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Previous studies have showed that armposition variations would significantly degrade the classification performance ofmyoelectric
pattern-recognition-based prosthetic control, and the cascade classifier (CC) and multiposition classifier (MPC) have been
proposed to minimize such degradation in offline scenarios. However, it remains unknown whether these proposed approaches
could also perform well in the clinical use of a multifunctional prosthesis control. In this study, the online effect of arm position
variation on motion identification was evaluated by using a motion-test environment (MTE) developed to mimic the real-time
control of myoelectric prostheses. The performance of different classifier configurations in reducing the impact of arm position
variation was investigated using four real-time metrics based on dataset obtained from transradial amputees. The results of this
study showed that, compared to the commonly used motion classification method, the CC and MPC configurations improved
the real-time performance across seven classes of movements in five different arm positions (8.7% and 12.7% increments of
motion completion rate, resp.). The results also indicated that high offline classification accuracy might not ensure good real-time
performance under variable arm positions, which necessitated the investigation of the real-time control performance to gain proper
insight on the clinical implementation of EMG-pattern-recognition-based controllers for limb amputees.

1. Introduction

Electromyography-pattern-recognition- (EMG-PR-) based
approach has great potential to provide intuitive control in
myoelectric prostheses with multiple degrees of freedom
(DOF), and thus it has beenwidely investigated in the last two
decades [1–14]. However, the existing EMG-PR-based upper
limb prostheses are yet to be available for clinical use [15–17],
and this could be mainly attributed to the gap between the
academics and the industry [7, 8, 18–37]. In order to speed up
the clinical implementation of the multifunctional myoelec-
tric prostheses, some disparities between an ideal laboratory
setting and practical use of a myoelectric prosthesis, such as
the electrode location shift, electrode configuration, muscle
contraction variation, muscle fatigue overtime, sampling rate

of EMG signals, and the prosthesis weight, were investigated
in different research groups worldwide [8, 18–20, 28–32, 38,
39].

Arm position variation is also an important disparity
between the practical use of myoelectric prosthesis and labo-
ratory setting. In most previous studies, EMG signals used to
train and test a motion classifier were recorded in a specific
arm position, thus leading to high classification accuracy in
such an ideal experimental setting. In the practical use of
myoelectric prosthesis, the arm positions of amputees would
unavoidably change while performing several upper limb
movements. Hence, when doing a movement in arm posi-
tions that are different from the ones used to train a motion
classifier, the EMG patterns would be different, and decay
in motion classification performance would consequently
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Table 1: Demographic information of the transradial subjects.

Subjects Age Residual limb Amputated since Type of Prosthesis Residual forearm length (cm)
TR01 28 Right >11 years Myoelectric 18
TR02 47 Left >16 years Cosmetic 25
TR03 29 Right >10 years Cosmetic 23.8
TR04 44 Left >13 years Myoelectric 25
TR05 30 Right >14 years Myoelectric 5
Note the length of residual forearm was measured from the elbow joint.

occur. Recently, a number of research groups have conducted
studies with able-bodied subjects and/or arm amputees to
evaluate the effect of arm position variation on the classifica-
tion performance of EMG-PR classifier and proposed several
possible approaches to minimize such effect [21–26, 40, 41].
By using offline classification accuracy or error, these studies
showed that arm position variation would significantly affect
the classification performance of a motion classifier, and
they proposed various classification schemes to attenuate
the impact of variation in arm position. It is important to
note that classification accuracy is the ability of a motion
classifier algorithm to identify a desired movement from
several classes of movements. A high classification accuracy
may be prerequisite for improving the control performance
of a multifunctional myoelectric prosthesis, but it might not
ensure a good real-time control performance due to the
disparities between an ideal laboratory setting and practical
use of a myoelectric prosthesis. A previous investigation
demonstrated that the offline accuracy may not have a
strong correlation with real-time performance of EMG-PR-
based prosthesis control [42]. This suggests that using the
offline classification performance alone may be insufficient
for assessing the usability and clinical viability of EMG-
PR-based myoelectric control approaches [42, 43]. Thus it
should be required to further examine how variation in arm
positions would affect the real-time control performance of
EMG-PR and whether the previously proposed approaches
[23, 24] are still feasible and robust in reducing the effect of
arm position variations in real-time conditions.

