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Due to the limited field of view of the microscopes, acquisitions of macroscopic

specimens require many parallel image stacks to cover the whole volume of interest.

Overlapping regions are introduced among stacks in order to make it possible automatic

alignment by means of a 3D stitching tool. Since state-of-the-art microscopes coupled

with chemical clearing procedures can generate 3D images whose size exceeds the

Terabyte, parallelization is required to keep stitching time within acceptable limits. In the

present paper we discuss how multi-level parallelization reduces the execution times of

TeraStitcher, a tool designed to deal with very large images. Two algorithms performing

dataset partition for efficient parallelization in a transparent way are presented together

with experimental results proving the effectiveness of the approach that achieves a

speedup close to 300×, when both coarse- and fine-grained parallelism are exploited.

Multi-level parallelization of TeraStitcher led to a significant reduction of processing times

with no changes in the user interface, and with no additional effort required for the

maintenance of code.

Keywords: 3D microscopy, stitching, terabyte images, parallel processing, data partitioning, GPU

1. INTRODUCTION

State-of-the-artmicroscopes (Dodt and et al., 2007; Silvestri et al., 2012), coupled with chemical
clearing procedures to render brain tissue transparent (Chung et al., 2013) can generate 3D images
having size in the order of Terabyte (TB) at high throughput. Processing and manipulation of these
images require new software tools to perform a number of functions from stitching to visualization,
to analysis.

Due to the limited field of view of the microscopes, acquisitions of macroscopic specimens
(e.g., whole mammalian brains) require many parallel image stacks (also referred to as tiles in
the following) to cover the whole volume of interest. Hence, multiple tiles, each composed by
thousands of slices, are acquired using motorized stages. For volumes of approximately 1 cm3 at
sub-micrometer resolution, the size of acquired data may easily exceed the Teravoxel. Since tile
positions provided by the stages are not sufficient to determine a reliable displacement between
tiles, an overlapping region is introduced with the purpose of making possible the automatic
combination of the tiles by means of a stitching software tool.

A 3D stitching software capable to deal with these huge volumetric images was our first
effort, and in 2012 we released the TeraStitcher (Bria and Iannello, 2012, 2015). This multi-
platform tool, running under Linux, Mac OS, and Windows, has been adopted by many

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2019.00041
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2019.00041&domain=pdf&date_stamp=2019-06-04
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:g.iannello@unicampus.it
https://doi.org/10.3389/fninf.2019.00041
https://www.frontiersin.org/articles/10.3389/fninf.2019.00041/full
http://loop.frontiersin.org/people/703242/overview
http://loop.frontiersin.org/people/743724/overview
http://loop.frontiersin.org/people/743712/overview
http://loop.frontiersin.org/people/238492/overview


Bria et al. Parallel Stitching of Microscopy Images

groups working in the field and it has been successfully used
on images of 1 TB and more. However, that first version of
TeraStitcher had some limitations, so we decided to enhance it
so as to make it capable of dealing more effectively with over
Terabyte-sized images.

Here we report our experience in parallelizing those parts of
TeraStitcher that dominate the overall stitching time.We adopted
a multi-process parallelization strategy based on launching
multiple instances of TeraStitcher that process concurrently
different portions of the input dataset. This approach has the
following advantages: (i) it avoids the need of maintaining
multiple versions of the code; (ii) it does not require any
interprocess communication; and (iii) it is suitable for distributed
computing on a computer cluster. This strategy requires a
nontrivial partitioning of the dataset to minimize the overhead
due to additional I/O operations. A contribution of the paper
therefore consists of two algorithms performing the partitioning
in an effective way, and thanks to the parallelization approach
adopted, these algorithms are kept separate from the stitching
logic. Additionally, to further speedup the execution of the most
critical part of the computation, we have implemented it in
CUDA to exploit fine-grained parallelism supported by Graphic
Processing Units (GPUs).

Extensive experimental results, together with a detailed
performance analysis, confirm that the approach allows a
reduction of stitching time by at least one order of magnitude.
Moreover, they point out that both coarse- and fine-grained
parallelism may co-exist and lead to a reduction of stitching time
that exceeds two orders of magnitude.

The rest of the paper is organized as follows. In section 2 we
summarize related work and the main features of TeraStitcher
that motivate parallelization. In section 3 we describe the overall
parallelization strategy adopted. In sections 4 and 5 the partition
algorithms and some implementation details regarding the parts
of the tool running in parallel are discussed. In section 6
performance results are presented, while section 7 concludes
the paper.

2. RELATED WORK AND BACKGROUND

Several tools have been developed in the last ten years for
stitching microscopy images, however most of them are not
adequate to stitch 3D Teravoxel-sized datasets because they were
designed under different assumptions (Emmenlauer et al., 2009;
Preibisch et al., 2009; Yu and Peng, 2011; Chalfoun et al., 2017).
For example, MIST (Chalfoun et al., 2017) has been recently
proposed as a tool for rapid and accurate stitching of large 2D
time-lapse mosaics. Although it has been designed to deal with
very large datasets and it exploits different sources of parallelism
to improve stitching performance, the tool can handle only 2D
images each with a typical size of a few Gigabytes.

Recently, Imaris has announced a standalone commercial
application capable to precisely aligning and fusing 2D, 3D, or

Abbreviations: LENS, European Laboratory for Non-linear Spectroscopy;

MIP, Maximum Intensity Projection. NCC, Normalized Cross- Correlation;

TB, TeraByte.

4D Terabyte-sized images (Bitplane, 2018). Although it is very
likely that their tool uses at least multi-threading to efficiently
exploit modern multi-core architectures, no information about
its real capabilities and performance is available. To the best of
our knowledge, the only noncommercial tool designed to handle
Terabyte-sized 3D images is BigStitcher (Hörl et al., 2018), an
evolution recently released of the tool described in Preibisch et al.
(2009) and distributed as a plugin of Fiji (Schindelin et al., 2012).
BigStitcher provides several functionalities besides stitching. It
handles and reconstructs large multi-tile, multi-view acquisitions
compensating all major optical effects. It also uses parallelism at
thread level to speedup the stitching process.

