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The effect of cell size and channel density on neuronal information
encoding and energy efficiency
Biswa Sengupta1,2, A Aldo Faisal3,4, Simon B Laughlin5 and Jeremy E Niven6

Identifying the determinants of neuronal energy consumption and their relationship to information coding is critical to
understanding neuronal function and evolution. Three of the main determinants are cell size, ion channel density, and stimulus
statistics. Here we investigate their impact on neuronal energy consumption and information coding by comparing single-
compartment spiking neuron models of different sizes with different densities of stochastic voltage-gated Naþ and Kþ channels
and different statistics of synaptic inputs. The largest compartments have the highest information rates but the lowest energy
efficiency for a given voltage-gated ion channel density, and the highest signaling efficiency (bits spike� 1) for a given firing rate.
For a given cell size, our models revealed that the ion channel density that maximizes energy efficiency is lower than that
maximizing information rate. Low rates of small synaptic inputs improve energy efficiency but the highest information rates occur
with higher rates and larger inputs. These relationships produce a Law of Diminishing Returns that penalizes costly excess
information coding capacity, promoting the reduction of cell size, channel density, and input stimuli to the minimum possible,
suggesting that the trade-off between energy and information has influenced all aspects of neuronal anatomy and physiology.
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INTRODUCTION
Since the work of Golgi and Cajal,1,2 it has been clear that
the somata, dendrites, and axons of neurons vary enormously in
size. Size differences among neuron classes within the nervous
system can be substantial,3,4 as can differences in homologous
neurons among species of different sizes5 and the same neurons
during development. While ion channel noise appears to set a
fundamental lower limit to soma and axon diameters,6 the reasons
why there is such variation above this limit remain unclear.
Factors, such as conduction velocity or the numbers of synapses
received and made, are related to the size of some neural
components but not all. For example, differences in axon diameter
are often attributed to the need for different conduction
velocities; larger diameters conducting at higher velocities.7,8

However, a recent survey of 16 tracts from five species suggests
that conduction velocity cannot explain variation in axon
diameter, which may be better explained by the information
rate, with axons constrained to deliver information at the lowest
acceptable rate because of the costs of excess capacity.4

Changes in the size of neurons affect their electrical properties
and, consequently, their information coding. The electrical
properties of neurons are determined by a combination of factors
such as passive membrane properties, active conductances, the
shapes of dendrites and axons, and the locations of ligand- and
voltage-gated ion channels. Changes in the size of electrical
compartments will alter the area of bi-lipid membrane and,
consequently, the total membrane capacitance. Changes in size
will also affect the densities of voltage-gated ion channels altering

the amount of channel noise, the spike threshold, and the
maximum attainable spike rate.9–11 These two factors, capacitance
and channel density, will interact to influence the way in which
the membrane filters synaptic or sensory inputs and, therefore,
the information-processing capabilities of neurons. For instance,
assuming the specific capacitance and the input resistance as
constant, a larger passive cell would have a lower bandwidth in
comparison to its smaller counterpart. The importance of the
relationship between compartment size and information coding is
supported by experimental studies of the mammalian optic nerve
that have suggested the majority of information is transmitted at
low rates in narrow fibers.12,13

Changing channel density and total membrane capacitance will
also affect the energy expended by neurons on restoring ion
gradients across their membrane.14 Work on fly retina has shown
that metabolic consumption is dependent upon photoreceptor
size; smaller photoreceptors consume an order-of-magnitude
less energy than larger photoreceptors.15 Moreover, larger
photoreceptors with higher information rates also have lower
energy efficiencies, producing a Law of Diminishing Returns that
penalizes excess information capacity. Because fly photoreceptors,
like their vertebrate counterparts, are graded potential neurons,
the extent to which the relationships between neuron size,
information rates, and energy consumption are similar in single
spiking neurons is unclear. Moreover, experimental studies
cannot easily explore the limitations that relationships between
information coding and energy consumption impose on neuronal
size because the functional neurons do not exceed biophysical
and biochemical limits.
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Here we study the role of compartment size and channel
density using single compartment models of different sizes that
incorporate stochastic voltage-gated Naþ and Kþ channels from
squid giant axon and are stimulated by excitatory synaptic inputs.
By assessing the performance (bits s� 1), energy consumption
(ATP s� 1), and energy efficiency (bits ATP� 1) of compartmental
models, we show that the largest compartments have the highest
information rates but the lowest energy efficiency for a given
voltage-gated ion channel density. The largest compartments also
have the highest signaling efficiency (bits spike� 1) for a given
firing rate. Each compartment shows a maximum efficiency with
channel densities between a half and a quarter that of the squid
giant axon. However, maximum information rates were achieved
at channel densities between a half and one times that of the
squid giant axon irrespective of the size of the compartment. Thus,
the largest compartments have the highest performance but incur
a severe metabolic cost because of reduced energy efficiency,
penalizing excess information processing capacity. Our models
suggest that it is more energy efficient for information to be
encoded at lower rates in many small neurons rather than a few
large, high-information-rate neurons.

