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Abstract

Various phenolic compounds have been screened against Ganoderma boninense, the fun-

gal pathogen causing basal stem rot in oil palms. In this study, we focused on the effects of

salicylic acid (SA) on the growth of three G. boninense isolates with different levels of

aggressiveness. In addition, study on untargeted metabolite profiling was conducted to

investigate the metabolomic responses of G. boninense towards salicylic acid. The inhibi-

tory effects of salicylic acid were both concentration- (P < 0.001) and isolate-dependent (P <
0.001). Also, growth-promoting effect was observed in one of the isolates at low concentra-

tions of salicylic acid where it could have been utilized by G. boninense as a source of car-

bon and energy. Besides, adaptation towards salicylic acid treatment was evident in this

study for all isolates, particularly at high concentrations. In other words, inhibitory effect of

salicylic acid treatment on the fungal growth declined over time. In terms of metabolomics

response to salicylic acid treatment, G. boninense produced several metabolites such as

coumarin and azatyrosine, which suggests that salicylic acid modulates the developmental

switch in G. boninense towards the defense mode for its survival. Furthermore, the liquid

chromatography time-of-flight mass spectrometry (LC-TOF-MS) analysis showed that the

growth of G. boninense on potato dextrose agar involved at least four metabolic pathways:

amino acid metabolism, lipid pathway, tryptophan pathway and phenylalanine pathway.

Overall, there were 17 metabolites that contributed to treatment separation, each with

P<0.005. The release of several antimicrobial metabolites such as eudistomin I may

enhance G. boninense’s competitiveness against other microorganisms during colonisation.

Our findings demonstrated the metabolic versatility of G. boninense towards changes in car-

bon sources and stress factors. G. boninense was shown to be capable of responding to sal-

icylic acid treatment by switching its developmental stage.

1. Introduction

Ganoderma boninense Pat., the causal agent of basal and upper stem rot of oil palm (Elaeis gui-
neensis), is a major threat to the oil palm industry in Southeast Asia [1]. Ganoderma boninense
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is a hemibiotrophic fungus, where it first colonizes both root cortex and stem bases intracellu-

larly [2]. The latter necrotrophic phase involves extensive degradation of host cell wall [2].

This fungus degrades palm lignin to access the energy-rich cellulose by secreting an array of

ligninolytic enzymes [3, 4] and causes chlorotic lesion in the bole [5]. Due to the progressive

degradation of root system and subsequently the lower stem, translocation of water and nutri-

ents will be affected [2, 6]. Therefore, infected palms are often associated with moisture stress

symptoms, i.e., multiple unopened spears, pale and progressively smaller canopy [5, 7]. It is

unfortunate that there is no effective control measure for this disease, although numerous

methods have been tried [8]. These include the application of phenolic compounds, which is

widely tested against various pathogens and host plants due to its dual roles in enhancing plant

defense and inhibiting growth and development of pathogens.

Supplementation of phenolic compounds were proposed as a method to promote oil palm

tolerance towards G. boninense [9–12]. For instance, salicylic acid (SA) is a key plant phenolic

that acts as a signaling molecule to activate local and systemic acquired resistance (SAR)

against biotrophic pathogens. Consequently, the plant will express pathogenesis-related pro-

teins having antimicrobial activity and/or able to confer resistance against the pathogens [13].

The inhibitory effect of SA has been proven against several bacteria and fungi, for example in

Penicillium expansum, Sclerotia rolfsii, S. minor, and Pectobacterium caratovorum, to name a

few. Salicylic acid significantly reduced mycelial growth and conidial germination of P. expan-
sum [14]. As for S. rolfsii and S. minor, SA treatment inhibited both fungal growth and sclero-

tial differentiation [15]. Complete inhibition of the growth of P. caratovorum was observed at

high SA concentrations, whereas low SA concentrations reduced the bacterial count [16].

SA undoubtedly plays a pivotal part in plant defense against plant pathogens. However, as

reviewed recently by Qi et al.(2018) [17], plant pathogens have developed several strategies in

overcoming SA to ensure successful colonisation and infection of plant hosts. These strategies

include reduction of SA accumulation, disruption of SA biosynthesis and interference in SA

downstream signaling [17]. The inhibitory effect of SA on the growth of G. boninense has been

reported [11, 12]. However, to the best of our knowledge, there is no information on the

defense mechanism of G. boninense towards SA treatment, especially with respect to its meta-

bolic response.

Defense mechanism of G. boninense towards SA, which is a stress factor induced during

pathogen invasion, is an important piece of puzzle for the understanding of host-pathogen

interactions. Rees et al. (2009) [2] postulated the role of melanized pseudo-sclerotia in protect-

ing G. boninense against host defenses. This structure is commonly formed at the third phase

of infection, during necrotrophic stage where host cell wall is heavily degraded by the activity

of ligninolytic enzymes [2, 18]. Additionally, G. boninense may degrade SA to mitigate the

treatment effect, as reported by Chong (2010) [9] whereby the fungus degrades other phenolic

compounds into less- or non-antifungal compounds.

Thus, our primary objective was to investigate the metabolomics responses of G. boninense
when challenged with SA through untargeted metabolite profiling analysis. In addition, the

inhibitory effects of SA on the growth of three G. boninense isolates with different pathogenic-

ity levels were also investigated.

2. Materials and methods

2.1 Fungal cultures and growth conditions

Three G. boninense isolates were tested in this study, i.e., G8 (least aggressive), PER71 (moder-

ately aggressive), and G10 (most aggressive), each with different levels of aggressiveness in

causing disease in the nursery screening [19]. These isolates were identified to be G. boninense
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via molecular characterization [19]. The cultures were grown on malt extract agar (MEA)

(Difco, Becton Dickinson Diagnostics, Sparks, Maryland) at 24˚C in the dark for 14 days prior

to the commencement of experiment.