As already stated TeraStitcher is able to stitch very large
images (Bria and Iannello, 2012). It performs stitching in six
steps: (i) import of the unstitched dataset; (ii) pairwise tiles
displacement computation; (iii) displacement projection; (iv)
displacement thresholding; (v) optimal tiles placement; and (vi)
tiles merging and final multiresolution image generation. To
improve flexibility, steps (i–v) generate an xml file representing,
in a compact and structured form, the input of the next step.
This enables running the steps separately, manually intervening
to correct errors of single steps, and changing the implementation
of one step without affecting the others. While the interested
reader may find in Bria and Iannello (2012) a detailed description
of each step, here we focus only on implementation issues
related with parallelization of displacement computation and tile
merging that are, by far, the most time consuming steps in the
stitching pipeline and motivated our parallelization work.

Pairwise tiles displacement computation (alignment step in the
following) aims at correcting the small alignment errors between
adjacent tiles introduced by the microscope motorized stages.
To correct the alignments, TeraStitcher uses an algorithm based
on a Maximum Intensity Projection (MIP) of the overlapped
area between any two adjacent tiles, and on the search of a
maximum of the Normalized Cross Correlation (NCC) among
pairs of homologous projections from both tiles (see Figure 1).
Finding themaximum of NCC is by far the most computationally
intensive part of the pairwise tiles displacement computation.
It requires to move one of the two MIPs with respect to the
other in any direction in order to compute a map of NCCs.
The number of floating-point operations needed to compute that
map depends on the size of the MIPs and of the computed NCC
map. The workload associated to the pairwise tiles displacement
computation is therefore an increasing function of: (i) the
number of adjacent tiles; (ii) the size of the overlapping region
between adjacent tiles; (iii) the size of the NCC map to be
computed; (iv) the number of sub-stacks in which each tile is
partitioned. In other words, the workload grows not only with the
overall size of the acquired image, as it is intuitive, but also with
the resolution of the microscope, since a larger map in terms of
pixels has to be computed to correct alignment errors if the voxel
size decreases.

Merging and multiresolution image generation (fusion step in
the following) aim at creating a stitched image, i.e., a unique
seamless image without overlapping regions in a form suitable
for further processing. Indeed, one nice feature of TeraStitcher is
that it enables the generation of multiple copies of the stitched
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FIGURE 1 | An NCC map is computed for homologous projections (MIPs) of

the two overlapping (blue and red) regions of adjacent tiles.

image at decreasing resolution and size to simplify some types of
manipulations when the highest resolution image is very large.
Each low resolution image is obtained by properly combining
nearby voxels and halving the size of the higher resolution
image. We minimize memory occupancy and I/O operations
that dominate this step by reading only once at the time limited
portions of the input dataset and generating all the requested
resolutions of that portion before loading another portion.

3. PARALLELIZATION STRATEGY

Both the alignment step and the fusion one can be applied to
a portion of the image with no need to access other portions.
Using command line options, the user can specify which portion
has to be processed by TeraStitcher. By leveraging this feature, it
is straightforward to implement a driver program that launches
multiple instances working on different portions of the dataset.
Every instance produces the corresponding output in parallel
and when all instances have terminated, all outputs are properly
merged so as to obtain the same final output that would be
generated by a single instance of TeraStitcher when applied to
the whole dataset.

Providing that the final merge step is computationally
inexpensive, this approach has several advantages: (i) only the
optimized sequential version of the code has to be maintained;
(ii) no thread-safe code has to be introduced, possibly requiring
variants in the shared data structures; (iii) the dataset partition
strategy (i.e., the driver code) is kept separate from the internal
algorithms of TeraStitcher; (iv) parallel stitching can be carried
out also on a distributed memory platform (e.g., a cluster with a
shared file system).

The driver program, referred to as ParaStitcher in the
following, has been implemented in Python and uses MPI to
execute in parallel multiple instances of TeraStitcher. Using the
parameters of the MPI launcher, the user specifies the desired

degree of parallelism P and the script, using the partition
algorithms described in the following sections, divides the dataset
into N partitions with N larger than P (e.g., ≥ 2P). After the
script has performed some preliminary operations, it acts as a
dispatcher, initially assigning P instances of TeraStitcher to as
many MPI processes, and then assigning the remaining N − P
instances on a FIFO basis to processes when they complete their
assigned tasks. When all instances have been processed, the script
performs the final merge operation and terminates. This way, a
reasonable load balancing is attained in case dataset partitions do
not generate the same workload.

ParaStitcher accepts exactly the same command line options
of TeraStitcher making its use transparent for the user. The only
exception is that it sets directly the command line options that
control the portion of the dataset to be processed, in order to
perform the correct partition of the tile matrix.

4. ALIGNMENT STEP

4.1. Dataset Partition
The dataset before stitching can be viewed as a 2D matrix of
regularly spaced tiles. As shown in Figure 1 each tile is a 3D
matrix of voxels. TeraStitcher conventionally assumes that tiles
are arranged as a matrix along dimensions X-Y and have all
the same size along the three dimensions X, Y, and Z. Each tile
has a nominal (i.e., imposed by the stages) fixed displacement
with respect to the preceding tile in the matrix along the two
dimensions. This displacement introduces some overlap between
adjacent tiles (blue and red regions in Figure 1).

In the alignment step TeraStitcher reads a sub-block of the tile
matrix specified through command line options, and computes
all alignments among adjacent tiles in it. To make the use of the
MIP-NCC algorithm more effective and to minimize memory
occupancy and I/O operations, the two adjacent tiles are divided
into sub-stacks and the algorithm is applied multiple times to
homologous sub-stacks. Moreover, using suitable command line
options, the alignment computation can be limited to a subset
of consecutive sub-stacks. Of course, when applied to the whole
dataset, TeraStitcher computes the alignments of all sub-stacks of
all pairs of adjacent tiles in the tile matrix.