MATERIALS AND METHODS
Single Compartment Model with Conductance Noise
We simulated single-compartment models containing stochastic voltage-
gated ion channels, the properties of which were based on the original
Hodgkin–Huxley model of a squid axon.16,17 The model contained
transient voltage-gated Naþ channels and delayed rectifier voltage-
gated Kþ channels along with a non-probabilistic voltage independent
Leak conductance. The dynamics of the membrane potential was
governed by the following current balance equation:

Cm V
�
¼ gNam3h ENa� Vð Þþ gKn4 ENa� Vð Þþ gLeak ENa� Vð Þþ Isynaptic

ð1Þ
where Cm is the membrane capacitance, gNa, gK and gLeak are the
conductances of the Naþ , Kþ , and Leak channels, respectively. Ej’s are the
reversal potentials of these conductances, where j 2 Naþ ; Kþ ; Leakf g.
The variables m, h, and n follow first-order kinetics of the form
x
: ¼ðx1ðVÞ� xÞ=txðVÞ, where x1ðVÞ is the steady-state activation or
inactivation and txðVÞ is the voltage-dependent time constant. IsynapticðtÞ is
a time-dependent synaptic current. In our simulations, IsynapticðtÞ was
excitatory and noise-free, as we did not model input noise.

IsynapticðtÞ was modeled as an excitatory conductance stimulus.18 We
describe the dynamics of IsynapticðtÞ by taking the example of a single
excitatory conductance source, gexcitatoryðtÞ

IsynapticðtÞ¼ gexcitatoryðtÞðEexcitatory� VðtÞÞ; ð2Þ
where gexcitatoryðtÞ follows the following differential equations,
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D
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� �

ð4Þ
Equation (4) is a discretized version of equation (3), where qexcitatory

defines the unitary quantal conductance increase due to a single
presynaptic spike. The increase in conductance decreases exponentially
with a time constant, texcitatory. In equation (4), Ppoisson <excitatoryD

� �
defines

the number of spikes that arrive within a time-step, D, with a Poisson
distribution having a mean rate of <excitatoryD.

The stimulus was presented for 1 second and each set of simulations
consisted of 60 such trials. All Gaussian random numbers were generated
using the Marsaglia’s Ziggurat algorithm; uniform random numbers were
generated using Mersenne Twister algorithm. Deterministic equations
were integrated using the Euler algorithm while stochastic differential
equations were integrated using the Euler–Maruyama method, both with a
step size of 10 microseconds. Parameter values are given in Supplementary
Table S1. Markov state transitions for the voltage-gated ion channels are
modeled after the channel noise formulation in.9,16

Scaling of Channel Densities
To study the effect of channel densities upon metabolic efficiency of
information processing, we scaled the channel densities of the voltage-
gated Naþ and Kþ channels while keeping the ratio constant. The original
Hodgkin–Huxley model of the squid giant axon has 60 Naþ channels and
18 Kþ channels for every mm2 of membrane. Therefore, a 100mm2

membrane contains 6,000 Naþ and 1,800 Kþ channels. If the absolute
density is doubled, the 100mm2 membrane now contains 12,000 Naþ and
3,600 Kþ channels.

Information Rates for Spiking Neuron Models
We used the ‘direct method’ to measure the entropy of the responses,19

which compares different spike trains without reference to the stimulus
parameters. The total entropy sets the information capacity for the spike
train. The noise entropy measures the variability of the spike train across
trials. These quantities were dependent upon the temporal resolution with
which the spikes were sampled, Dt (1 millisecond), and the size of the time
window, T. We presented either a different conductance trace in each
subsequent trial (unfrozen noise) to calculate the total entropy, or the
same conductance trace in each subsequent trial (frozen noise) to calculate
the noise entropy. We divided the spike train to form K-letter words (K¼ 2,
4, 6, 8, 12, 16, 24, 32, 48, or 64), where K ¼ T=Dt. We used the responses
from the unfrozen noise presentations (60 trials each of 1 second) to
estimate the probability of occurrence of a particular word, P(W). The total
entropy was estimated as

Stotal¼ �
X

w

PðWÞlog2PðWÞ bits: ð5Þ

We estimated the probability distribution of each word at specified time
durations, t, to obtain the conditional probability P(W|t). Entropy estimates
were then calculated from these distributions and the average of the
distributions at all times computed to give the noise entropy (60 trials each
of 1 second) as

Snoise¼ �
X

w

PðW j tÞ log2 PðW j tÞ
* +

t

bits; ð6Þ

where hi indicates average over time. The information was then computed
as

I¼ Stotal� Snoise ð7Þ
The total entropy and the conditional noise entropy diverge in the limit

Dt! 0, their difference converges to the true finite information rate in this
limit.19 Therefore, we used bias correction methods to reduce the effect of
sampling errors.20 Using Dt¼ 1 millisecond, we varied the spike trains to
form words of different lengths. Using these entropy estimates, we
extrapolated to infinite word length from the four most linear values of the
entropy versus the inverse word length.