In our pilot study conducted with able-bodied subjects,
arm position variation was proved to have substantial effect
on the real-time motion classification accuracy, and the
proposed cascade classifier (CC) method effectively mini-
mized the impact [23]. It was helpful for us to understand
the influence of arm position variation on the real-time
control performance of EMG-PR and the availability of the
proposed CC method in attenuating the influence. However,
it remains unclear whether similar impact would be caused
by arm position variations on arm amputees who are the
final users of a prosthesis. Additionally, it is unknown
if the previously proposed CC method and multiposition
configuration (MPC) method could provide a robust real-
time performance against arm position variations. To pro-
vide proper clarification and understanding regarding these
issues, five amputees with unilateral transradial amputation
were recruited to participate in the current study in which
the real-time performance of the CC and MPC as well as
the conventional single-position configuration (SPC)method

were investigated. In addition, the correlation between offline
motion classification accuracy and online performance of
EMG-PR control strategy under arm position variations was
examined by observing the real-time performance of EMG-
PR method. To the best of our knowledge, this would be the
first time to investigate these important issueswith an attempt
to improve the robustness of real-time myoelectric pattern
recognition against arm position variations in amputees. The
outcomes of this study would provide some useful guides that
could aid the development of clinically viablemultifunctional
myoelectric prostheses.

2. Materials and Methods

2.1. Participants and Data Acquisition. Five male patients
with unilateral transradial amputation (aged from 28 to 47
years) participated in the study.They all have varying degrees
of experience in the use of either a cosmetic prosthesis
or a myoelectric prosthesis in their daily life. The length
of their residual forearms ranged from 5 cm to 25 cm and
the demographic information of the subjects is shown in
Table 1. All of the subjects gave written informed consent and
provided permission for publication of their photographs and
data for scientific and educational purposes. And the protocol
of this study was approved by the Shenzhen Institutes of
Advanced Technology, Chinese Academy of Sciences.

A commercialized biological signal acquisition system
called Trigno� wireless system (Delsys Inc., Boston, USA),
which has a base station and 16 wireless hybrid sensors, was
used in this study for EMG data acquisition. Each hybrid
sensor is composed of a parallel-bar EMG electrode and a
built-in triaxial accelerometer electrode. Hence, the EMG
signals corresponding to the physiological activities of the
arm muscles during contraction and triaxial acceleration
signals (ACC) that reflect the arm position variation in 3D
space could be acquired simultaneously. The EMG signal
resolution is 16 bits and the accelerometer sensitivity is ±1.5 g.
Based on the radio frequency (RF) wireless communication
of 2.4GHz, the hybrid signals could be transmitted to the
base station within a range of 40m. In order to record and
process the EMGandACC signals in real timewithMATLAB
(version R2010b, the MathWorks, Natick, Massachusetts), a
data acquisition card (USB-6218,National InstrumentsCorp.,
USA) was used in the current study. The card was connected
to the analogue output connector that is localized on the base
station of the Trigno wireless system via a DC-A22 untermi-
nated output cable, and its USB port was connected to the
desktop. In addition, with the EMGworks Signal Acquisition
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Figure 1: Placement of sensors on residual arm of a transradial
amputee.

software equipped with the Trigno wireless system, the EMG
signals were filtered with a band-pass filter (20–450Hz) and
ACC signals were filtered with a low-pass filter (50Hz) and
then acquired with a sampling rate of 1000Hz. Also, power
line noise was eliminated from the recorded signals with a
50Hz notch filter [25].