We highlight that, despite the significant I/O workload
(obviously the whole dataset must be read at least once), the
alignment step is CPU bound since the number of floating-point
operations per data unit is high. As to the final merge operation
that ParaStitcher has to perform, its cost is negligible, since it
only consists into the processing of the xml files containing the
alignments computed by each instance of TeraStitcher.

Turning our attention to the dataset partition algorithm, since
the alignment algorithm is applied independently to homologous
sub-stacks of adjacent tiles, if S is the number of sub-stacks in
which each tile is divided, the easiest parallelization strategy is
to launch S instances of TeraStitcher working on the whole tile
matrix, but with each instance considering only intervals along Z
corresponding to the sub-stack which is assigned to it. However,
if S is not large enough, also the tile matrix should be partitioned
into sub-blocks, with the S sub-stacks of each block assigned to
an equal number of TeraStitcher instances.
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Hence, if N is the desired degree of the dataset partition, we
can proceed as follows: if S ≥ N then split the dataset only
along Z, otherwise split also the tile matrix into B = ⌈N/S⌉
sub-blocks. In the latter case, however, if we simply partition the
tile matrix (i.e., the blocks of tiles are disjoint), the alignments
between adjacent tiles that are on borders of different blocks
(the inter block alignments of Figure 2) cannot be computed
by any instance. To compute these alignments, tiles on the
border of one block have to be loaded by both instances of
TeraStitcher that have assigned the adjacent blocks, although
just one of them should compute some alignments to avoid
redundant computations.

To better understand the issue, consider a partition of the
tile matrix, and let b be a generic block in the partition (see
Figure 2). Let i, j be the indices of the last row and last column of
b, respectively. The instance of TeraStitcher in charge of b must
load and process also tiles of row i + 1 (unless i is the last row of
the matrix) and tiles of column j+1 (unless j is the last column in
thematrix). However, for tiles in row i+1 only alignments against
tiles in row i have to be computed, i.e., inter-blocks alignments,
and similarly for tiles in columns j + 1 and j. Indeed, the other
alignments against adjacent tiles are computed by other instances
of TeraStitcher. The way tiles and alignment computations have
to be assigned to different instances of TeraStitcher is depicted
in Figure 2. Note that instance 0 of TeraStitcher does not need
to load tile (2, 3) since all its alignments with respect to adjacent

tiles are computed by other instances, and this is true for all
partitions that are in charge of neither the last row nor the
last column.

Based on these considerations, we added two command line
options to TeraStitcher disabling the alignment computations
among tiles belonging to the last row and to the last column of
the block, respectively. This way, each instance of TeraStitcher is
in charge of a block of the matrix partition which, according to its
position in the tile matrix, is extended with one row at the bottom
and one column at the right. TeraStitcher is then launched with
the options disabling redundant alignment computations (see
again Figure 2, where it is indicated which tiles are loaded by each
instance of TeraStitcher and which alignments it computes).

We now discuss how the tile matrix can be optimally
partitioned in, at least, B ≥ ⌈N/S⌉ blocks.

In general, it is not possible to estimate in advance the
computational workload generated by a block of tiles since
it depends, partially, on its contents. The safest policy is
therefore to partition the matrix in blocks with approximately
the same size, so that each instance of TeraStitcher must
compute approximately the same number of alignments, and
then rely on the load balancing effect induced when the number
N of partitions is sufficiently greater than the number of
computing units.

Second, as already explained, the partitioning of the tile
matrix in blocks introduces some overhead. Although alignment

FIGURE 2 | The tile matrix is partitioned in such a way that all alignments among adjacent tiles can be computed exactly once.
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computations are not duplicated, tiles on some block borders
have to be loaded twice by instances of TeraStitcher [and a few
of them even three times, see tile (2, 3) in Figure 2]. This entails
additional I/O operations with respect to runs in which the tile
matrix is not partitioned. It is easy to observe that, if the tile
matrix has m rows and n columns, this overhead is measured by
m times the number of vertical partitions minus one, plus n times
the number of horizontal partitions minus one. For instance,
with reference to Figure 2, the number of additional tile loads
is 4 · 1+ 6 · 1 = 10.

As a consequence, an optimal partition must divide the tile
matrix into, at least, B ≥ ⌈N/S⌉ blocks, minimizing the number
of tiles that must be loaded multiple times.

To formalize the corresponding optimization problem, we
model the tile matrix as a matrix of elements with m ≥ 2 rows
and n ≥ 2 columns. Given a positive integer B ≤ ⌊m/2⌋ · ⌊n/2⌋
(the constraint is motivated by the need to avoid small partitions
that would generate too much overhead), we want to partition
the matrix in, at least, B blocks, minimizing a cost function under
the constraint that: (i) the number of rows and columns of tiles
in each block differ, at most, of 1, (ii) blocks have, at least, 2 rows
and 2 columns.

A tile partition that fulfills the above conditions is identified
by two integer numbers pm, pn representing the partitions of
rows and columns of the matrix, respectively, and satisfying
the conditions:

1 ≤ pm ≤ m/2, 1 ≤ pn ≤ n/2.

and:

pm pn ≥ B. (1)

The cost function to be minimized, modeling the I/O overhead
described above, is (pm − 1)n+ (pn − 1)m. Our goal is therefore
to solve the following optimization problem:

P(m, n,B) = min (pm − 1) n+ (pn − 1)m
1 ≤ pm ≤ m/2
1 ≤ pn ≤ n/2
pm · pn ≥ B
pm, pn integers

(2)

which is not trivial, since it includes a non-linear constraint.
The problem can be represented on a Cartesian plane as

in Figure 3, where the abscissa x represents the number of
horizontal partitions and the ordinate y represents the number
of vertical partitions.

We can easily find an approximate solution to P(m, n,B) if we
consiter the three points:

p =

(⌈

√

Bm/n
⌉

,
⌊

√

Bn/m
⌋)

p′ =
(⌊

√

Bm/n
⌋

,
⌈

√

Bn/m
⌉)

p′′ =
(⌈

√

Bm/n
⌉

,
⌈

√

Bn/m
⌉)

,

that are the points with integer coordinates closest to the solution
to P(m, n,B) when we relax the constraint that pm, pn must be

positive integers, and we choose the best of them satisfying (1)
(p′′ always does it).