Calculating Energy Consumption
The energy consumption of each compartmental model is determined by
the amount of trial-averaged ATP molecules expended in a single second
(averaged over 60 trials of 1 second each), either without a stimulus or
during the encoding of the band-limited conductance waveform. The
Naþ /Kþ pump hydrolyzes one ATP molecule for three Naþ ions extruded
and two Kþ ions imported.21,22 We determined the total Kþ current by
separating the Leak current into a Kþ permeable Leak current and adding
it to the delayed rectifier Kþ current. We computed the number of Kþ ions
by integrating the area under the total Kþ current curve for the duration of
stimulus presentation. We calculated the number of ATP molecules used
by multiplying the total Kþ charge by NA/(2F), where NA is Avogadro’s
constant and F is Faraday’s constant.

RESULTS
Model Description
We simulated single-compartment isopotential models containing
stochastic voltage-gated Naþ and Kþ channels and an additional
voltage independent Leak conductance (Figures 1A and B). We
changed the area of the compartment systematically from 1 to
300mm2, equivalent to a change in the diameter of a spherical
compartment of 0.6 to 9.8 mm. We also altered the density of the
voltage-gated Naþ and Kþ channels from the original numbers
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found in the Hodgkin–Huxley model of squid giant axon, which
contains 60 Naþ and 18 Kþ channels in each mm2 of
membrane.16,17 For each compartment, both channels’ densities
were changed simultaneously, altering the absolute numbers of ion
channels but not their relative proportions (see Materials and
Methods).

Spontaneous Activity and Energy Consumption
In the initial simulations, we assessed the ionic currents and the
resulting membrane potentials generated by channel noise in
these compartments in the absence of synaptic inputs (Figure 1B).
In the smallest compartments, the spontaneous opening of small
numbers of voltage-gated Naþ channels due to thermal agitation
depolarizes the compartment sufficiently to evoke action poten-
tials. The rate of spontaneous action potentials declines as the
compartments become larger until the firing rate approaches 0 for
the 300mm2 compartment, regardless of the channel density
(Figure 1C); with increasing numbers of voltage-gated channels in
larger cells, spontaneous single-channel openings make too small
a contribution to depolarize the compartment, increasing the
current threshold for action potential initiation. In compartments
of 100 mm2 or less, where the current threshold for firing is lower,
increasing the channel density increases the spontaneous firing
rate (Figure 1C). Very low channel densities, a quarter of the
original density, reduce the spontaneous spike rate irrespective of
the compartment size because there are approximately four times
fewer voltage-gated Naþ channels capable of opening to trigger
an action potential.

Action potentials consume energy because Naþ and Kþ ions
that flow across the membrane during the action potential must
be restored by the Naþ /Kþ pump, requiring ATP.23 Yet, despite
the smallest compartments having the highest spontaneous spike

rates,6,24 larger compartments consume more energy in the
absence of synaptic inputs, irrespective of the channel density
(Figure 1D). This can be explained by the total ion flux during an
action potential, which is lower in smaller compartments with
fewer ion channels than in larger compartments with greater
numbers of ion channels. Likewise, lower channel densities reduce
costs, even when they do not affect the spontaneous spike rate,
because each action potential opens fewer channels consuming
less energy (Figure 1D).

In the largest compartments, with low or zero spike rates in
the absence of synaptic inputs, the majority of the energy is
consumed to maintain the resting potential rather than by
spontaneous action potentials. In large compartments, the
large ion flux at rest can equal or even exceed the costs of
spontaneous action potentials in smaller compartments
(Figure 1D). For example, in the absence of synaptic inputs,
9 Naþ channels are open in the 300 mm2 compartment versus a
single channel in the 1 mm2 compartment, and 49-times-more
Kþ channels are open in the 300 mm2 compartment than in the
1 mm2 compartment. Increasing channel density increases the
cost of resting potential maintenance. For example, a 300 mm2

compartment with a quarter-fold the original density of ion
channels opens, on average, 29 Kþ channels while the same
compartment with four-fold the original density opens, on
average, 133 Kþ channels. The four-fold increase in channels
also causes an, on average, B13-fold increase in the numbers of
open Naþ channels. At the highest channel densities, the resting
energy consumption in the large compartments equals the
energy consumption of action potentials in smaller, sponta-
neously active compartments. In the largest compartments, the
resting energy consumption approaches that of a non-probabilistic
model because of the presence of large numbers of voltage-gated
ion channels.