2.2 Poison medium assay

Poison medium assay was conducted according to Bivi et al. (2012) [11] with minor modifications.

In our experiment, salicylic acid (SA) powder (Sigma-Aldrich, St. Louis, Missouri) was first dis-

solved in absolute ethanol (approximately 3mL) due to its poor solubility in distilled water. Dis-

tilled water was then added into the dissolved SA to prepare the working solution. SA solution was

filter-sterilized before adding into potato dextrose agar (PDA) (Difco, Becton Dickinson Diagnos-

tics, Sparks, Maryland). The final concentrations of SA in PDA were 50, 100, 150 and 200 μg g-1.

For positive control, SA was replaced by distilled water with minimal amount of absolute ethanol

(0.24% v/v). There was one positive control for each isolate of G. boninense. Ten millimeter of G.

boninensemycelial plugs from the culture plates were transferred to SA-amended and positive con-

trol petri dishes with a diameter of 88 mm. There were five replicates for each treatment and con-

trol. The cultures were kept under the same growing conditions as culture maintenance on MEA.

Radial growth of the fungal mycelia was measured and recorded on days 5, 7, 9 and 12,

after inoculation. These measurements were used to calculate percent inhibition of radial

growth (PIRG) as described by Skidmore and Dickinson (1976) [20]. The percent difference in

radial growth between the positive control and treated culture was used to determine the treat-

ment effect on the fungal growth as shown below:

PIRG %ð Þ ¼
Mycelia growth in control � mycelia growth in treatment

Mycelia growth in control
X 100%

2.3 Metabolite extraction

For metabolite profiling, there were four treatments in 22 factorial combinations: non-inocu-

lated plate without SA (C0), non-inoculated plate with 200 μg g-1 SA (C200), Ganoderma
G10-inoculated plate without SA (G0), and Ganoderma G10-inoculated plate with 200 μg g-1

SA (G200). There were three biological replicates with three technical replicates for each treat-

ment. In total, there were 36 samples for the metabolomics analysis.

Metabolite extraction for untargeted metabolomics analysis was optimized by Lim et al.

(2018) [21], specifically for investigating the metabolomics responses of G. boninense to exter-

nal stimuli in vitro. We had adapted their method with minor modifications in our study.

Briefly, two culture media with the size of 1.5 x 3.0 cm, and approximately 1.0 cm from the

edge of fungal mycelial plug, were obtained for metabolite extraction. Cold methanol at 60%

concentration was added to the samples at a ratio of 1g mL-1 (1:1, sample mass: methanol

ratio) and vortexed vigorously. The samples were then frozen in liquid nitrogen for 5 minutes

and allowed to thaw on ice for 10 minutes. A sonic dismembrator (Fisher Scientific, FB120) fit-

ted with a Model CL-18 probe was used to homogenize the sample. Sonication was carried out

at 65% power and 30% amplitude to provide 15 second pulses. The sonication step was

repeated five times for each sample with 1 minute break between each repetition. The homoge-

nized samples were then centrifuged at 13,000 rpm for 10 minutes at 4˚C. After the centrifuga-

tion, supernatant was collected and transferred to a new cold tube. Precipitated pellet was re-

extracted with 60% cold methanol, following the same procedure as described above. Superna-

tant from the first and second extractions were pooled into one sample and concentrated for at

least 4 hours using vacuum concentrator (Eppendorf Concentrator Plus, Germany). The sam-

ples were then stored at -80˚C prior to liquid chromatography-time-of-flight-mass spectrome-

try (LC-TOF-MS) analysis.
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2.4 LC-TOF-MS analysis

The analytical platform used in this study was ultrahigh-performance liquid chromatography

(UHPLC), Ultimate 3000 UHPLC System (Dionex, Sunnyvale,USA) connected to a time-of-

flight mass spectrometry. Briefly, the extractions (1μl) were injected onto C18, reversed-phase

column, AcclaimTM Polar Advantage II, 3 x 150 mm, 3 μm particle size in the UHPLC system

using MiliQ water and 0.1% formic acid (A) and 100% acetonitrile (B) as mobile phase with

total runtime of 22 minutes. The elution gradient was programmed as follows: a) initially the

elution was isocratic at 5% B for 3 mins, b) 5% to 80% B (3–10 min), c) again, the elution was

isocratic at 80% B (10–15 min) d) the column was re-equilibration at 5% B for 7 min before

injecting the next sample. A constant flowrate at 0.4 mL min-1 and column temperature of

40˚C were applied throughout the analysis. The mass spectrometry condition was performed

on a microTOF Q III mass spectrometer (Bruker Daltonics, Bremen, Germany) equipped with

an electrospray ionization interface (ESI), operating in positive mode. The parameters of the

ESI source was set as follows: ion spray voltage, 4500 V at 200˚C; nebulizer pressure, 1.2 bar;

drying gas, 8 L min-1. The mass spectra of each compound were acquired over a mass range

from 100 to 1000 m/z. The raw data obtained was processed using software, Data Analysis 4.0

and Profile Analysis (Bruker Daltonics) [22].

2.5 Data processing and data analysis

All mass spectral data were acquired using Data Analysis software (version 4.0, Bruker Dal-

tonics). Raw data (.d) files were imported into profile analysis software (Bruker Daltonics) for

further data processing, including peak alignment and peak normalization.

To determine the response of G.boninense treated with SA, we performed multivariate sta-

tistical analysis including principal component analysis (PCA) and partial least square-dis-

criminant analysis (PLS-DA) using SIMCA-P+ software (version 12) (Umetrics, Umea,

Sweden). All multivariate models were generated from the signal intensity data that was previ-

ously pre-processed using profile analysis software and has been applied with logarithmic

transformation and auto-scaling (pareto) [23].