A non trivial algorithm, starting from these three points,
that it is guaranteed to find the optimal solution to P(m, n,B)
is presented in the Appendix with a formal demonstration of
its correctness. That algorithm has been implemented in the
Python script to partition the dataset. However, it is worth noting
that even using the best point among p, p′, and p′′ provides a
solution that coincides or it is very close to the optimum in all
practical cases.

4.2. Multilevel Parallelism: The GPU
Implementation
As already mentioned in section 2, the most time-consuming
part of the alignment step is the evaluation of the NCC between
the MIPs of overlapping regions. The NCC is a variant of
the classic Cross Correlation in which data are normalized by
subtracting the mean and dividing by the standard deviation
of the two datasets (Lewis, 1995). Although cross correlation
can be efficiently computed in the transform domain, its
normalized version requires the manipulation of the original
data, so that there is not a correspondingly simple and efficient
transform domain expression. Moreover, in our case the so-
called “feature” and “template” have the same size, so the NCC
can be conveniently computed on a standard CPU using two
simple double loops: the first double loop computes the averages
of the two datasets. The second double loop computes the
normalized correlation. Both loops could be parallelized by using,
for instance, simple OpenMP directives that have the advantage
of being portable betweenWindows and Unix systems. However,
using multiple CPU cores to run in parallel those loops would
interfere with the coarse grain parallelization strategy discussed
in section 3, so we decided to pursue a different approach
to speedup the evaluation of NCC, exploiting parallelism at a
finer grain.

A possible solution is to use one or more Graphics Processing
Units (GPUs) as floating point accelerators, since it is, by now, a
common experience that GPUs can provide impressive speedups
in data-intensive computations. One of the most successful
software framework to program GPUs is CUDA (Nickolls
et al., 2008), a software development kit (SDK) and application
programming interface (API) that allows using simple extensions
of the C programming language to code algorithms for execution
on NVIDIA GPUs.

We implemented a CUDA version of NCC that carries out
within a single kernel (the equivalent of a function invocation
in CUDA) the entire computation for all the displacements of
the pair of MIPs needed to build the NCC map mentioned
in section 2. Each block of 1,024 threads in the CUDA grid
executes one of the thousands of pairs of double-loops required
for the evaluation of the NCC. More in detail, to compute the
mean values of the two datasets, we leverage the so-called shuffle
primitives that allow threads to exchange data using registers.
Shuffle primitives may be used as building blocks of many
reduction and scan operations1.

1 For details see at https://devblogs.nvidia.com/cuda-pro-tip-kepler-shuffle
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FIGURE 3 | The solution of algorithm P (m, n,B) lies in the dashed area between hyperbola y = B/x and line y = (c0 + nm− n x)/m.

From the user viewpoint the computation of the NCC can
switch from the CPU to GPU and viceversa by means of an
environment variable. Also this version of TeraStitcher has been
tested and runs under Linux, Mac OS and Windows.

5. FUSION STEP

In the fusion step, given the indices of a 3D sub-matrix of the
final stitched image, TeraStitcher reads the tiles in which the sub-
matrix is contained, and generates (possibly many resolutions
of) the corresponding region of the final image. When applied
to the whole 3D matrix, TeraStitcher generates the complete
stitched image.

With respect to parallelization, differently from the alignment
step, the fusion step has the problem that data have to be
written to secondary storage. This means that, in order to make
parallelization effective, the format used to store the stitched
image should support concurrent writes by multiple processes.
Although this cannot guarantee actual parallelism in the I/O
subsystem, since that depends on the features of the internal
architecture, the point is that the format should not introduce
unnecessary serialization of the accesses or, even worse, prevent
from parallel writes.

Although most popular image formats do not support parallel
writes, TeraStitcher supports a few file formats that allow
concurrent writes of data belonging to different regions of the
final image. For the sake of space, we briefly describe here two
of these formats, which are representative of what can be done
with others.

The simplest and currently most popular output format stores
the image as a series of 2D images, each saved in a different file.
Each 2D image usually corresponds to a plane in X-Y directions,

whereas the series of files spans over the Z direction. Since all file
systems support concurrent writes to different files, any dataset
partition along Z can be used to parallelize the fusion step when
this output format is used.

Storing the 3D image as a series of slices is simple, but it may
be inefficient when the image is really big. Indeed, for very large
images each slice may be as large as many Gbytes, which makes
access to image sub-regions extremely slow if image files are not
internally tiled. As an alternative to internal tiling, we proposed
to use an external tiling, i.e., partitioning the image in multiple
files, each storing a relatively small 3D sub-region of the 3D
image (Bria and Iannello, 2012; Bria et al., 2016). This approach is
simple and applicable independently of the specific format used
to store individual tiles and it proved to be efficient in reducing
the load time of small sub-regions of very large images (Bria
et al., 2016). Moreover, it is also more effective for parallelization,
since, differently from the series of 2D images, this form of tiling
naturally supports any partition of the image into 3D sub-regions.
For these reasons we will report in the following on results of
experiments where the output format was of externally-tiled type.

Finally, we observe that the fusion step is clearly I/O bound,
since the entire dataset must be read and written once (Bria and
Iannello, 2012). The processing required for stitching is limited,
unless compression is used (in reading, in writing or both) since
in this case some processing must be done on all data. Hence,
fusion step is I/O bound with possibly a non negligible fraction
of processing.

As mentioned in Section 2, TeraStitcher can generate the
output image at different resolutions. This feature coupled with
the constraint that the tiles of the output image should be
neither too large nor too small for efficiency reasons, makes non
trivial the dataset decomposition for fusion step parallelization.
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Indeed, to avoid additional input operations, each instance of
TeraStitcher must process a sub-region of the image large enough
to enable the generation of all requested resolutions, with the
additional constraint that, at all resolutions, tiles should have
approximately the same size, not too smaller than a given value.