50
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gsynaptic gNa gK gl
C
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C D
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Figure 1. The single-compartment model. (A) Single-compartment model with two voltage-gated conductances, gNa and gK, and a Leak
conductance, gl. The model has a capacitance, C, determined by the size of the compartment and receives excitatory synaptic inputs, gsynaptic.
(B) Top: An example of spontaneous action potentials triggered by channel noise in a 100 mm2 compartment with the same density of voltage-
gated ion channels as the original squid axon model. Bottom: An example of spontaneous action potentials triggered by channel noise in a
10mm2 compartment with half the density of voltage-gated ion channels as the original squid axon model. (C) The rate of spontaneous action
potentials in cells varying from 0.6 to 9.8mm in diameter (equivalent to 1 to 300 mm2 compartments) for channel densities ranging from a
quarter of to four times the density of voltage-gated Naþ and Kþ channels found in the squid giant axon. There is no excitatory input
stimulus. (D) The corresponding metabolic energy consumption for the compartment sizes and channel densities shown in C. Colors and
symbols indicate the density of the voltage-gated ion channels.
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The metabolic cost has two components, ion flux through the
voltage-gated channels and the Leak conductance. The impor-
tance of the Leak conductance cannot be understated; in a
300mm2 compartment with four-fold the original density, the total
energy consumption increases by 19% when the energy
consumed by the Leak conductance is added to that consumed
by the voltage-gated Kþ channels (Supplementary Table S2). At
lower channel densities, the contribution of the Leak is even more
significant; in a 300mm2 compartment with the original density of
channels, the Leak increases the resting energy consumption by
122%, while in a 1 mm2 compartment the Leak inflates energy
consumption by 42%. Indeed, at low channel densities the cost of
ion flux through voltage-gated channels diminishes and the cost
of the Leak conductance is the primary determinant of energy
consumption.

Firing Rates and Information Coding
The compartments were stimulated with excitatory synaptic
inputs at 500 Hz, their intervals drawn from a Poisson distribution
(Figure 2A). Each synaptic input caused a conductance change of
0.2 mS/cm2 so that the synaptic input scales in proportion to the
membrane area. This scaling of synaptic input is equivalent to
increasing the number of identical excitatory synapses that the
compartment receives. The inputs are noise-free so the voltage-
gated channels remain the only noise source in our simulations.
The synaptic inputs were sufficient to evoke spikes in all the
compartments (Figure 2A), though their rates varied from 88
spikes/second in the 1 mm2 compartment at the original channel

density to just 11 spikes/second in the 300mm2 compartment at a
quarter of the original channel density (Figure 2B).

When driven by excitatory synaptic inputs, the smallest
compartments have the highest firing rate (Figure 2B) because
of the contribution of spontaneous action potentials (Figure 2A).
As the compartment size increases, the rate drops initially but
plateaus at cell diameters of 4 mm because the membrane filtering
properties reduce the impact of single-channel conductances.
Altering the channel density from the original Hodgkin–Huxley
model reduces the firing rate, irrespective of the compartment
size (Figure 2B). At low channel densities, this is caused by
insufficient numbers of voltage-gated Naþ channels being
available to support spikes. However, at high channel densities,
this is due to the presence of high numbers of voltage-gated Kþ

channels; models with a two- or four-fold higher densities of Naþ

channels with the density of Kþ channels fixed at 18/mm2 show
no reduction in firing rate (Supplementary Figure S1).

We measured the spike train entropy generated by frozen and
unfrozen synaptic inputs (see Methods). Using frozen inputs,
where the same 1-second-long input is repeated 60 times, we
evaluated spike train reproducibility, enabling us to obtain the
noise entropy. Using unfrozen inputs, we quantified the total
entropy that is representative of the repertoire of spiking patterns
that can be produced by the compartment. Spike trains generated
by the smallest compartments have the highest total entropy
(Supplementary Figure S2A). Increasing compartment size reduces
the total entropy up to 50 mm2, beyond this the total entropy
plateaus because large compartments display limited spike time
variability. For a given compartment size, increasing or decreasing
the ion channel density from that of the original model reduces

A B

C D

Figure 2. The influence of compartment size and channel density upon firing rate and information coding. (A) Top: An example of the
excitatory conductance stimulus. Middle: An example of a spike train evoked by the conductance stimulus. Bottom: Spike rasters across 60
trials in response to presentations of identical conductance waveforms. (B) The spike rates in model cells receiving excitatory synaptic inputs
for voltage-gated Naþ and Kþ channel densities from a quarter of to four times the density of those found in the squid giant axon. Cells
varied in diameter from 0.6 to 9.8 mm (equivalent to 1 to 300 mm2 compartments). Colors and symbols indicate the density of the voltage-
gated ion channels. (C) The information rates of each of the model cells shown in B. (D) A contour plot showing how the coding efficiency in
bits/spike depends upon cell diameter and firing rate for all the compartments modeled (including those in Supplementary Figures S1 and
S3). The data points have been fitted using locally weighted linear regression.
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the total entropy of neural coding. These trends in total entropy
closely resemble those for the firing rate across the compartment
sizes and channel densities.

Smaller compartments have higher noise entropy than the
larger compartments (Supplementary Figure S2B). Increasing the
compartment size decreases the noise entropy, irrespective of
channel density. The decrease is most marked at low channel
densities, and is due to fluctuations in small number of channels
with comparatively large discrete conductances, which increases
the effect of channel noise. For all but the lowest channel
densities, the decrease in noise entropy is larger than the decrease
in signal entropy. For example, for compartments with the original
ion channel density, increasing compartment size from 1 to
300mm2 decreased the total entropy by 8% but the noise entropy
by 66%.

