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The Role of the Extracellular Matrix
in Cancer Stemness
Sameera Nallanthighal, James Patrick Heiserman and Dong-Joo Cheon*

Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States

As our understanding of cancer cell biology progresses, it has become clear that tumors
are a heterogenous mixture of different cell populations, some of which contain so
called “cancer stem cells” (CSCs). Hallmarks of CSCs include self-renewing capability,
tumor-initiating capacity and chemoresistance. The extracellular matrix (ECM), a major
structural component of the tumor microenvironment, is a highly dynamic structure and
increasing evidence suggests that ECM proteins establish a physical and biochemical
niche for CSCs. In cancer, abnormal ECM dynamics occur due to disrupted balance
between ECM synthesis and secretion and altered expression of matrix-remodeling
enzymes. Tumor-derived ECM is biochemically distinct in its composition and is stiffer
compared to normal ECM. In this review, we will provide a brief overview of how
different components of the ECM modulate CSC properties then discuss how physical,
mechanical, and biochemical cues from the ECM drive cancer stemness. Given the fact
that current CSC targeting therapies face many challenges, a better understanding of
CSC-ECM interactions will be crucial to identify more effective therapeutic strategies to
eliminate CSCs.
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INTRODUCTION: ECM AS A CSC NICHE

The extracellular matrix (ECM) is a major structural component of the tumor microenvironment
and comprised of a network of biochemically distinct components, including fibrous proteins,
glycoproteins, proteoglycans, and polysaccharides. The ECM is a highly dynamic structure,
constantly undergoing a remodeling process where ECM components are deposited, degraded,
or modified (Lu et al., 2012). Increasing evidence suggests that the ECM serves as a niche for
normal and cancer stem cells (CSCs). CSCs, also called tumor-initiating cells, are a small population
of cells within tumors that have capabilities of self-renewal properties, tumor initiation and
chemoresistance (Kreso and Dick, 2014; Batlle and Clevers, 2017). As one of the CSC niches, the
ECM provides both structural and biochemical support to regulate proliferation, self-renewal, and
differentiation of CSCs. In this review, we will cover the current understanding of how different
ECM components affect the cancer “stemness” phenotype.

CATEGORIES OF ECM PROTEINS AND THEIR ROLE IN
CANCER STEMNESS

Fibrous ECM Proteins
Collagens constitute the main structural element of the ECM and are the most copious type
of fibrous proteins within the interstitial ECM. Collagens play a role in tissue development by
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providing mechanical strength, altering cell adhesion, promoting
cell migration (Frantz et al., 2010). Studies have reported that
several collagens (e.g., COL3A1, COL4A2, COL7A1, COL17A1)
are overexpressed by CSCs (Table 1). Multiple collagen subtypes
have been shown to increase epithelial-mesenchymal transition
(EMT), tumor-initiating potential, drug resistance and self-
renewal of CSCs (Table 1 and Figure 1).

Glycoproteins
Glycoproteins, which make the ECM a cohesive network
of molecules by linking cells together with structural
components, include fibulin, fibrillin, laminin, fibronectin,
vitronectin, tenascin-C, Secreted Protein Acidic and Rich
in Cysteine (SPARC), periostin (POSTN), thrombospondin,
mucins (MUCs) and nidogen (Table 1). CSCs overexpress
several glycoproteins (e.g., tenascin-C, POSTN, MUC1)
and their receptors (e.g., integrins αVβ3 and α9β1, CD47).
Adhesive glycoproteins bind to integrins, non-integrin
receptors, growth factors, and other ECM components to
activate downstream signaling pathways to regulate EMT,
self-renewal, and drug resistance of CSCs (Table 1). For
example, fibronectin, a major adhesive ECM glycoprotein
that attaches cells to a variety of ECM components, has been
shown to increase EMT, self-renewal, expression of CSC
markers and drug resistance of CSCs. Laminins, another
class of adhesive glycoproteins that constitute structural
scaffolding of all basement membranes, support self-renewal
of CSCs through their interaction with integrins. Some
glycoproteins have dual roles in cancer stemness depending on
the cancer type. For instance, fibulin-3, an ECM glycoprotein
associated with basement membranes, inhibits self-renewal
in lung and pancreatic CSCs while stimulating breast CSC
self-renewal (Table 1).

Proteoglycans
Proteoglycans are glycosylated proteins composed of a core
protein and one or several covalently attached sulfated
glycosaminoglycan chains and are present in the ECM of
connective tissues. Proteoglycans play a crucial role in ECM
assembly and cell signaling. They bind to growth factors,
cytokines and other ECM molecules and act as co-receptors to
assist ligand and cell surface binding to modulate downstream
signaling. Several proteoglycans (e.g., decorin, lumican, biglycan,
versican, aggrecan) are highly expressed by CSCs and their roles
in cancer stemness are summarized in Table 1.