In order to formulate the partition problem, we preliminary
observe that Terastitcher performs tiling independently over
each dimension i on the basis of three parameters, all of which
are integers:

• the image size Di along dimension i, measured in voxels and
assumed to be≫1;

• the ideal tile size wi along dimension i, provided by the user
and measured in voxels too;

• the lowest resolution to be generated that is determined by an
integer ni ≥ 0, 0 being the integer associated to the highest
resolution (i.e., that of the acquired image).

For the sake of readiness, in the following we develop our
discussion with respect to a single dimension and omit the index
i. Indeed, all the results are immediately applicable independently
to any dimension. Moreover, all quantities considered in
the following are integers, unless differently specified. As to
notations, we will use the symbol |a|b to denote the modulo
operation between the integers a and b.

Now, the constraints on dataset partition informally presented
above imply that the tiling performed by a single instance
of TeraStitcher when it processes the whole volume has the
following properties: (i) the size of all tiles at all resolutions
is no greater than w and not smaller than ⌈w/2⌉; (ii) all tiles
have approximately the same size at all resolutions. Our goal is
therefore to partition the interval of indices [0,D − 1] into sub-
intervals and assign each sub-interval to a different instance of
TeraStitcher in such a way that these two properties are satisfied
at all resolutions as much as possible.

Since each instance must generate tiles from the sub-interval
of voxels assigned to it, when halving is performed to generate
lower resolutions, it is convenient, to minimize information loss,
that sub-interval width be equal to 2nb̄, with ⌈w/2⌉ ≤ b̄ ≤ w.
This way, each instance generates 2n tiles of size b̄ at the highest
resolution, 2n−1 tiles of the same size at the first lower resolution
and so on, until it generates one tile, again of size b̄, at the n-th
lower resolution.

These can be easily done if there exists some b̄ satisfying the
above inequalities, and for which it is:

|D|2nb̄ = 0. (3)

Indeed, in this case,D can be partitioned inD/(2nb̄) sub-intervals
and, at any resolution, tiles of size b̄ can be generated.

If, conversely, (3) cannot be satisfied by any integer in the
interval [⌈w/2⌉,w], the requested conditions can be reasonably
satisfied by choosing b̄, ⌈w/2⌉ ≤ b̄ ≤ w in such a way that the
interval [0,D − 1] is partitioned in ⌊D/(2nb̄)⌋ sub-intervals of
size 2nb̄, plus one final sub-interval of maximum size l′ = |D|2nb̄.
This corresponds to solve the following optimization problem:

b̄ = arg max
⌈w/2⌉≤b≤w

|D|2nb. (4)

In this way the partition guarantees that:

• ⌈w/2⌉ ≤ b̄ ≤ w;
• at all requested resolutions, the tiles of the first ⌊D/(2nb̄)⌋

sub-intervals are all equal to b̄;
• the size of the last sub-interval is as close as possible to that

of the others, implying that at any resolution the tile size is
reasonably close to b̄.

Hence, all tiles satisfy the conditions stated above, except those
of the last sub-interval, if any, that are, however, reasonably
guaranteed to have a size not too much smaller than the others.
Moreover, it is worth noting that this way there is no loss of
information at lower resolutions, except possibly a few voxels of
the last sub-interval.

An algorithm that computes b̄, l′, and the number k of sub-
intervals in which [0,D−1] has been decomposed is presented in
the Appendix, and it has been implemented in the Python script.

6. RESULTS AND DISCUSSION

6.1. Alignment Step
In this Section we present the results of a set of numerical
tests carried out to evaluate the performance achievable with the
parallelization strategy above described.

The experiments have been carried out on anHP Z820 with 16
cores, 192 Gbytes RAM, one NVIDIA Tesla K20c, 9 TBs SATA
disks in RAID 5 (6 TBs effective), and an IBM S822LC with
16 Power8 cores (SMT 8), 512 GByte RAM, 4 NVIDIA Tesla
P100, 2 Solid State Disks (960 GByte each). The two systems
represent different platforms to stress how our parallelization
strategies behave ranging from a medium-range workstation to
a high performance server. In particular, the two platforms have
very different I/O subsystems whose throughput affects both the
performance of read/write operations and the interaction with
the GPUs.

We begin with the experimental results obtained on the
HP workstation.

Since real datasets may differ greatly in size, and even
datasets with similar size may be processed with different
values of parameters to deal with different characteristics of
the images, we have considered four different datasets and one
of them (the largest one) has been processed with different
parameters controlling the alignment algorithm. In Table 1 we
report the characteristics of the datasets used in the experiments,
the parameters used to control the alignment algorithm, the
sequential execution time of the alignment step on the whole
dataset in seconds, and the speedups achieved with 2, 4, and
8 processors. With more processors in all cases the attainable
efficiency decreases because on the HP workstation the I/O
fraction of the workload becomes the main bottleneck.

The first three rows of the Table refer to the largest dataset we
used and it will be referred in the following as “Whole brain”. It
is actually a portion of a much bigger image of a whole mouse
brain that was acquired at the European Laboratory for Non-
Linear Spectroscopy (LENS) as a test image of their Confocal
Light Sheet Microscope (Silvestri et al., 2012). Although its
overall size is limited to 223 Gbytes, it is however representative
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TABLE 1 | Datasets characteristics, parameters of the alignment algorithm, sequential execution times, and speedups attainable with 2, 4, and 8 processors.