Other data analyses, such as heat map, was performed using MetaboAnalyst 5.0 software to

visualize the metabolite profiles and reveal the relationship between metabolites and treat-

ments. The analysis was performed by using the extracted dataset of 17 metabolites filtered by

ANOVA, p< 0.005.

2.6 Metabolite identification

Retention time, mass-to-charge ratio (m/z), and fragmentation pattern were used to identify

the metabolites, using ChemSpider, MassBank and KEGG database. Only limited information

on metabolites was available for G. boninense, unlike G. lucidum. Hence, the functions of

detected metabolites were frequently referred to their roles in G. lucidum. We also referred to

other fungi and bacteria in deducing the roles of each metabolite.

2.7 Statistical analysis- ANOVA

Analysis of variance (ANOVA) was conducted using the PIRG values obtained from the poi-

son medium assay using GenStat (18th edition). The mean values obtained were compared

using Least Significant Differences at 5% level. For metabolomics study, ANOVA and post-

hoc Turkey’s test were used to validate the significance of the differential metabolites obtained

from the multivariate data analysis.
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3. Results

3.1 Effect of salicylic acid on the growth of Ganoderma boninense
The inhibition of radial growth (%) as an effect of SA treatment are shown in Figs 1 and 2. The

effect of SA on the growth of G. boninense was both concentration- (P<0.001) and isolate-

dependent (P<0.001). The highest PIRG of 87% was obtained when PER71 isolate was treated

with the highest concentration of SA (200 μg g-1), at day 5 after treatment (Fig 2). At low con-

centrations of 50 and 100 μg g-1, minimal inhibitory effect (� 20%) was observed for all three

isolates (Figs 1 and 2). Noticeably, SA treatment had limited inhibitory effect on the least

aggressive G. boninense G8 isolate up to 150 μg g-1 and at low concentrations of 50 and 100 μg

g-1, it actually promoted the fungal growth (Fig 1 and S1 Fig).

In the presence of SA regardless of their concentrations, pale reddish zone formed around

the fungal mycelia (S2–S4 Figs) of all G. boninense isolates cultured on the SA-amended-PDA

medium. There was no color change in the other plates, i.e., in non-inoculated plate with

(C200) and without SA (C0), and Ganoderma-inoculated plates without SA amendment (G0).

In addition, SA treatment hastened the formation of melanized mycelia, and influenced the

intensity of pigmentation (S2–S4 Figs). Both the formation of melanized mycelia and intensity

of pigmentation were concentration-dependent.

3.2 Untargeted LC-TOF-MS

After obtaining the LC-TOF-MS data matrices, PCA analysis (Fig 3) was conducted to evaluate

the differences in the acquired LC-TOF-MS Base Peak Chromatograms to maximize the differ-

ence of metabolites between treatments. Out of the 36 samples, one sample (G200-R1A) did

not passed internal QC requirements due to technical error and was excluded from the subse-

quent analysis. The first two principal components (PC1 and PC2) accounted for 38% and 7%

of total variation, respectively, separated the control (non-inoculated plates) and the treatment

groups (Ganoderma-inoculated plates) (Fig 3).

Fig 1. Average percent inhibition of radial growth (PIRG) of three G. boninense isolates, namely G8 (least

aggressive), PER71 (moderately aggressive) and G10 (most aggressive) isolates, treated with different

concentrations of salicylic acid, at day 7 after treatment, [n = 5].

https://doi.org/10.1371/journal.pone.0262029.g001
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PLS-DA model (Fig 4) was then applied to detect the most influential metabolites for dis-

crimination between the different treatments. The predictive quality of the PLS-DA model for

the first two components was good (Fig 4). The cumulative variation modelled in the X-matrix

using three PLS factors was 44.8% (R2Xcum = 0.448) and 61.9% (R2Ycum = 0.619) in the Y

matrix (Fig 4). The cross-validation parameter Q2cum, which describes the predictive ability

of the model, was 54.1% (Q2cum = 0.541). The Q2 value in this study was above 0.4, the thresh-

old acceptable value for a biological model [24].

Based on the PLS-DA model, control groups (both C0 and C200) were separated from the

Ganoderma-inoculated groups (both G0 and G200) along the PC1 axis. At the same time, G0

group was separated from G200 group along the PC2 axis (Fig 4). One of the G0 samples

(G0-R2B) was outside the 95% Hotelling’s T squared ellipse in both PCA and PLS-DA plots.

Based on the T2 range analysis, this sample surpassed the T2critic (95%) limits (S5 Fig). How-

ever, DModX plot of the PCA data indicated that there were no samples that exceed the thresh-

old for rejecting a sample. DModX-distance for an outlier should be at least twice the Dcrit

value (critical value of DModX) [25, 26]. G0-R2B is at the borderline of the D-Crit limit (0.05)

and hence, was not an outlier and was included in the model calculation (S6 Fig).

All the variables were interpreted in loading plots (Fig 5). A total of 1154 metabolites was

detected in the LC-MS analysis. The most important metabolites (mass) contributing to the

apparent discrimination are listed in Table 1. All the metabolites in Table 1 that contributed to

treatment separation were significant at P<0.005. As shown in Table 1 and Fig 5, amino acids

and sugars, which are the constituents of potato dextrose agar, were detected in significantly

higher amount in C0 and C200 treatments, and clearly defined the separation between non-

inoculated (C groups) and Ganoderma-inoculated (G groups).