In the experiment, six hybrid sensors were used to
measure the hybrid signals from the residual muscles of the
amputated arm. Four of the six sensors were mounted on
the remaining arm evenly around the apex of the muscle
bulge, 1-2 cm distal to the elbow crease, and another two
were placed on the distal end over the flexor muscle and
extensor muscle, respectively, as shown in Figure 1. Five arm
positions that varied in the sagittal plane and seven classes of
forearm movements, which might be commonly involved in
daily life activities [23], were considered in the study.The arm
positions are as follows:

P1: straight arm reaching forward (horizontal)
P2: arm hanging at side, elbow bent at 135∘

P3: arm hanging at side, elbow bent at 90∘

P4: arm hanging at side, elbow bent at 45∘

P5: straight arm hanging at side

The seven forearm movements, including hand open/
close (HO/HC), wrist flexion/extension (WF/WE), wrist
pronation/supination (WP/WS), and a “rest” class (RT), were
considered in the study. With a motion-test environment
(MTE) developed usingMATLABprograming tool [23], each
subject was asked to follow a prompt that displays the arm
position images in which the seven forearm movements are
performed with a moderate muscle contraction force. Each
movement was sustained for 4 seconds and repeated twice,
resulting in 8-second hybrid signal recordings (EMG and
ACC) per motion class in every arm position. The hybrid
signal recordings were then used for classifier training.

2.2. Pattern-Recognition-Based Classifier Configurations. To
build a pattern-recognition-based classifier, the EMG and
ACC signal recordings were segmented into sequential analy-
siswindowswith a time length of 150ms and a time increment
of 100ms (i.e., 50ms overlapping) [23, 24]. For EMG signal

recordings, four commonly used time-domain features [2],
mean absolute value (MAV), number of zeros crossings,
number of slope sign changes, and waveform length, were
extracted from each analysis window and the features from
all the analysis windows were concatenated together to form
an EMG feature matrix. Similarly, for the ACC recordings,
three time-domain features [23, 24], MAV, variance, and
maximum value, were extracted from each analysis window
and combined together to get an ACC feature matrix. The
linear discriminant analysis (LDA) classifier [28, 44] was
used as the pattern recognition algorithm because it is much
simpler and faster to implement and would not compromise
the accuracy of motion classification in comparison to other
complex algorithms. In the current study, the first half of the
feature matrix was used to train the LDA classifier and the
second half was then used to test the trained classifier.

Three classifier configurations including single-position
classifier (SPC), two-stage cascade classifier (CC), and mul-
tiposition classifier (MPC) were applied in this study and
described mathematically by (1)–(3), respectively. The con-
ventional configuration of limb motion classification, that
is, SPC, was built to evaluate the real-time effect of arm
position variation on myoelectric control. And the SPC was
trained with the EMG recordings of all the seven movements
in one arm position, as shown in Figure 2(a) and (1). For
five arm positions, five single-position classifiers were built,
respectively. The CC configuration and MPC configuration
were used to attenuate the impact of armposition variation on
motion classification performance [23, 24]. As illustrated in
Figure 2(b) and (2a) and (2b), the CC configuration consists
of two sequential classifiers, in which the first stage that
served as a position classifier was trained with ACC for the
identification of five arm positions and the second stage that
served as a motion classifier was trained with EMG signals
for the classification of seven classes of movements.

SPC: motion output (𝑚)
= LDA𝑝 (EMGFeatureMatrix𝑝) 𝑝 = 1, 2, . . . , 5, (1)

where 𝑝 denotes arm position and 𝑚 denotes the identified
motion class.

CC: position output (𝑝)
= LDA𝑚 (AccFeatureMatrix𝑚)

𝑚 = HO,HC,WE,WF,WS,WP,NM,
(2a)

where 𝑚 denotes the motion class. In real-time test, if the𝑖th position was identified, then the 𝑖th motion classifier was
selected:

motion output (𝑚) = LDA𝑖 (EMGFeatureMatrix𝑖) (2b)

MPC: motion output (𝑚)
= LDA( 5∑

𝑝=1

EMGFeatureMatrix𝑝) , (3)

where 𝑝 denotes arm position.
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Figure 2:Three classifier configurations. (a) Single-position classifier (SPC). (b) Cascade classifier (CC). CC was composed of seven position
classifiers in the first stage andfivemotion classifiers in the second stage. Each position classifierwas trained byACC signals of eachmovement,
and each motion classifier was trained by EMG recordings from each arm position. In real-time test, the output of the first stage was firstly
determined by themost frequently occurring outputs of the seven position classifiers and then used to select a correspondingmotion classifier.
(c) Multiposition classifier (MPC).