Size Tile Slice Search 1 2 4 8

# Dataset (Gbyte) matrix size #slices area Sub-stacks proc (s) procs procs procs

1 Whole brain 223 3 × 3 2,048 × 2,048 2959 65 × 65 15 25680 1.94 3.69 6.58

2 Whole brain 223 3 × 3 2,048 × 2,048 2950 65 × 65 30 38880 1.89 3.48 6.00

3 Whole brain 223 3 × 3 2,048 × 2,048 2950 90 × 90 15 39060 1.88 3.54 6.45

4 Hippocampus 21 45 × 44 768 × 768 6 90 × 90 1 74820 1.96 3.75 7.03

5 Cerebellum 39 4 × 10 512 × 512 3701 60 × 60 19 14340 1.86 3.59 5.55

6 2-photon 2.65 6 × 9 1,568 × 1,568 10 58×33 1 524 1.87 3.20 5.63

of larger datasets that have similar tile size, and differ for the
number of tiles only. Indeed, the speedups attainable on larger
datasets in the same conditions (i.e., with the same controlling
parameters) are quite similar to those reported in the first three
rows of the table. For this dataset, three experiments have been
carried out changing the search area and the number of sub-
stacks per tile to be processed. In particular, experiments 2 and
3 require a very similar number of floating-point operations and
almost twice the number of operations required by experiment
1. This is coherent with the measured sequential execution
times, taking into account that in all cases the I/O workload
is the same. In all cases the results confirm a pretty good
scalability up to 8 processors. The other three experiments
reported in the Table are representative of datasets with very
different characteristics.

The dataset referred to as “Hippocampus” was acquired at

LENS and was published in Allegra Mascaro et al. (2015). It
has huge dimensions in X-Y (for a total of 1980 tiles) but very

few slices. It tests the ability of the tile partition algorithm

to generate an effective partition since no parallelism can be
exploited along Z. The reported speedups show a very good

performance confirming that the algorithm efficiently partitions
the tile matrix keeping the I/O overhead at the bare minimum.

The dataset referred to as “Cerebellum” was acquired at LENS
and was published in Silvestri et al. (2012). It has a smaller
size in X-Y and a relatively small overall size. It represents

a small dataset. Nevertheless, measured speedups are very

similar to those of the “Whole brain” dataset, confirming that

parallelization performance does not depend on the overall size
of the dataset.

Finally, the dataset referred to as “2-photon” has been
included because it is a very small dataset, again with many tiles
and a few slices. It has been provided by users of TeraStitcher
for testing purposes. Also in this case the parallelization strategy
proves to be effective.

The results presented so far show that coarse grain
parallelization leads to good speedups even on conventional
cheap hardware. However, we carried out further experiments to
evaluate how parallelization behaves when a high performance
I/O subsystem is available, i.e., when the CPU bound nature
of the problem is fully exposed. To that purpose we repeated
experiment 1 on the second platformmentioned at the beginning
of the section which has a sustained I/O throughput of almost 6

TABLE 2 | Performance of experiment #1 measured on the IBM server.

Procs. Wall time (s) Speedup

1 15300 1.00

2 8191 1.87

4 4100 3.73

8 2078 7.36

16 1168 13.10

Gbytes/s. The results are shown in Table 2. Comparing speedups
with those reported in the first row of Table 1, higher scalability
is apparent, considering that an efficiency of 13.1/16 = 0.82 is
achieved even with 16 processors.

We then tested the CUDA implementation. Results on
the HP workstation are reported in Table 3. The advantage
of using the GPU for computing the NCC is apparent.
Moreover it is worth noting that coupling coarse and fine
grain parallelization gives advantages in most cases and do
not penalize the execution in the others, even though just
one GPU is available. This is made possible by the overlap
between processing and I/O that is naturally induced when
the dataset is partitioned and more independent activities
proceed concurrently.

Finally, we tested the performance of the CUDA
implementation on the IBM server. For the sake of brevity,
we present the results just for experiment 1, because the others
do not provide additional insights. Results are reported in
Table 4. With one GPU the speedup is obviously greater than
on the HP workstation, but the advantage is limited. Increasing
the number of GPUs used and the degree of coarse grain
parallelism exploited, performance notably increases, reaching
an impressive speedup of more than two orders of magnitude
when all available computing resources are used. We also ran
the same experiment on a Titan-V, a latest generation NVIDIA
card based on the Volta architecture. The host systems have
different features (in particular the system hosting the Titan-V
features has magnetic disks) so a comparison of the total
elapsed time would not be fair. However, taking into account
only the time required by the GPU to compute all NCCs, we
pass from 70 to 42.5 s showing that the Volta architecture
provides a clear advantage, probably due to its higher number
of cores.
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TABLE 3 | Speedups obtained using the GPU (Tesla K20c) available on the

HP workstation.

# Dataset 1 proc. with CPU (s) 1 proc. with GPU 4 procs. with GPU

1 Whole brain 25680 15.85 19.45

2 Whole brain 38880 24.00 23.14

3 Whole brain 39060 14.47 25.04

4 Hippocampus 74820 31.93 30.76

5 Cerebellum 14340 23.04 28.65

6 2-photon 524 23.82 27.58

The completion times in seconds are reported from Table 1 for completeness.

TABLE 4 | Performance of experiment #1 using up to 4 GPUs on the IBM server.

Procs. #GPUs Wall time (s) Speedup (abs.) Speedup (rel.)

1 1 580 26.38 1.00

2 2 344 44.48 1.69

4 4 174 87.93 3.33

8 4 93 164.52 6.24

16 4 56 273.21 10.36

Both absolute (i.e., wrt the sequential execution without the GPU) and relative (i.e., wrt

the sequential execution with GPUs) speedups are reported.

6.2. Fusion Step
Before presenting experimental data collected to assess the
performance of ParaStitcher in the fusion step, we briefly discuss

another issue that may cause overhead in the parallel working
of TeraStitcher.

When the partition algorithm is applied to the Z dimension

only, no overhead is introduced. Conversely, when the format
of the output image is of an externally-tiled type and partition

regards also X-Y dimensions, the instances of TeraStitcher have
to read image data from all the tiles that have intersections with
the partition they generate. This means that some tiles have to

be loaded by different instances of TeraStitcher and therefore,

differently from what happens in a completely sequential

execution, those tiles are read more than once. That duplication
of reading operations cannot be completely eliminated since tiles

overlap, and therefore there is no way to partition the image in

such a way that partitions correspond always to data coming from
just one tile.

This source of overhead may further grow when input tiles

have large size in X-Y. Indeed, it is convenient that tiles in the

output image be not too large for efficient access in subsequent
processing. Hence, if tiles of the unstitched input image are

large, partitions are smaller than input tiles, and the number of
TeraStitcher instances that need data from the same tile grows.