G200 treatment was significantly separated from G0, C0 and C200 treatments, due to high

level of coumarin (258.109 m/z at 2.45 min) (Fig 6A) and azatyrosine (183.085 m/z at 2.54

min) (Fig 6B). G0 treatment showed significantly high level of L-seryl-L-prolyl-L-threonyl-L-

Fig 2. Average percent inhibition of radial growth (PIRG) of three G. boninense isolates treated with different

concentrations of SA, at days 5, 7, 9, and 12 after treatments.

https://doi.org/10.1371/journal.pone.0262029.g002

Fig 3. PCA score plot of PC1 versus PC2 scores for compounds or metabolites detected in each treatment:

Ganoderma-inoculated (G), non- inoculated (C), with (200), and without salicylic acid (0) treatments.

https://doi.org/10.1371/journal.pone.0262029.g003
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seryl-L-seryl-L-alanyl-L-seryl-L-seryl-L-phenylalanine (870.314 m/z at 2.60 min) (Fig 6C),

eudistomin I (236.148 m/z at 2.68 min) (Fig 6D), tryptophan (268.102 m/z at 5.40 min) (Fig

6E), nitric acid (190.143 m/z at 2.14 min) (Fig 6F), and chorismatic acid (226.949 m/z at 1.86

min) (Fig 6G) compared to other treatments. On the other hand, C0 and C200 treatments

showed significantly high level of difructose anhydride (325.111 m/z at 2.55 min) (Fig 6H),

1,5-anhydro-D-fructose (163.059 m/z at 2.55 min) (Fig 6I), D-phenylalanine (166.085 m/z at

6.40 min) (Fig 6J), L-valine (118.086 m/z at 2.51 min) (Fig 6K), L-leucine (132.102 m/z at 3.77

min) (Fig 6L), dimethyl fumarate (145.049 m/z at 2.54 min) (Fig 6M), and glutamate (148.060

m/z at 2.42 min) (Fig 6N). Although the ion intensity for certain compounds appeared to be

different for samples of the same treatment group, PCA analysis showed that all samples clus-

tered to their respective treatment groups (Fig 3). The differences in ion intensity which caused

Fig 4. PLS-DA score plots for compounds or metabolites detected in each treatment: Ganoderma-inoculated (G),

non- inoculated (C), with (200), and without salicylic acid (0) treatments. Each point on the scatter plot refers to a

single sample, with R2X (cumulative) = 0.448, R2Y (cumulative) = 51.4% and Q2 (cumulative) = 0.541. The eclipse

represent the 95% confidence interval.

https://doi.org/10.1371/journal.pone.0262029.g004

Fig 5. Loading plots of PLS-DA for metabolites (masses) detected via untargeted LC-TOF-MS, in different

treatment. The green dot represents the masses distributed in w�c(1) and w�c(2) planes. The metabolites with the highest

VIP (Variables Importance for the Projection)> 3 are highlighted in red dot.

https://doi.org/10.1371/journal.pone.0262029.g005
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Table 1. List of metabolites with VIP value greater than 3 (in descending order) and their functions.

Retention

time,

Precursor

ion m/z

VIP

score

Fragmentation MS/MS Adduct Possible Identity Classification Function(s) from literature Reference

(s)

2.68 min,

236.148 m/z

12.1867 131.0692 5114 144.1008 3786

159.0605 1402 235.9798 3225

218.1372 1218

M+H+ Eudistomin I Pyridine/

Carboline

β- carboline derivatives with anti-

microbial activity. Eudistomin I

was first isolated from marine

tunicate species.

[27]

2.55 min,

325.111 m/z

11.4826 145.0501, 21974

127.0402, 21390

163.0604, 3859

109.0310, 3410

115.0403 1938

146.0539 1463

128.0434 1445

M+H+ Difructose anhydride I Disaccharide Smallest cyclic disaccharide

consisting of two fructose units

linked at their reducing carbons.

Produced from degradation of

inulin or levan.

[28]

2.45 min,

258.109 m/z

7.01702 112.0874 6626 113.0866 301

114.0971 189 115.0855 209

141.0644 1081 157.9836 161

M+H+ Coumarin, 3-

(piperidinocarbonyl)-

Heterocylic

compound

Phenylpropanoid compounds

produced by plants upon abiotic

and biotic stresses. May acts as

antioxidant compound against

reactive oxygen species (ROS).

[29]; [30]

2.60 min,

870.314 m/z

4.6896 204.0815, 34918

222.0912, 14809

366.1303, 7709

384.1429, 7052

168.0612, 4581

138.0522, 3273

205.0841, 3012

126.0520, 1971

M+H+ L-seryl- L- prolyl- L-threonyl-

L-seryl-L-seryl- L-alanyl-L-

seryl-L- seryl-L-

phenylalanine (ChemSpider)

Aromatic amino

acid

An important component in

protein synthesis and a precursor

for a wide range of secondary

metabolites. Can be synthesized

by fungi via shikimate pathway.

Intermediate metabolite to

produce coumarin.

[31]; [32];

[33]; [34]

2.54 min,

183.085 m/z

4.55184 110.0719 151 111.0461 134

129.0509 224 139.5482 104

156.0752 178 159.9671 188

181.9472 142

M+H+ Azatyrosine Amino acid Antibiotic and antitumor.

Azatyrosine inhibits the chemical

carcinogenesis involved in ras
activation in vivo by preventing

tumor formation. Tyrosine can be

synthesized into DOPA-melanin

via tyrosinase activity.

[35]; [36];

[37]; [38]

2.55 min,

163.059 m/z

4.46928 117.4101, 57 126.6273, 112

127.0458, 57 130.6880, 56

134.9737, 83 150.6416, 60

153.9557 63

M+H+ 1,5- anhydro-D-fructose Monosaccharide Functional monosaccharide

formed from starch and glycogen

by α-1,4-glucan lyase (i.e., lytic

degradation) Anti-cariogenic

agent as it interfere the plaque-

forming in Streptococcus mutans,
ultimately inhibits the bacterial

growth.