A commonly used metric, the classification accuracy
which is defined as the number of correctly classified samples
over the total number of testing samples, was computed and
used to evaluate the offline classification performance of each
motion/position classifier [23, 24].The classification accuracy
corresponding to each classifier configuration was defined as
follows.

(1) Classification Accuracy of the SPC. For each subject,
five motion SPCs corresponding to five arm positions were
trained using EMG recordings from each arm position,
respectively, producing five classification accuracies, among
which the maximum value was considered as the offline
classification accuracy of the SPC configuration. And the
classifier with the maximum classification accuracy was used
in real-time experiments.

(2) Classification Accuracy of the CC. For each subject, the
product of the average accuracy over all the seven position
classifiers in the first stage and the average accuracy over all
the five motion classifiers in the second stage was considered
as the offline classification accuracy of the CC configuration
[23, 24]. In the real-time experiments, the arm position was
firstly determined by the most frequently occurring outputs
of the seven position classifiers and then was used to choose
a corresponding motion classifier [23].

(3) Classification Accuracy of theMPC. For each subject, there
was one MPC classifier for all the positions and motion

classes. Thus the classifier was used in real-time experiments
and its accuracy in identifying the seven motion classes is the
offline classification accuracy of the MPC configuration [24].

2.3. Real-TimeMyoelectric Classification Experiments and Per-
formance Metrics. The real-time myoelectric pattern recog-
nition experiments for prosthetic control were conducted
based on MTE. A snapshot of MTE showing a representative
subject performing the real-time test is presented in Figure 3.

The three aforementioned classifier configurations were
embedded in the developedMTE so as tomimic the real-time
control of myoelectric prostheses [23, 24]. For each subject,
two real-time experimental sessions were designed. The first
is a practical session, in which all the subjects participated
in real-time myoelectric motion recognition experiment for
more than 30 minutes to get familiar with the MTE. During
this session, each of the three classifier configurations was
selected and repeated 3–5 times according to the subjects’
circumstance. Following the first session, subjects would
immediately participate in an experimental session to eval-
uate the performance of the myoelectric pattern recognition
method in real time, and three trials would be performed by
using each of the three classifier configurations, respectively.
It should be noted that all subjects were blind to the sequence
of these classifier configurations before and during the real-
time experiment, for the purpose of keeping them from
eliciting conscious effort during a specific trial. In each trial,
the subjects were instructed to perform each of the seven
motion classes for three times in every arm position by
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Motion-test
environment

Figure 3: Snapshot of MTE and a representative subject performing the real-time test. The panel of MTE is composed of three main parts,
including the parameters selection panel for real-time data recording, parameter selection panel for offline pattern-recognition analysis, and
the classifier configuration selection button for real-time test of embedded algorithms.

following a target movement image and a target arm position
image that were randomly displayed on a computer screen. In
total, each subject needed to execute 105movements in a trial.
In the real-time experiment, a targetmovement task was con-
sidered as completed if it was successfully performed within
a 5-second time limit. Since the current study partly aims
to examine the real-time control performance of the three
classifier configurations, ten accumulative correct decisions
were deemed as a success herein. The real-time recordings
including the hybrid signals, real-time instructions, and
the real-time prediction results were all stored during the
experiment.

To quantitatively evaluate the real-time performance
of the proposed classifier configurations in identifying the
seven forearm movements in variable arm positions, four
performance metrics were used in the study with three of
them shown in Figure 4. Three of the four performance
metrics were adopted from previous studies [4, 6, 23, 43,
45], which are response time, motion completion time, and
motion completion rate (refer to [4, 43] for the detailed
description of these metrics).