The difference between the total and the noise entropies is the
mutual information (MI), a direct measure of the amount of
information in the spike train free of assumptions about how the
information is represented and what it means.19 The MI increases
with compartment size, irrespective of the channel density
(Figure 2C). Although our simulations show that the highest
information rates are achieved at the original channel density, the
differences in information rate are small for all but the lowest
channel density (c.f. Schneidman et al25). Because compartments
of different sizes differ in their spike rates, we quantified the
information per spike for all our models, including those in which
the relative proportions of voltage-gated Naþ and Kþ channels
differed (Supplementary Figure S3). Larger compartments encode
more information per spike when the comparisons are made at
similar firing rates (Figure 2D). For example, at 50 spikes/second,
an 8 mm (3.5 bits/spike) diameter compartment codes 137% more
information per spike than a 2 mm (1.5 bits/spike) diameter
compartment and 22% more information per spike than a 5 mm
(2.8 bits/spike) diameter compartment.

Energy Consumption and Energy Efficiency
Larger compartments incur higher metabolic costs while signaling,
regardless of the density of Naþ and Kþ channels, the metabolic
costs scaling close to the membrane area (Figure 3A). Compart-
ments with more channels also consume more energy than those
with fewer channels; at four-fold the original channel density
energy consumption is an order of magnitude greater than at a
quarter-fold. Greater channel numbers allow more ions to flow
across the membrane during an action potential. Thus, action
potentials in large compartments or those with higher channel
densities consume more energy because the Naþ /Kþ pumps
must do more work to restore the ion gradients.

We calculated the energy efficiency of coding by dividing the
energy consumption during signaling with the corresponding

information rates (Figure 3B). The energy efficiency drops as the
compartment size increases for all channel densities. The energy
efficiency also drops as channel density increases, except at the
lowest densities; at these densities, information rates are
substantially lower than at other densities, except at the smallest
sizes. Therefore, for each compartment size, there is a density of
Naþ and Kþ channels that maximizes the energy efficiency. In our
models, this is half the density of the original model, except at the
smallest compartment size (Supplementary Figure S4). Comparing
the 1 and 300 mm2 compartments, we see that energy efficiency
falls because consumption increases roughly in proportion to
membrane area from 2.2� 106 to 6.2� 108 ATP molecules/second
(Figure 3A) whereas information rate increases by a more modest
amount from 20 to 218 bits/second (Figure 2C). Note that for all
but the smallest compartment, the minimum energy consumption
per spike occurs at half the original channel density (Figure 3C).

To investigate the trade-off between performance and effi-
ciency, we plotted the information rates of each compartment at
each channel density against the energy efficiency (Figure 4).
Smaller compartments are more energy efficient than the larger

A B C

Figure 3. The influence of compartment size and channel density upon energy consumption and information coding efficiency. (A) The
metabolic energy consumption of each of the compartments for voltage-gated Naþ and Kþ channel densities from a quarter of to four times
the density of those found in the squid giant axon. Cells varied in diameter from 0.6 to 9.8 mm (equivalent to 1 to 300 mm2 compartments).
(B) The energy efficiency of each of the model cells shown in A. (C) The energy consumption per spike of each of the model cells shown in A.
Colors and symbols indicate the density of the voltage-gated ion channels.

0.25

4.0
2.0
1.0
0.5

size density

Figure 4. Channel density affects the trade-off between information
processing and metabolic efficiency. As compartments increase in
size from 1 to 300 mm2, the information rates they achieve increase
but metabolic efficiency drops for a given channel density. Voltage-
gated Naþ and Kþ channel densities ranged from a quarter of to
four times the density of those found in the squid giant axon. Colors
indicate compartment size while symbols indicate the density of the
voltage-gated ion channels.
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compartments with the same channel density, but have lower
information rates. For each compartment, except the smallest, the
maximum efficiency occurred at half the original channel density.
Higher information rates are attainable at higher channel densities
but only by sacrificing energy efficiency (Figure 4). Consequently,
to code between 80 and 140 bits/second, the most efficient single
compartment would be the 50 mm2 compartment with half the
original channel density. However, to code 150 bits/second, the
most energy efficient solution would be the 50 mm2 compartment
with the original channel density. Increasing the channel density
beyond the original numbers only deteriorates the energy
efficiency without further improving the information rate.

Thus, there is a Law of Diminishing Returns whereby increasing
compartment size increases the information rate but reduces the
energy efficiency (Figure 4). Changes in channel density shift the
trade-off between performance and efficiency within a given
compartment size, but cannot make a compartment more
efficient than the smallest compartment that can operate at a
particular information rate. Thus, the compartment size should be
reduced to the minimum possible to encode a particular
information rate.

Stimulus Statistics
To determine how the relationships between size, channel
density, information coded, and energy consumed are affected
by the input stimulus statistics, we changed the input rates and
unitary amplitudes of the excitatory synaptic inputs systematically
(Figure 5) (see Methods). The densities of voltage-gated Naþ

and Kþ channels changed as in our previous simulations (see
Methods) but the compartment’s diameter was kept at 5.6 mm
(100 mm2) throughout these simulations.