[39]; [40]

2.54 min,

145.049 m/z

4.45205 113.0238, 5652 M+H+ Dimethyl fumarate Organic acid Can be derived from fumaric acid

which can be found in potato

tubers.

[41]; [42]

2.51 min,

118.086 m/z

4.3345 117.0698, 138

87.0711, 83

57.1971, 90

M+H+ L-valine� Amino acid One of the essential amino acids

in potato. One of the building

blocks of enniatins i.e., phytotoxin

produced by Fusarium which has

antimicrobial activity against

Mycobacterium spp.

Staphylococcus spp., E. coli.

[43]; [44]

2.42 min,

148.060 m/z

4.03983 121.0263 71

130.0504 6090

130.7064 75

131.0501 981

131.9140 71

147.0508 94

M+H+ Glutamate� Amino acid One of the amino acids that can

be found in potato.

[45]

(Continued)

PLOS ONE Growth modulation and metabolic responses of Ganoderma boninense to salicylic acid stress

PLOS ONE | https://doi.org/10.1371/journal.pone.0262029 December 31, 2021 9 / 21

https://doi.org/10.1371/journal.pone.0262029


Table 1. (Continued)

Retention

time,

Precursor

ion m/z

VIP

score

Fragmentation MS/MS Adduct Possible Identity Classification Function(s) from literature Reference

(s)

3.77min,

132.102m/z

3.86381 51.8298 52

53.5151 45

113.9645 138

116.0699 83

131.9761 55

M+H+ L-leucine� Amino acid One of the essential amino acids

in potato.

[43]

2.85 min,

256.081 m/z

3.81841 116.0697, 459 124.0370,

13061 125.0393, 1082

127.6498, 331 128.5129, 322

128.7825, 466 132.1941, 329

133.0463 608 135.3306 360

213.9177 684

M+H+ Indole-3-propanol phosphate Anthranilate

synthase

component

Involved in the synthesis of L-

tryptophan in bacteria.

[46]

6.40 min,

166.085 m/z

3.73964 120.0785,8500

121.0806,572

145.0443,305

163.1807,313

M+H+ D- phenylalanine� Amino acid Anti-bacterial against

Pseudoalteromonas sp. by

inhibiting biofilm formation.

[47]

2.14 min,

190.143 m/z

3.72969 120.0660 151 144.1401 4672

145.1418 737 146.1471 175

172.9564 161 189.2734 191

189.9833 276

M+H+ Nitric acid Non-carboxylic

acid/ Ester

Nitric acid is less discussed in

fungal physiology compared to

nitric oxide (NO). NO involved in

fungal structural development, i.e.

conidiation, appressorium

maturation, sporulation. NO

stimulates the formation of

fruiting bodies in Flammulina
velutipes. NO was also reported to

influence programmed cell death

(PCD) in higher eukaryotes. In

addition, NO was able to activate

various antioxidant genes in E.

coli and B. subtilis against

oxidative and nitrosative stress.

[48]

2.32 min,

147.077 m/z

3.70168 70.9368 111

94.1302 129

103.9512 105

116.9536 113

129.5265 72

130.0497 5620

131.0520 253

132.0567 168

M+H+ Glutamine Amino acid Involved in D-glutamine and D-

glutamate metabolism.

[45]

5.40 min,

268.102 m/z

3.53934 136.0613 14139

165.0501 88

182.0791 157

M

+ACN

+Na

Tryptophan� Amino acid One of the essential amino acids

in potato.

[43]

1.86 min,

226.949 m/z

3.52431 156.0779 174

158.9661 101

159.9049 114

159.9776 96

167.0950 96

181.0991 108

181.9471 444

M+H+ Chorismatic acid Organic acid Contributes skeleton for

tryptophan synthesis.

[49]

2.86 min,

158.091 m/z

3.36871 112.0874 6626 113.0866 301

114.0971 189 115.0855 209

141.0644 1081 157.9836 161

M+H+ 2-aminomuconate Fatty acyl An intermediate product in

tryptophan degradation pathway

to yield acetyl co-A.

[50]

�Compounds that were identified by authentic standard.

https://doi.org/10.1371/journal.pone.0262029.t001

PLOS ONE Growth modulation and metabolic responses of Ganoderma boninense to salicylic acid stress

PLOS ONE | https://doi.org/10.1371/journal.pone.0262029 December 31, 2021 10 / 21

https://doi.org/10.1371/journal.pone.0262029.t001
https://doi.org/10.1371/journal.pone.0262029


by some differences between samples, which also reflected in the distance of the respective

sample to the treatment group in PCA plot (Fig 3), were not significant.

The heat map of the respective VIP metabolites corresponding to each group was also pre-

sented (Fig 7). The variation in color spectrum is due to the intensity of the compound based

on the extracted ion chromatogram (EIC). Rows represent metabolites, and columns represent

samples.

Fig 6. Representative ion intensity for the m/z value (A) coumarin, 3- (piperidinocarbonyl)- (258.109 m/z), (B)

azatyrosine (183.085 m/z), (C) L-seryl-L-prolyl-L-threonyl- L-seryl-L-seryl- L-alanyl-L-seryl-L- seryl-L-phenylalanine

(870.314 m/z), (D) eudistomin I (236.148 m/z), (E) tryptophan (268.102 m/z), (F) nitric acid (190.143 m/z), (G)

chorismatic acid (226.949 m/z), (H) difructose anhydride (325.111 m/z), (I) 1,5- anhydro-D-fructose (163.059 m/z), (J)

D-phenylalanine (166.085 m/z), (K) L-valine (118.086 m/z), (L) L-leucine (132.102 m/z), (M) dimethyl fumarate

(145.049 m/z), (N) glutamate (148.060 m/z), (O) 2-aminomuconate (158.091 m/z), (P) indole-3-propanol phosphate