Briefly, the response time is defined as the time taken by
a subject to correctly perform the target movement for the
first time after the onset of a motion task. The completion
time was defined as the time from the first correct movement
decision to the time the movement was completed. The
motion completion rate was the percentage of successfully
completed motions out of the total considered motions (105
target motion tasks for each of the three real-time trials)
within a given time limit. Another performance metric
examined in this study is the dynamic efficiency that was
proposed in our previous study [23]. This metric describes
how well a target movement was identified in real-time
motion classification [23], and it is similar to the real-time
accuracy metric employed in Ortiz-Catalan et al.’s study [6].
The dynamic efficiency is defined as the number of correct
decisions (target class) over the total number of decisions
when successfully completing a movement through the full
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Figure 4: Definition of the four real-time performance metrics.
This figure illustrates the process of a successful motion completion
in the real-time test, where the red diamonds denote the target
motion classes, the blue diamonds denote the identified motion
classes, and the green diamonds denote correct identifications
when the blue diamonds overlapped with the red diamonds. Ten
accumulative correct identifications were deemed as a successful
motion completion.

range of motion. Generally, the longer the completion time
is, the lower the dynamic efficiency for a motion task is.
Note that the completion time and dynamic efficiency were
only calculated for the successful tasks in this study. For
each subject, the four real-time performance metrics were
computed from the data stored when the subjects performed
the real-time experiments based on the MTE system.

2.4. Statistical Analysis. A one-way ANOVA test was con-
ducted to assess the statistical difference between the offline
and real-time performance of the EMG-PR when using each
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Table 2: Offline motion classification accuracy and real-time motion completion rate for each amputee when using SPC, CC, and MPC,
respectively.

Classification accuracy (%) Completion rate (%)
SPC CC MPC SPC CC MPC

TR01 95.20 95.10 93.80 82.9 92.40 97.10
TR02 95.90 95.80 85.90 57.1 78.10 76.20
TR03 92.60 92.50 82.60 62.9 75.20 75.20
TR04 90.70 90.60 75.00 78.1 78.10 88.60
TR05 91.90 91.80 80.60 41.9 42.90 49.50
AVE + STD 93.30 ± 2.20 93.20 ± 2.20 83.60 ± 7.00 64.60 ± 16.50 73.30 ± 18.30 77.30 ± 18.00

Table 3: Average real-time performance metrics across all amputees when using SPC, CC, and MPC, respectively.

Classifier Configuration Completion Rate (%) Response Time (s) Completion Time (s) Dynamic Efficiency (%)
SPC 64.6 ± 16.5 1.12 ± 0.17 1.29 ± 0.14 82.60 ± 6.10
CC 73.3 ± 18.1 1.08 ± 0.10 1.43 ± 0.24 78.60 ± 8.50
MPC 77.3 ± 17.9 1.22 ± 0.15 1.24 ± 0.17 84.70 ± 6.80

of the classifier configurations. And, to assess the statistical
difference between the different classifier configurations,
each of the four real-time performance metrics was used to
perform one-wayANOVA.The level of statistical significance
was set to 𝑝 < 0.05.
3. Results

3.1. Offline Classification Accuracy versus Real-Time Comple-
tion Rate. Table 2 shows the offline classification accuracy
and the real-time completion rate for each subject when
using SPC, CC, and MPC, respectively. Compared to the
conventional classifier configuration (SPC), the CC achieved
higher real-time completion rate and similar offline classi-
fication accuracy, while the MPC yielded higher real-time
classification performance but lower offline classification
accuracy.

The statistical results show that the offline classification
accuracy was significantly higher than the real-time motion
completion rate when using CC (𝑝 value < 0.05), but not
when usingMPC (𝑝 value = 0.49).These findings suggest that
the robustness of the two proposed classifier configurations
under variable arm positions and, in addition, a high offline
classification accuracy might not ensure a good real-time
performance, and some sacrifices of offline classification
performance may bring better real-time performance of
EMG-PR control approach. The cross-correlation coefficient
between the offline classification accuracy and the real-time
motion completion rate was also calculated, and 0.09, 0.48,
and 0.37 were recorded for SPC, CC, and MPC, respectively.
This outcome suggests a weak correlation between the offline
and real-time performance metrics.