At all but the lowest channel density, as the rate of synaptic
inputs increases, the firing rate also increases. The original model
reaches higher spike rates of B79 Hz. At double the channel
density of the original, the firing rate increases as the input rate
increases smoothly with increasing channel density up to B69 Hz
(Figure 5A). At low channel densities, a quarter of the original
model, a peak in firing rate of B40 Hz occurs at a relatively low
rate of synaptic inputs with a relatively small unitary conductance
(Figure 5A). The maximum information rates occur at B100
inputs/second, irrespective of the channel density (Figure 5B). The
information rate drops again as the synaptic input rate increases.
At or below the original channel density, increasing the amplitude

100 200 300 400 500

0.5

1

1.5

2

2.5

3

100 200 300 400 500

0.5

1

1.5

2

2.5

3

100 200 300 400 500

0.5

1

1.5

2

2.5

3

100 200 300 400 500

0.5

1

1.5

2

2.5

3
A

B

C

D

100 200 300 400 500

0.5

1

1.5

2

2.5

3

100 200 300 400 500

0.5

1

1.5

2

2.5

3

100 200 300 400 500

0.5

1

1.5

2

2.5

3

100 200 300 400 500

0.5

1

1.5

2

2.5

3

100 200 300 400 500

0.5

1

1.5

2

2.5

3

100 200 300 400 500

0.5

1

1.5

2

2.5

3

100 200 300 400 500

0.5

1

1.5

2

2.5

3

100 200 300 400 500

0.5

1

1.5

2

2.5

3

100 200 300 400 500

0.5

1

1.5

2

2.5

3

100 200 300 400 500

0.5

1

1.5

2

2.5

3

100 200 300 400 500

0.5

1

1.5

2

2.5

3

100 200 300 400

0.5

1

1.5

2

2.5

3

0

100

200

300

2

4

6

x108

0.5

1

1.5

2

2.5
x10−6

500

20

40

60

Quarter DoubleOriginalHalf

F
iri

ng
 R

at
e 

[s
pi

ke
s/

s]
M

et
ab

ol
ic

 E
ne

rg
y

[A
T

P
/s

]
M

et
ab

ol
ic

 E
ffi

ci
en

cy
[b

its
/A

T
P

]
In

fo
rm

at
io

n 
[b

its
/s

]

Input Conductance
Rate [Hz]

U
ni

ta
ry

 C
on

du
ct

an
ce

[m
S

/c
m

2 ]

Figure 5. The effect of the input stimulus statistics on the information processing and energy efficiency of a 100 mm2 compartment. Each
panel shows the rate of conductance input versus the amplitude of the unitary conductance input. The color contours in each row indicate
the (A) firing rates, (B) information rates, (C) metabolic energy, and (D) metabolic efficiency. A scale is given at the right hand side of each row.
Each column shows a different density of voltage-gated Naþ and Kþ channel densities from a quarter of to two times the density of those
found in the squid giant axon. The white areas in each plot indicate the region in which input stimuli were not simulated.
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of synaptic inputs initially increases the information rate but then
reduces it at higher synaptic amplitudes. At higher channel
densities, increasing the synaptic amplitude does not produce a
significant drop in information rate, reaching peak information
rates of 292 bits/second (Figure 5B).

The energy consumption does not directly correspond to the
firing rate (Figure 5C) because energy consumption incorporates
the cost of producing a spike and the cost of postsynaptic
potentials. Energy consumption increases with both rate and
amplitude, irrespective of the channel density. However, the
maximum energy consumption at the double channel density is
6.4� 108 ATP molecules/second, B3-fold higher than with a
quarter the channel density of the original (Figure 5C). The energy
efficiency was greatest at the lowest channel densities, with low
inputs rates and small input amplitudes (Figure 5D). Increasing the
rate or amplitude of the synaptic inputs reduced efficiency
because it increases the energy consumption while simulta-
neously reducing the information rates.

DISCUSSION
We focused on how two interrelated factors, size and channel
density, affect information coding in neuronal compartments, the
energy cost it incurs, and the trade-off between performance and
cost. Our simulations allowed us to explore the lower limits
of biologically feasible compartments. Large compartments
outperform small compartments at a given channel density,
encoding more information per spike at a given spike rate. For a
given compartment size, the original density of voltage-gated ion
channels found in the squid giant axon maximizes the information
rate. Although this may be a consequence of the coarseness with
which we sampled channel densities, the same conclusion was
reached by Schneidman et al.25

In larger compartments or at higher channel densities, the
Naþ /Kþ pump must work harder to pump more ions across
the membrane consuming more energy. Consequently, as the
compartment size or channel density increases the cost per spike
increases and the energy efficiency of information processing
decreases. Double the original channel density consumes B74%
more energy, while half consumes B42% less. Thus, although
doubling or halving ion channel densities has a relatively small
effect (double, 220 bits/second (2.3%); half, 218 bits/second (3.4%))
on the information rate,25 it has a significant effect on energy
consumption. The substantial drop in energy consumption makes
energy efficiency maximum at half the original channel density of
the squid model despite the maximum information rate occurring
at the original density. For a 50 mm2 compartment, the maximum
energy efficiency is attained at information rates B8.7% below
the maximum achieved by the compartment.