(256.081 m/z), and (Q) glutamine (147.077 m/z), across 35 samples.

https://doi.org/10.1371/journal.pone.0262029.g006
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4. Discussion

4.1 Growth response of G. boninense to salicylic acid

In our experiment, the inhibitory effect of SA on the growth of G. boninense was significant,

which conformed to the findings of Bivi et al. (2012) [11]. The inhibitory effect based on PIRG

values increased steadily with increasing concentration of SA (Fig 2). However as shown in Fig

2, our results were three-fold higher as compared to Bivi et al. (2012) [11] for the same isolate

of G. boninense (PER71) and SA at concentration of 200 μg g-1 at day 5 after treatment. This

contradiction may be due to the addition of small amount of absolute ethanol (0.24% v/v) in

preparing the SA solutions, therefore affected the final concentrations of SA in the culture

medium.

We also observed regrowth of G. boninense after complete growth inhibition at the begin-

ning of the experiment, particularly for all isolates treated with 150 and 200 μg g-1 SA (Fig 2

and S1–S4 Figs). In other words, the inhibitory effect of SA treatments (150 and 200 μg g-1 SA)

on the growth of G. boninense declined over time. In this study, we did not transfer the treated

culture onto a fresh medium as commonly performed to check for mycocidal-mycostatic

nature of any treatment [51, 52]. Regardless, regrowth was still observed, which implies the

ability of G. boninense to adapt and/or degrade the SA treatment. To date, there has been no

known published work on the degradation of SA by G. boninense to the best of our knowledge.

However, Chong (2010) [9] showed that G. boninense was capable of degrading other phenolic

acids, namely syringic acid, caffeic acid, and 4-hydroxybenzoic acid, into non- or less-antifun-

gal compounds. In the experiment, high concentrations of syringic acid (90 and 110 μg mL-1)

remained stable at the beginning of incubation with G. boninense, with negligible change. The

degradation of syringic acid started at day 10 of incubation and its utilization by G. boninense
reached nearly 100% at day 14 of incubation [9]. High concentrations of SA may cause lysis of

hyphae as suggested by Bivi et al. (2012) [11]. Thus, the ability of G. boninense to degrade SA

as a defense response is of great importance to overcome cell lysis and ensure its survivability.

Fig 7. Hierarchically clustered heat map of the metabolites with the highest VIP value with statistical significance. Colors are

based on intensity levels and changes in metabolites, where bright red indicates the highest intensities while light green indicates the

lowest intensities or complete absence of metabolites.

https://doi.org/10.1371/journal.pone.0262029.g007
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Noticeably, at SA concentration of 100 μg g-1 or less, the least aggressive G8 seemed to

metabolise SA as a carbon source for its growth (Fig 1 and S1 Fig), similar to the case of P. car-
otovorum [16]. In the experiment with P. carotovorum, growth inhibition was observed at high

concentrations, whereas its growth was stimulated in a near-dose dependent manner at low

concentrations [16]. Pectobacterium carotovorum might have used SA as a carbon source for

growth by degrading SA via catechol and gentisate pathways [16, 53]. The observation of high-

dose inhibition and low-dose stimulation, also known as hormesis, is common in fungal physi-

ology, under exposure to chemical treatments [54–57]. In a recent study conducted by Suren-

dran et al. (2018) [58], low concentration of SA (1 mM) induced the incidence of Ganoderma
disease by 60% in their nursery trial, thus reaffirming the low-dose stimulation effect of SA on

the growth of G. boninense as observed in G8 isolate.

4.2 Metabolites production by G. boninense in defence against salicylic acid

stress

Formation of reddish zone around the mycelial plug was observed only in SA-amended plates

inoculated with G. boninense (S2–S4 Figs). Since non-inoculated SA-amended plates (C200)

did not have the same reddish zone, it was unlikely that the reddish pigmentation arose from

the chemical reaction between SA and PDA medium. Therefore, it is plausible that either SA

induces G. boninense to produce metabolite which is reddish in color or the utilization of SA

by G. boninense produces reddish metabolite to account for the reddish pigmentation.

Among the detected compounds from the G200 treatment (Table 1 and Fig 6), only azatyr-

osine (183.085 m/z) forms reddish compound and hence, the most probable candidate for the

reddish pigmentation. Azatyrosine is a precursor of melanin which is produced by G. boni-
nense as a defense mechanism to protect fungi from environmental stresses such as antimicro-

bial agents and lytic enzymes [2, 38]. Melanin can be derived from the oxidation of tyrosine or

tyrosine-containing protein hydrolysates, by the enzymatic activity of tyrosinase [38]. More-

over, melanin can also be produced from catechol, which is one of the degradation products of

SA [38, 59]. SA treatments have been found to induce production of reactive oxygen species

(ROS) and cause cell apoptosis in G. lucidum [60–62]. Similarly, at later stage of infection by

G. boninense, ROS will be produced as a result of lignin degradation, which ultimately may

results in formation of phenoxyl radicals [2, 63]. At this stage, fungal mass of G. boninense
often became encrusted and pigmented with melanin. This melanized fungal structure may be

important in protecting G. boninense from the hostile environments [2]. Using the annotated

genome sequence of G. boninense, we confirmed the presence of salicylate hydroxylase gene,

which commonly reported to be involved in SA metabolism pathway (i.e., hydroxylation and

decarboxylation) to produce catechol [64, 65]. In G. tsugae, this gene has been hypothesized to

have important role in conferring resistance towards SA accumulation during substrate utiliza-

tion [65]. Thus, it is unsurprising that G. boninense responded to the SA stress by degrading it,

and ultimately hastening the melanin formation.