3.2. Overall Real-Time Performance Metrics of Three Classifier
Configurations. The average real-time performance metrics
across all subjects are summarized in Table 3. The conven-
tional classifier configuration (SPC) had the lowest motion
completion rates (64.60%), which are about 8.70% and

12.70% lower when CC and MPC were used, respectively.
Although no significant difference was found among the
three classifier configurations in terms of motion completion
rate (𝑝 value = 0.52), the increment inmotion completion rate
(8.70% forCC and 12.70% forMPC) suggests the effectiveness
of the CC andMPC in attenuating the impact of arm position
variation for the transradial amputees, and the MPC seems
better than CC.

Moreover, the other three real-time performance metrics
were also analyzed in the study, inwhich theMPC seems to be
the best for its shortest completion time and highest dynamic
efficiency.

3.3. Motion Completion Rate versus Arm Positions andMotion
Classes. Considering that the motion completion rate is a
direct measure of the successful rate of a classifier configu-
ration in the real-time condition, the effect of variation in
arm position on completion rate was further investigated
in the study. The average motion completion rate versus
the five arm positions is shown in Figure 5. It is obvious
that, among the three examined classifier configurations, the
SPC had the worst performance and the MPC had the best
performance.The CC had higher value of completion rates in
all arm positions in comparison with SPC but lower value of
completion rates thanMPC except in P4, which may account
for the median performance when using CC.

Figure 6 illustrates the average motion completion rate
versus seven motion classes. Compared to the conventional
SPC, theMPC and CC classifiers achieved higher completion
rate for almost all the seven classes of movements. And
the motion completion rate was relatively stable among the
different motion classes when using CC and MPC, while the
SPC had a quite low completion rate for WF. In general, the
performance of theMPC is slightly better than that of the CC,
because, for four of the seven motion classes, the MPC had
a higher completion rate than the CC and, for other three
motion classes, the MPC got a lower or similar completion
rate in comparison to the CC.
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Figure 5: Average motion completion rate versus arm position for
all subjects.

4. Discussion

To facilitate the practical application of EMG-PR-based
prosthesis, the impact of arm position variation on the real-
time performance of myoelectric control and the robustness
of two previously proposed solutions [24] against variable
arm positions were assessed in the current study. To make
the investigation more clinically relevant, five transradial
amputees whom we assumed to be the final user of upper
limb prostheses were recruited to participate in this study.
Additionally, the correlation between the offline classification
accuracy and the real-timemotion classification performance
under variable arm positions was analyzed. Compared with
previous studies that were conducted on normally limbed
subjects and/or arm amputees by means of postprocessing
(offline) analysis [21, 22, 24, 26], this study represents a fur-
ther step towards the practical use of EMG-PR-basedmethod
in multifunctional myoelectric prostheses in clinical settings.
The outcomes obtained from the real-time experiment with
the transradial amputees would provide some useful insights
for the design of EMG-PR-based controllers.

In the absence of commercially available multifunctional
prosthesis systems with multiple DOF, a custom-made MTE
system was developed to mimic the practical control of a
physical prosthesis in the study. Based on the MTE system,
the impact of arm position variation on real-timemyoelectric
control and the usability of the two previously proposed
classifier configurations were assessed by embedding the
corresponding classifier configurations into theMTE system.
Four real-time performance metrics including the motion
completion rate, response time, completion time, and the
dynamic efficiency were used in the study to quantitatively
evaluate the real-time performance of each proposed clas-
sifier strategy. Note the definition of successful tasks in the
current study was consistent with that introduced in some
previous studies [4, 43]. A motion task was considered
successful if it was correctly identified with ten accumulative
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Figure 6: Average motion completion rate versus motion class for
all subjects.

decisions within a designated time limit of 5 s. This time
limit was chosen based on the practical experience of the
subject. The users of prostheses may be frustrated and may
not want to continuously perform a movement since the
prosthetic operation would be too slow after approximately
5 s attempting to perform a movement [4, 43].

