In all, for both 6:2

FTAB and 6:2 FTSA, following removal of the

functional group, a series of dehalogenation, desatu-

ration, oxidation and decarboxylation reactions are

required to shorten the fluorinated backbone. These

reactions may be biologically mediated, or may be a

combination of biologically mediated and sponta-

neous chemical reactions. In an effort to identify genes

that may be involved in the biological reactions, we

searched for dehydrogenase, oxidoreductase, reduc-

tase and CoA transferase genes that were highly

expressed in 6:2 FTAB, 6:2 FTSA and OCT cultures

as compared to MgSO4 (Fig. 7).

One alcohol dehydrogenase gene (RS16300) was

uniquely expressed in 6:2 FTAB grown cultures, this

could be attributed to oxidative attack of the methyl

groups in the functional group or to oxidation of the

6:2 FTOH detected as a metabolic intermediate (Shaw

et al. 2019). Two alcohol dehydrogenase genes

(RS02605 and RS18475) were expressed in 6:2 FTAB

and 6:2 FTSA cultures, but not in OCT cultures, and

Fig. 7 Differential expression levels of dehydrogenase, oxi-

doreductase, reductase and CoA transferase genes for 6:2

FTAB, 6:2 FTSA and octanesulfonate (OCT) as compared to

MgSO4. Letters following accession numbers indicate grouping

corresponding to those shown in Fig. 3: (a) FTAB; (b) FTSA;

(c) FTAB and OCT; (d) FTAB and FTSA; (e) FTSA and OCT;

(f) FTAB, FTSA and OCT
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one additional alcohol dehydrogenase (RS08865) was

expressed in 6:2 FTAB and OCT cultures.

Following this, three luciferase-like monooxyge-

nase (LLM) class flavin-dependent oxidoreductase

genes (RS22855, RS00415, RS14160) were expressed

in 6:2 FTAB and 6:2 FTSA cultures. LLMs are flavin-

dependent monooxygenases, a group of enzymes that

catalyze a diversity of reactions including hydroxyla-

tions, epoxidations, and Baeyer–Villiger rearrange-

ments (Maier et al. 2015). The well characterized

luciferases that drive bioluminescence reactions in

some marine bacteria oxidizes aliphatic aldehydes to

carboxylic acids (Ellis 2010). Three additional LLM

class flavin-dependent oxidoreductase genes

(RS10415, RS14165, RS14725) were expressed in

6:2 FTAB, 6:2 FTSA and OCT cultures, and one more

(RS22080) was expressed in 6:2 FTAB and OCT

cultures, reflective of the versatility of this enzyme

class. In addition to these, two additional oxidoreduc-

tases were expressed in 6:2 FTAB cultures, and ten

other oxidoreductases and three reductases were

uniquely expressed in 6:2 FTAB and 6:2 FTSA

cultures, all of which need further examination for

potential roles in PFAS metabolism.

During beta oxidation of fatty acids, coenzyme A

(CoA) is added to the carboxyl group to yield a fatty

acyl-CoA ester from which acetyl-CoA is eventually

liberated for entry into the citric acid cycle. While

CoA adducts of PFAS have not been reported, other

conjugates such as glutathione-8:2 FTUAL have been

reported (Martin et al. 2005). In NB4-1Y, one CoA

transferase subunit A gene (RS05305) was expressed

in 6:2 FTAB cultures, and an N-acetyltransferase gene

(RS07500) was expressed in 6:2 FTAB and 6:2 FTSA

cultures. This may indicate that acetyl-CoA adducts

are formed during PFAS metabolism, but are not

detected using standard PFAS analytical methods.

Stress response

With the potential for hydrogen fluoride production in

6:2 FTAB and 6:2 FTSA cultures, NB4-1Y may be

exposed to greater than normal oxidative stress during

metabolism of these compounds. A collection of 67

stress response genes were examined, including cata-

lase, peroxidase, superoxide dismutase and organic

hydroperoxide resistance genes, cold and heat shock

genes, universal stress response genes, and DNA

repair genes. No major differences in gene expression

levels were detected between the four conditions

tested (Figure S2), suggesting that NB4-1Y is well

suited to thrive in PFAS-contaminated environments.

Overall, as for genes associated with the citric acid

cycle, no obvious differences between the culture

conditions emerged for known stress response genes.

We previously detected the production of an alkyl

hydroperoxide reductase (AhpC; now annotated as

peroxiredoxin RS04175) when NB4-1Y was exposed

to 6:2 FTSA for 2D DIGE experiments, a protein that

was not produced when NB4-1Y was grown on

MgSO4. Alkyl hydroperoxide reductases and perox-

iredoxins are part of a robust reactive oxygen species

defence system found across Bacteria; the former

converts damaging hydroperoxides to alcohols, the

latter reduces metabolically generated hydrogen per-

oxide to water (Johnson and Hug 2019). AhpC has

been reported to be a sulfate starvation-induced

protein in both E. coli and Pseudomonas (Kertesz

2000). While, when compared to MgSO4, RS04175

showed a higher level of expression under 6:2 FTAB

and 6:2 FTSA conditions, it also exhibited a higher

expression level with OCT, suggesting that this

particular stress response is not linked to fluorinated

substrates.

Conclusion

The data presented here illustrate dynamic and unique

gene expression changes in Gordonia sp. strain NB4-

1Y in response to being provided with 6:2 FTAB or

6:2 FTSA as sole sources of added sulfur for growth.

These changes are driven by sulfate starvation condi-

tions that are the norm in natural soil environments

(Kertesz 2000), as reflected by the expression of genes

associated with organosulfur compound transport,

desulfurization of sulfur-containing amino acids, and

putative desulfinases with significantly lower percent-

ages of those amino acids. A set of dehydrogenase,

oxygenase, oxidoreductase, acetyl-CoA transferase

genes, and genes associated with carbon–nitrogen

bond cleavage, were also more highly expressed upon

exposure of NB4-1Y to 6:2 FTAB and 6:2 FTSA,

potentially implicating them in PFAS metabolism.

Currently, these genes are being cloned, expressed,

and purified, for crystallographic and enzymatic

characterization. The end goal is to better understand

what specific enzymes are responsible for PFAS
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breakdown in the environment, and to determine

which steps in breakdown pathways are biologically

mediated and which are chemically mediated. These

data may be useful for developing quantitative

polymerase chain reaction screening panels to

monitor passive and active in situ bioremediation

efforts for water, soil and groundwater. Addition-

ally, as gene and protein functions are elucidated,

the data will inform multi-omic studies of PFAS-

impacted environments, and through the improved

RNA extraction methods described here, potentially

reveal that Gordonia are underrepresented in envi-

ronmental metatranscriptomes.
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