Furthermore, azatyrosine may alleviate the effect of SA on the growth of G. boninense. In G.

lucidum, aspirin treatment in which SA is the principal compound reduced fungal biomass,

induced apoptosis and increased ganoderic acid production [61, 62]. It was found that the

activity of 3’,5’-cyclic adenosine monophosphate (cAMP) signaling was induced in response to

the aspirin treatment [61, 62]. Azatyrosine may acts as chemopreventive agent against carcino-

genesis by intervening ras-mediated signaling pathway, the upstream of cAMP signaling [37].

In basidiomycete, ras-signaling influences multiple aspects of morphogenesis such as cell

growth, cell differentiation, apoptosis, nuclear distribution in mating interactions, clamp

fusion, fruiting body morphology and spore production [66–68]. It is likely that azatyrosine is
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produced to adapt and/or mitigate the effect of SA treatment, by modulating the developmen-

tal stage of G. boninense.
Coumarin (258.109 m/z) was another metabolite detected at significantly high concentra-

tion in G200 treatment (Fig 6A). Coumarin is synthesized via Perkin reaction or O-acetylation

of salicylaldehyde, while reduction of SA yields salicylaldehyde [69–71]. In a recent study,

treatment of SA at 10 mg mL-1 enhanced the production of bioactive constituents in fruiting

bodies of G. lucidum, i.e., triterpenoids. Up-regulations of transcripts, namely, pgm and ugp,

which are involved in polysaccharide biosynthesis pathway, contributed to higher production

of the triterpenoids [72]. In our study, the SA treatment may have similar stimulating effect on

the production of coumarin, which is also present in fruit bodies of several basidiomycetes

such as G. lucidum, Pleurotus ostreatus and Lentinula edodes [73].

Coumarin is more extensively reported as one of the phenylpropanoid compounds, which

is a plant defense compound and is secreted by many plant families as a response to abiotic

and biotic stresses [29]. It may act as an antioxidant agent against free radicals and reactive oxi-

dative species (ROS), which are largely produced under stress [30]. The ability of pathogens to

secrete plant hormones and hormone analogs to manipulate hormone homeostasis or hor-

mone signaling of host plant has been widely reviewed [74–77]. In most cases, the ability of

synthesizing plant hormones or hormone analogs contributes to virulence of the pathogens.

Potentially, coumarin is one of many metabolites secreted by G. boninense to modulate

defense-related signaling pathway and/or phyto-hormone homeostasis.

Detection of azatyrosine and coumarin upon SA treatment implicated the role of SA in

modulating the developmental switch in G. boninense. As discussed, both coumarin and

azatyrosine are involved in the formation of melanin and/or fruiting bodies of G. boninense,
which takes place at the third stage of infection process [2]. As shown in S2–S4 Figs, SA

treatment clearly hastened the formation of melanized mycelia and affected the intensity of

the pigmentation for all isolates. Therefore, SA may acts as the cue for the transition in

infection stage, directly or indirectly. It is believed that fungi have the ability to sense unfa-

vourable environmental conditions. One of the responses is by triggering the development

of fruiting bodies in order to disperse fungal spores for propagation [78–80]. Alternatively,

coumarin and azatyrosine may be produced as a result of hypersensitive response (or apo-

ptosis). This contention is supported by the results of aspirin and SA treatments, which

induced apoptosis in G. lucidum, and simultaneously stimulated the production of second-

ary metabolite, i.e., ganoderic acids [60, 61]. In this study, we also detected low amount of

ganoderic acids in both G0 and G200 treatments (S7 Fig). Higher abundance of ganoderic

acids were found in G200 treatment compared to G0 treatment (S7 Fig). Similar to G. luci-
dum, it is therefore can be postulated that SA treatment can modulate the metabolism of G.

boninense, likely by elevating intracellular ROS, simultaneously or consequently increased

its secondary metabolite production [60].

4.3 Physiological pathways of G. boninense to support growth in-vitro

Apart from investigating the metabolomics response of G. boninense towards SA treatment,

the LC-TOF-MS results allowed us to postulate some pathways involved in the growth of G.

boninense on the PDA medium. At least four metabolic pathways were involved in the growth

of G. boninense, as deduced from metabolite compositions in Ganoderma-inoculated plates

(G0 and G200) compared with their corresponding controls (C0 and C200). Ganoderma boni-
nense utilised the nutrients in PDA, i.e., amino acids and sugars, to synthesize more complex

compounds, such as aromatic amino acids, oligopeptides, alkaloids and antimicrobial com-

pounds (Table 1) [81]. The pathways include amino acid metabolism, lipid metabolism,
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tryptophan pathway, and phenylalanine pathway. Fig 8 illustrates the involvement of the

metabolites detected in this study in the abovementioned pathways.

A number of metabolites were detected in higher abundance in control groups (C0 and

C200) compared to Ganoderma-inoculated plates (G0 and G200). These metabolites include:

difructose anhydride (325.111 m/z) (Fig 6H), 1,5-anhydro-D-fructose (163.059 m/z) (Fig 6I),

D-phenylalanine (166.085 m/z) (Fig 6J), L-valine (118.086 m/z) (Fig 6K), L-leucine (132.102

m/z) (Fig 6L), dimethyl fumarate (145.049 m/z) (Fig 6M), and glutamate (148.060 m/z) (Fig

6N). Based on KEGG database, difructose anhydride and 1,5-anhydro-D-fructose are involved

in starch and sucrose metabolism. Dextrose and potato starch in the PDA medium could be

the sources of these detected sugars. Noticeably, these sugars were almost absent in the Gano-
derma-inoculated plates (G0 and G200 treatments). Similarly, D-phenylalanine L-valine, L-

leucine, dimethyl fumarate and glutamate, which could be secondary products from amino

acid content of potato infusion in the PDA medium, were also depleted in the Ganoderma-

inoculated plates. Similar to our results, Ahmad et al. (2020) [81] reported the depletion of glu-

cose, tryptophan, tryptamine and aconitate, in the co-culture medium of G. boninense and Scy-
talidium parasiticum. Together, these imply the utilization of these sugars and nitrogen

sources for the fungal growth.