The offline motion classification accuracy and the real-
time motion completion rate are both important to assess
the performance of EMG-PR approach, and the relationship
between them was firstly investigated in this study. A weak
correlation independent of the classifier configuration was
observed. This finding is consistent with the conclusion of a
previous study that did not consider the effect of variations
in arm position on limb movement classification [42]. In
addition, the two proposed classifier configurations (CC
and MPC) both yielded higher real-time completion rates
in comparison to the SPC, but contrary to the variation
tendency of the offline classification accuracy. This outcome
conflicts with the empirical understanding (i.e., degradation
in offline classification accuracy may decay the real-time
motion classification accuracy of myoelectric control). It sug-
gests that the classification accuracy calculated by postpro-
cessing EMG recordings may not be a direct measure of real-
time performance. More specifically, the high offline motion
classification accuracy maybe a necessary but not a sufficient
condition to ensure a good real-time control performance of
multifunctional myoelectric prostheses. In the current study,
TR05 is a good case in point, for whom the offline classi-
fication accuracy was acceptable (81.60–91.90%), but real-
time motion completion rate was quite low (41.90–49.50%).
The evident decrease in motion completion rate for TR05
may be mainly attributed to his short residual forearm (only
with a length of 5 cm), because the subject could not feel the
contraction of the remaining forearm muscles very well and
thus felt a bit irritated to elicit repeatable muscle contractions
in variable arm positions during the experiment. Moreover,
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other factors such as muscle contraction force, mild mus-
cle fatigue, and change in skin independence might also
influence the real-time performance of myoelectric control.
Therefore, the investigation of a real-time control perfor-
mance is necessary to gain proper insight on the feasibility of
clinically implementing EMG-PR-based controllers for upper
limb amputees.

In comparison to the conventional SPC configuration,
the increment in motion completion rate when using CC
and MPC (Tables 2 and 3) indicates that the two pro-
posed solutions would effectively reduce the impact of arm
position changes in real-time pattern-recognition control of
a multifunctional myoelectric prosthesis. Furthermore, the
MPC configuration has a higher motion completion rate in
comparison to the CC configuration. The increased general-
ization of the MPC configuration caused by combining the
training set of EMG data from all the arm positions might
account for its high performance in real time compared to
the other two configurations. The variation of the motion
completion rate with respect to the different arm positions
and motion classes for the three classifier configurations was
also investigated (Figures 5 and 6). The results show that the
MPC classifier configuration did not work well in all the arm
positions and arm movements, but it overall outperformed
the CC configuration. However, in our previous study the CC
classifier achieved a higher offline classification accuracy than
the MPC classifier [24]. The inconsistent findings between
this online study and the previous offline analysis again
suggest that the control issues of a prosthesis associated with
its practical applications should be validated in a real-time
condition before it could be clinically viable.

In addition to the motion completion rate, other three
real-time performance metrics were also analyzed in the
study. Note that the completion time and dynamic efficiency
were used to measure how well a motion task could be
finished, and they were only calculated for successful tasks.
And the response time reflects the reaction speed of subjects.
In the current study, there was nomuch difference among the
three real-time performance metrics when examined on the
three different classifier configurations (CC, MPC, and SPC).
The results show that the two proposed classifier configura-
tions (MPC and CC) have somewhat similar response time
in comparison to the SPC configuration. However, the CC
method has a relatively lower response rate compared toMPC
and SPC.

The limitation of the current study is that the arm
positions and motion classes were randomly presented to
the subject in the real-time experiment. Functional tasks
such as picking objects from a table and putting them in a
box and drinking a cup of water were not included in the
movement design of the current study. Such tasks usually
involvemultiple degrees of freedomand aremore close to real
life forearmmovements. Hence, in our future work, a number
of functional tasks would be considered when designing the
forearm movements.
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