This leads to duplicate reading operations because, although in

principle only the data strictly needed should be read by each
instance, in practice most image file formats (namely TIFF) do
have limits in accessing image sub-regions, forcing instances to
read also data that are read by other instances.

To evaluate the performance of the fusion step we used the
same platform and datasets used for the performance evaluation
of the alignment step. In Table 5 we report the experiments
performed and the corresponding measured speedups. In all
cases we generated the output at more than one resolution
to evaluate how the partition Algorithm 2 works. Although
dataset characteristics are the same reported in Table 1, for the
sake of readability we have duplicated columns corresponding
to parameters relevant to evaluate the overhead. For the same
reason, in the table are reported the percentage of overlap
between adjacent tiles and the tile size of the output image. As
already stated, all experiments generate an externally tiled image.

The four datasets have different characteristics that allow us
to evaluate parallelization of fusion step in different conditions.
More specifically we have that:

• the “Whole brain” dataset has many slices, a large tile size in
X-Y, and a fairly large overlap, especially in absolute terms;

• the “Cerebellum” dataset has many slices too, but with fairly
small tile size in X-Y, and a fairly large overlap in percentage,
but relatively small in absolute terms;

• the “Hippocampus” dataset has very few slices, a fairly small
tile size in X-Y, and a fairly large overlap in percentage, but
again relatively small in absolute terms;

• the “2-photon” dataset has very few slices and a large tile size
in X-Y, but with a very limited overlap.

Taking into account these characteristics, the previous
considerations about the input overhead, and the highly
I/O bound nature of the fusion step, reported speedups
suggest that:

• The partition algorithm works well since in all cases, except
the “Whole brain” dataset, speedups are quite good up to 6
processors and in one case up to 10 processors;

• The “Whole brain” dataset suffers of both the large tile size and
the large absolute overlap; indeed for 2 processors the partition
algorithm applies to Z dimension only and the speedup is
comparable with that of other datasets because there is no
overhead, but already for 4 processors, even dimensions X-
Y must be partitioned to guarantee some load balancing; this
causes a rapid growth of input overhead so that parallelization
becomes inefficient for 6 processors and completely useless for
more processors.

6.3. Comparison With BigStitcher
As introduced in section 2, the only noncommercial tool
that supports 3D stitching of Terabyte-sized images and uses
parallelism to boost performance is BigStitcher (Hörl et al.,
2018). Similarly to TeraStitcher, BigStitcher divides the stitching
pipeline in five steps: dataset import, pairwise displacement
computation, filtering pairwise displacements, globally optimal
tile placement, and image fusion generation. This made possible
to directly compare the performance of the two tools on
the two most time consuming steps, namely the alignment
and the fusion step. For this comparison, we used the HP
workstation and the four datasets described in section 6.1. We
executed all experiments using always the default parameters
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TABLE 5 | Datasets characteristics, parameters of the fusion algorithm, sequential execution times, and speedups attainable with 2, 4, 6, 8, 10, and 12 processors.

Overlap Output 1 2 4 6 8 10 12

# Dataset Slice size #slices (%) tile size proc (s) procs procs procs procs procs procs

1 Whole brain 2048 ×2048 2959 25 768 × 768 × 256 7470 1.81 2.25 2.29 2.05 n.a. n.a.

2 Cerebellum 512 × 512 3701 27 384 × 384 × 384 1886 1.81 3.18 4.76 5.10 6.83 7.23

3 Hippocampus 768 × 768 6 24 512 × 512 × 6 760 1.82 3.29 4.22 4.47 5.20 6.08

4 2-photon 1568 × 1568 10 7/4 768 × 768 × 10 75 1.92 3.13 4.17 5.00 6.25 5.36

In the “2-photon” dataset the percentage of overlap is different along X and Y dimensions.

TABLE 6 | Comparison in pairwise displacement computation performance

between ParaStitcher and BigStitcher.

ParaStitcher BigStitcher

Dataset CPU

(8 procs.)

CPU+GPU

(4 procs.)

(48 threads

+ downsampling)

Whole brain 3903 1320 n.a.

Hippocampus 10643 2432 n.a.

Cerebellum 2584 501 1699

2-photon 93 19 38

All times are measured on the HP workstation and are in seconds.

and algorithms, except when a different choice was suggested
by the characteristics of the dataset at hand (e.g., the tiles
overlap), or by the BigStitcher documentation (e.g., the caching
type in the fusion step). Even though the degree of parallelism
used by BigStitcher was not under user control, we verified
that all processor cores were fully used during the execution in
all experiments.

Results of the experiments for the alignment step are
reported in Table 6. BigStitcher was 1.52 − 2.45× faster than
ParaStitcher when GPUs were not used, whereas ParaStitcher
was 2.00 − 3.39× faster than BigStitcher when GPUs were
used. For a better evaluation of these results, it is worth
noting that BigStitcher, besides thread-level parallelism, uses
by default a (4,4,2) downsampling in X,Y,Z dimensions to
speedup pairwise displacement computation and then uses an
n-dimensional implementation of a quadratic fit to achieve
subpixel accuracy.

Unfortunately, despite multiple attempts, BigStitcher was
not able to complete the alignment step for the “Whole
brain” and the “Hippocampus” datasets. Specifically, after it
started and completed a number of pairwise computations,
BigStitcher hanged and freezed all Fiji windows for hours.
When BigStitcher was launched on a smaller subset (8 ×

44 tiles) of the “Hippocampus” dataset (45 × 44 tiles), the
computation terminated successfully. However, it hanged again
when launched on a smaller subset (2 × 2 tiles) of the “Whole
brain” dataset (3 × 3 tiles). We also observed that BigStitcher
used a considerable amount of RAM, up to 1.5× the dimensions
of the input dataset. Although it is not possible to establish
a direct connection between these issues in the absence of
requirements specifications and without controlling the degree

TABLE 7 | Comparison in image fusion performance between ParaStitcher

and BigStitcher.