Several metabolites, namely L-valine, and eudistomin I, were shown to have antimicrobial

activity against Mycobacterium spp., and Saccharomyces cerevisiae, respectively (Table 1) [27,

44]. This is not surprising as Ganoderma species, particularly G. lucidum, is well-known for its

richness in bioactive components and medicinal values [82]. In a recent study, eudistomin was

also detected in co-culture medium of G. boninense and S. parasiticum [81]. It is therefore logi-

cal to deduce the constitutive secretion of eudistomin by G. boninense, judging from the negli-

gible antifungal effect of eudistomin on the growth of G. boninense [81]. During colonisation

of ecological niche (e.g, oil palm), the ability to produce antimicrobial compounds may help in

competing with other microorganisms [83]. It is extremely relevant to G. boninense, being a

weak saprophytic fungus [84]. These antimicrobial compounds may often benefit the growth

and colonisation of G. boninense in non-axenic environments such as oil palm tissues.

In addition to eudistomin, Ahmad et al. (2020) [81] detected penipanoid A in the co-culture

medium. This metabolite was deemed to have minimal antifungal effect against G. boninense,
thus likely to be produced by G. boninense [81]. Unlike their study, we detected 2-aminomuco-

nate and indole-3-propanol phosphate, to be present only in Ganoderma-inoculated plates

(G0 and G200) (Fig 6O and 6P). Penipanoid, 2-aminomuconate and indole-3-propanol phos-

phate, are all share the same intermediate, i.e., anthranilate, in tryptophan metabolism [46, 81,

Fig 8. Schematic diagram of Ganoderma biosynthetic pathway showing the major pathways in the absence and

presence of salicylic acid.

https://doi.org/10.1371/journal.pone.0262029.g008
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85]. The presence of antagonistic fungus, i.e., S. parasiticum may have triggered the expression

of silent biosynthetic pathways in G. boninense, thus secreting new metabolites, i.e., penipa-

noid A, rather than 2-aminomuconate and indole-3-propanol phosphate as observed in our

study [81, 86].

Noticeably, several metabolites were detected at lower concentrations in the presence of SA

(G200), compared to non-amended Ganoderma-inoculated plate (G0). The metabolites were

eudistomin I, L-phenylalanine, nitric acid and chorismatic acid. The presence of SA, which

may act either as stress factor, or carbon source, may have altered the metabolic pathways of G.

boninense. This implies the metabolic versatility of G. boninense in responding to the sur-

rounding stimuli, which is important in fungal physiology and pathogenicity, for nutrient

assimilation and adaptation to host-imposed stress [87]. The absence of L-phenylalanine in the

G200 treatment provided concrete evidence for this metabolic versatility. L-phenylalanine is

an intermediate metabolite to produce coumarin via phenylpropanoid biosynthesis pathway

[34]. It is likely that G. boninense utilized this phenylalanine to produce coumarin in the pres-

ence of SA treatment. Earlier findings on the ability of G. boninense to catabolize a range of

phenols, namely syringic acid, caffeic acid, 4-hydroxybenzoic acid, and catechin, have also

hinted the metabolic versatility of G. boninense [9, 81]. On that account, G. boninense is unde-

niably a fungal pathogen that is metabolically versatile, which allows it to mitigate various envi-

ronmental stresses for survival.

5. Conclusion

This study provides the first evidence detailing the metabolic responses of G. boninense that

enable consequent modulation and switching of its developmental growth stage to combat sali-

cylic acid stress. The production of coumarin and azatyrosine, which are the pre-cursors of

melanin and/or fruit bodies, probably reduces the negative impacts of salicylic acid over time.

In the absence of salicylic acid, G. boninense utilizes carbohydrate and amino acid for its

growth and undergoes at least four metabolic pathways, namely amino acid metabolism, lipid

pathway, tryptophan pathway and phenylalanine pathway. The capability to produce antimi-

crobial metabolites may benefit the survival of G. boninense during colonisation of oil palm tis-

sues through successfully competing with other microorganisms. At lower concentrations of

the treatment, the least aggressive G. boninense isolate could utilize salicylic acid as a carbon

source to promote its growth. Together, these findings imply the pronounced metabolic versa-

tility of G. boninense in mitigating changes to its growing environment, which is by switching

its developmental stage as illustrated in this study.

Supporting information

S1 Fig. Average radial growth of three G. boninense isolates treated with different concen-

trations of SA, at Day 5, 7, 9, and 12 after treatment [adapted from Ong et al. 2018 [88]].

(TIF)

S2 Fig. Ganoderma boninense PER71 isolate (moderately aggressive) cultured on non-

amended medium (0 μg g-1), and SA-amended (100 and 200 μg g-1) media, at Day 5, 9, 14,

and 21 days after treatment.

(TIF)

S3 Fig. Ganoderma boninense G8 isolate (least aggressive) cultured on non-amended

medium (0 μg g-1), and SA-amended (100 and 200 μg g-1) media, at Day 5, 9, 14, and 21

days after treatment.

(TIF)
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S4 Fig. Ganoderma boninense G10 isolate (most aggressive) cultured on non-amended

medium (0 μg g-1), and SA-amended (100 and 200 μg g-1) media, at Day 5, 9, 14, and 21

days after treatment.

(TIF)

S5 Fig. T2 range analysis for outlier determination.

(TIF)

S6 Fig. DmodX analysis to determine distance to model plots in X space.

(TIF)

S7 Fig. Detection of ganoderic acids in each treatment group.

(TIF)
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