The difference between the channel density that maximizes
energy efficiency and that which maximizes information rate for a
particular compartment size produces a conflict; information rate
and energy efficiency cannot be maximized simultaneously. This
conflict has been observed in models of spiking neurons and
neural codes,26–28 adding to the numerous lines of evidence
suggesting that energy is a selective pressure that has influenced
the evolution of neural circuits.29 Thus, either size or channel
density or both may be reduced to lower neuronal energy con-
sumption. Yet they may not be reduced sufficiently to minimize
energy consumption, or even energy efficiency; this will depend
upon the amount of information required for generating adaptive
behavior and the space available.30

Changing the rate and amplitude of the unitary synaptic
conductances used to drive a model neuron also affects the
information rate, energy consumption, and energy efficiency of
the compartment. Maximum energy efficiency is achieved at
consistently lower input rates and amplitudes than maximum
information rates, again emphasizing that, in our models, they

cannot be maximized simultaneously. Increasing channel density
increases the spectrum across the input rates and amplitudes at
which the maximum information rate is achieved. However, the
compartments with high ion channel densities consume more
energy and are less energy efficient. Thus, our simulations suggest
that a trade-off exists among compartment size, channel density,
and the rate and amplitude of the input stimulus. There is an input
rate and amplitude that maximizes information rate for each
combination of compartment size and channel density, but this
differs from the rate and amplitude that maximizes energy
efficiency.

Small compartments with low channel densities coding
information at low spike rates from low-amplitude, sparse inputs
are the most energy efficient. This suggests that to improve
energy efficiency, information should be encoded by numerous
small, low-firing-rate communication channels rather than a few
large ones.31 This agrees with recent studies of the optic nerve
that have shown that it saves energy by transmitting most of its
information over low rate communication lines, using fine axons
with small terminal arbors, and a smaller amount of information
being transmitted in larger, high-rate axons.13,32 A broader survey
has suggested that this may be a common feature of numerous
tracts in vertebrate and invertebrate nervous systems.4 However,
our models address spike generation; the energy efficiency of the
propagation of information along the axons requires deterministic
and stochastic cable models.6,33

Why Does Membrane Area Constrain the Numbers of Channels
Used for Signaling?
The voltage-gated ion channels, pumps and postsynaptic
machinery of neurons must fit into a limited membrane area.6

Each channel/receptor or pump has a ‘footprint’ that determines
the minimum area occupied by a single molecule or synapse.
Visual inspection of the structure of the voltage-gated Kþ channel
suggests it is a 40� 40 Å structure.34 Assuming voltage-gated
Naþ channels are similar in size, each single channel ‘footprint’ is
B1.6� 10� 5 mm2. Thus, for a 300mm2 compartment based on the
Hodgkin–Huxley squid giant axon model, ion channels consume
an area of 0.37 mm2, just over 0.1% of the surface area, leaving
B299mm2 available for pumps and synapses.

Pumps have to occupy a major fraction of the remaining
membrane area because they are slow. This is a major constraint.
When a 300mm2 compartment is continuously stimulated with a
synaptic input rate of 500 Hz in which each synaptic input
increases the conductance by 0.2 mS/cm2, the Naþ /Kþ pump
uses 1.07� 109 ATP molecules/second (Supplementary Table S3)
to restore the ions that are passing through the voltage-gated,
Leak, and synaptic conductances and generates a pump current of
172 pA. The maximal current a single Naþ /Kþ pump can generate
is the product of its maximal turnover rate, B200 Hz, depending
on temperature, voltage, and concentration,35 and the excess
charge of one ion transported per cycle, B32 aA. Thus, a 300 mm2

compartment needs approximately 5.4 million Naþ /Kþ pumps to
generate a pump current of 172 pA. Because the Naþ /Kþ pump
footprint is B4.9� 10� 5 mm2 (B70� 70 Å),36 these Naþ /Kþ

pumps occupy B262.15 mm2 of membrane B88% of the
surface area (c.f. 0.1% for voltage-gated channels). This leaves an
area of 35.6 mm2 in which to accommodate postsynaptic densities
(PSDs). Assuming a diameter of 400 nm,37 a single PSD occupies
an area of 0.13 mm2. At a central glutamatergic synapse, a single
PSD can contain B50 AMPA or NMDA receptors, sustaining
around 2.5 nS of conductance change.37 The remaining 37.5 mm2

can house 289 PSDs. Assuming that the 500 Hz synaptic input is
generated by 50 PSDs, with each of their maximal signaling rate
fixed at 10 Hz and conductance fixed at 2.5 nS, requires a total area
of 6.5 mm2 to accommodate the PSDs needed to generate a total
conductance change of 0.6 pS.
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Thus, to sustain the pump current in a 300 mm2 compartment
Naþ /Kþ pumps must consume 480% of the cell membrane.
Although sufficient numbers of Naþ /Kþ pumps can be
accommodated to meet demands at the original channel
densities, our calculations show that there is insufficient
space to meet demands with double the channel density
(Supplementary Table S4). Consequently, at double the channel
density, high spike rates could not be maintained indefinitely.
This demonstrates that sustaining the Naþ /Kþ pump current
constrains the combination of spike rate and channel density.