ParaStitcher BigStitcher

Dataset Single 3D TIFF 2D series 3D grid of tiles Single 3D TIFF

(Sequential) (Parallelized) (Parallelized) (48 threads)

Cerebellum 3814 242 261 3576

2-photon 28 10 10 425

All formats, except the single 3D TIFF, are compressed and include multiple resolutions.

All times are measured on the HP workstation and are in seconds.

of parallelism, these behaviors suggest that the current release of
BigStitcher (which is still in a Beta-version) can have problems
when the size of the dataset grows, possibly depending on the
structure (number of tiles and/or slices, file format, etc.) of the
source dataset.

As to the fusion step, BigStitcher can generate only a
single 16/32 bits 3D image2 in either OME-TIFF or HDF5
BigDataViewer format. When the fused image is generated in
the former format, parallelization cannot be exploited in writing
operations, whereas this would be possible in principle when the
latter format is used, since a thread-safe version of the HDF5
library exists. Nevertheless, we observed that fusion timings of
BigStitcher remarkably grow when the BigDataViewer format
is chosen. While this observation can be explained by the
characteristics of the format (high compression ratio and more
complex internal structure than TIFF), it suggests that parallelism
is not exploited or it is not effective in the current release of
BigStitcher. Conversely, ParaStitcher can generate formats where
the fused image is split in many files (a series of 2D slices or a
3D grid of tiles). These formats allow an effective parallelization
of the image fusion step as demostrated by the experiments
discussed above and by data reported in Table 7.

From this brief analysis we can conclude that BigStitcher
definitely exploits parallelism to speedup the pairwise
displacement computation, although it is difficult to give
a precise performance characterization since the degree of
parallelism cannot be varied. Data reported in Table 6, however,
confirm that ParaStitcher can exploit both coarse- and fine-
grained parallelism to achieve a dramatic reduction of processing

2 For the sake of comparison, we are not considering here time-lapse and/or

multi-view datasets.
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TABLE 8 | Comparison between ParaStitcher and BigStitcher (Beta-version) on stitching parallelization.

ParaStitcher BigStitcher

Input arrangement Regular grid of tiles (row-by-row),

sparse regular grid by XML specification

Regular grid of tiles (various arrangements),

non-regular grid

Input format TIFF (multipage or 2D series),

Bitplane Imaris,

Hamamatsu DCIMG,

OpenCV formats

TIFF (multipage only),

Bioformats,

Zeiss Lightsheet Z.1,

MicroManager diSPIM

Multi-channel Yes Yes

Alignment parallelization CPU (multi-process) + GPU (CUDA)

user-controllable

2.00− 3.39× faster than BigStitcher a

CPU (multi-thread)

cannot be controlled by user

Fusion parallelization CPU (multi-process)

user-controllable

4.25− 14.78× faster than BigStitcher a

no

Memory usage < 0.02× #procs× the size of input dataset ≈ 1.5× the size of input dataset a

Output format b Compressed/uncompressed 8/16 bits 2D TIFF series,

Compressed/uncompressed 8/16 bits multipage TIFF

n.a.

Output arrangement b Regular grid of tiles (row-by-row),

Series of whole 2D slices

n.a.

ameasured on the “Cerebellum” and “2-photon” datasets, whereas on the other two datasets “Whole brain” and “Hippocampus” BigStitcher did not complete the alignment step.
bwe reported only the formats/arrangements that can be effectively generated in parallel by the tools, i.e., sequentially written formats/arrangements have been omitted here.

times even on the two datasets where BigStitcher failed. As to
image fusion, ParaStitcher turns out to be the only tool capable
to effectively exploit parallelism in this step.

The interested reader may find a comparison between the two
tools with respect to stitching parallelization in Table 8, where
we summarize all the abovereported findings and point out some
other key differences3.

7. CONCLUSIONS AND FUTURE WORKS

We have presented an approach aiming at reducing the stitching
time of TeraStitcher using parallel processing at different grain
levels. At coarse level, parallelization is achieved exploiting the
possibility of processing concurrently different partitions of the
image, and designing two efficient algorithms to perform the
dataset partition. At fine level, data parallelism characterizing
the most computing intensive part of the alignment algorithm
is exploited using GPUs. Both levels of parallelism can be
coupled providing significant speedups on a common medium
range workstation and close to three hundreds fold speedup
on a high end server. Additional advantages of the proposed
approach are that parallelization does not require additional
efforts for the maintenance of TeraStitcher code, no special
image file formats are introduced, there are no changes in the
user interface, apart the need to specify the desired level of
parallelism, and execution on distributed memory platforms
is possible.

Several directions are worth exploring to further improve
the user experience in stitching vary large images. For example,

3The comparison focuses only on stitching. It is worth noting, however,

that BigStitcher provides several other functionalities such as multi-view

reconstruction, deconvolution, and illumination selection.

the alignment step could be further accelerated by computing
the NCC map on a downsampled image followed by a
refinement in the original resolution. This approach should
be adapted to preserve the effectiveness of the reliability
estimator used by TeraStitcher to filter out unreliable computed
displacements. Also, the dramatic improvement in alignment
computation provided by GPUs makes the I/O issues of
the fusion step the real bottleneck in the stitching pipeline.
Two different approaches are possible to overcome this
limitation: (i) to reduce the I/O workload (e.g., by using
lossy compression compatible with application requirements)
combined with file formats that can better exploit high
performance I/O subsystems; (ii) to skip the fusion step and
process directly the original dataset through the displacement
data provided by the alignment step. As a matter of fact,
we are currently working in this last direction, that we refer
to as “stitching-on-the fly,” by extending Vaa3D-Terafly (Bria
et al., 2015; Bria et al., 2016) to support visualization and
annotation of very big images without the need to perform the
fusion step.

DATA AVAILABILITY

Datasets “Whole brain,” “Hippocampus,” and “Cerebellum”
are not publicy available due to their size and because
they have been conceded to us for testing only by
colleagues from LENS. Nevertheless, we may ask
permission to distribute them to interested people on
reasonable request. The only expception is the “2-
photon” dataset which is available from the TeraStitcher
project’s site.
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