Power Generation Limits the Numbers of Channels
In neurons, compartment sizes and channel numbers are also
constrained by mitochondrial ATP synthesis. A neuron can
accommodate only a limited number of mitochondria, restricting
the rate of ATP production. Bottom-up estimates of the rate of
mitochondrial ATP synthesis and, therefore, the volume of
mitochondria needed to meet the energy demands of signaling,
are hampered by the paucity of data available. However, Attwell
and Laughlin14 estimate that the specific metabolic rate for a
cortical neuron is B40 mmol ATP/g per minute (based on
measurements of the specific metabolic rate38 and assuming
that one molecule of glucose yields 31 rather than 36 ATP
molecules (due to the Hþ Leak)). This gives a rate of ATP
production of B4� 105 ATP molecules/mm3 per second. Even
assuming that the entire cell volume is composed of
mitochondria, which is clearly an overestimate, none of the
compartments we have modeled have enough volume to
accommodate the mitochondria needed to power their Naþ /Kþ

pumps (data not shown). Indeed, the power generated is
approximately an order of magnitude less than would be
required at the original channel density. This suggests that these
compartments can only sustain firing rates substantially lower
than those that our small model compartments generate. Thus,
accommodating a sufficient volume of mitochondria is likely to
limit the number of ion channels because of the power needed for
the Naþ /Kþ pumps. Even when sufficient membrane area is
available to accommodate the channels/receptors or pumps, there
may be insufficient volume available for the mitochondria.

Suitability of The Squid Giant Axon Model
We based our models on the squid giant axon model because the
channel biophysics has been studied in detail16,17 and because
this model contains a single set of inward and outward voltage-
dependent currents.17 Models containing channels with different
kinetics and sensitivities will differ from our simulations in both
information rates and energy consumption. In particular, the squid
action potential consumes 67% to 94% more energy than many
vertebrate action potentials because the voltage-gated Naþ and
Kþ currents overlap more than in any other known action
potential. Consequently, the energy costs of many action
potentials are considerably lower than our models predict.23 The
high energy cost of the squid action potential will inflate our
calculations of energy consumption, and the surface area and
volume needed to support ion channels. Thus, considerably less
surface area and volume may be required for low-cost action
potentials such as those from cerebellar granule cells.23 In
addition, the pronounced overlap of the inward and outward
currents in the squid action potential may account for the strong
dependency of energy efficiency on channel density. In general,
the effects of changing the densities of both Naþ and Kþ voltage-
gated channels are model dependent. In some types of action
potentials, efficiency decreases with density and in others it
increases.23 Nonetheless, reducing compartment size reduces
both costs and maximum information rates favouring the use of
smaller neurons firing at lower rates.

Limits to Compartment Size and Channel Density
We confirm that the spontaneous rate of action potentials
increases dramatically as the compartments shrink, because
smaller compartments have higher input resistances and this
increases the probability that the spontaneous opening of Naþ

channel triggers an action potential.6,24 Small compartments,
below 5 mm in diameter, have spontaneous firing rates exceeding
10 Hz, increasing to 30 Hz below 2 mm, irrespective of channel
density. Because these compartments are so small, the cost of
each action potential is low, however, our calculations suggest
that there is an insufficient volume available to accommodate the
mitochondria needed to power these action potentials. Moreover,
spontaneous action potentials reduce the information rate by
increasing noise entropy at the expense of signal entropy. Indeed,
computational models of action potential propagation in narrow
axons demonstrate that spontaneous activity generated by
channel noise limits axon diameter.6,39 Thus, despite the
relatively high energy efficiencies of their action potentials, the
limited power available and low information rates of small
compartments may both prevent them from generating
adaptive behavior. Very small compartments do exist in
neurons40 (for a review, see Niven and Farris30). Little is known
about the biophysical properties of the channels in these
compartments but, if they use action potentials, they are likely
to differ from those generated by larger neurons, including the
squid giant axon.

CONCLUSIONS
For a cell (compartment) containing ion channels from the squid
giant axon of a given size, there is a channel density and an input
stimulus that maximizes the energy efficiency of information
coding. Changes in channel density and/or stimulus statistics can
increase the information rate of the cell but only by sacrificing
energy efficiency. This produces a Law of Diminishing Returns that
penalizes excess capacity and promotes the reduction of channel
density and input statistics to the minimum imposed by behavior.
The available space within cells may also constrain spike rates and,
consequently, information rates because of the space occupied by
the number of Naþ /Kþ pumps needed to sustain firing and the
mitochondria that power them. These findings emphasize the
interactions between neuronal volume, membrane area, input
statistics, and channel density, all of which affect the trade-off
between energy consumption and information coding.
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