Polysaccharides
Polysaccharides, a chain of monosaccharide repeats linked
through glycosidic bonds, fill the interstitial space and
buffer physical stress on the ECM. Hyaluronic acid (HA or
“hyaluronan”) is a high-molecular-mass polysaccharide that
constitutes a major component of interstitial gels, especially
in soft connective tissues. In tumors, HA is produced by
both tumor stroma and tumor cells, and its binding to the
cellular receptor CD44 activates intracellular signaling (e.g.,
PI3K/Akt and Erk pathways, RhoA and Rac, Ras, NF-kB and
Src signaling) to promote cell survival, cancer stemness, motility

and invasion by cytoskeletal reorganization. High levels of
HA are produced by CSCs and HA–CD44 interaction has
been shown to promote acquisition of CSC characteristics
and chemoresistance in breast, ovarian and head and neck
CSCs (Table 1).

ECM PROVIDES PHYSICAL AND
MECHANICAL CUES TO DRIVE CANCER
STEMNESS

Physical Properties
Physical properties of the ECM such as rigidity, porosity
and topography impact various anchorage-dependent CSC
functions. The interstitial ECM, mainly composed of collagens,
proteoglycans and hyaluronan, provides a physical barrier that
hinders the transport of solutes, water and chemotherapeutic
drugs. In this regard, it has been shown that cisplatin,
a chemotherapeutic drug frequently used to treat various
solid tumors, extensively binds to collagen fibers in tumors
(Chang et al., 2016). Binding of chemotherapeutic drugs to
the ECM prevents drug penetration into tumors, thereby
increasing CSC survival. The ECM also provides sites for
adhesion of CSCs in the tumor microenvironment. ECM-
CSC interaction via CSC receptors such as integrins (e.g.,
β1, α6, β3, β4), discoidin domain receptors (DDR1, DDR2),
CD44 (HA receptor) and CD47 (thrombospondin 1 receptor)
enhances CSC properties. For example, CSCs bind to HA
through CD44 and this increases not only the expression
of stemness factors NANOG and SOX2 but also MDR1
(Multi Drug Resistance 1) expression and drug resistance in
breast and ovarian CSCs (Bourguignon et al., 2008). The
ECM also provides anchorage and homing sites for CSCs
in pre-metastatic niches, initiating metastatic colonization
and organotropism of cancer cells. For instance, infiltrating
breast tumor cells induce the expression of POSTN in
the stroma of the secondary target organ (e.g., lung). By
recruiting Wnt ligands and increasing Wnt signaling in
CSCs, POSTN sustains CSC population in the secondary
site and promotes metastatic colonization (Malanchi et al.,
2011). Changes in the ECM topology also affects CSC self-
renewal by controlling the balance between symmetric and
asymmetric cell divisions. The spatial distribution of the ECM
has been shown to guide the orientation of the cell division
axis by controlling the location of actin polymerization at
the membrane through focal adhesions and the segregation
of cortical components in the interphase (Thery et al., 2005).
The β1 sub-family of integrins also regulates stem cell self-
renewal by controlling the balance between symmetric and
asymmetric cell divisions (Lechler and Fuchs, 2005; Taddei
et al., 2008). Furthermore, ECM distribution affects migration of
cancer cells and immune cells. During tumor progression, wavy
collagen fibers become straightened and align perpendicular to
the tumor boundary (Provenzano et al., 2006). It has been
shown that linear collagen fibers oriented perpendicular to the
tumors facilitate high-speed migration of breast cancer cells and
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TABLE 1 | The role of different ECM proteins in cancer stemness.

Role in cancer stemness References

Fibrous proteins Collagen Type I collagen Maintains the self-renewal of mouse ES cells
through Bmi-1 via α2β1 integrin and DDR1;
promotes EMT; CD133+ glioblastoma CSCs are
localized to type I collagen-rich perivascular niche;
GBM cells cultured on type I collagen maintain
stemness and tumorigenicity; increases expression
of CD133 and Bmi1, EMT and clonogenicity in
colorectal CSCs through α2β1 integrin; enhances
tumor-initiating potential and self-renewal of ALDH+

pancreatic CSCs through β1integrin and FAK
signaling.

Kirkland, 2009; Medici and Nawshad,
2010; Suh and Han, 2011; Motegi
et al., 2014; Begum et al., 2017

Type III collagen COL3A1 is highly expressed in ALDH1A1+

topotecan-resistant ovarian CSCs.
Januchowski et al., 2016

Type IV collagen COL4A2 is highly expressed in CD133+/CD44+

prostate cancer spheroids; Head and neck CSCs
grown on type IV collagen-coated plates grow
much faster than in suspension and maintain CSC
traits.

Lim et al., 2012; Oktem et al., 2014a

Type VII collagen COL7A1 is highly expressed in CD133+/CD44+

prostate cancer spheroids.
Oktem et al., 2014b

Type XI collagen COL11A1 promotes chemoresistance in ovarian
cancer; COL11A1 increases the expression of
TWIST1, a master EMT regulator directly involved in
generating a breast CSC phenotype.

Vesuna et al., 2009; Wu et al., 2015,
2017; Rada et al., 2018

Type XVII collagen COL17A1 is upregulated in lung cancer spheroids
and required for the maintenance of CSC
characteristics and EMT phenotypes; works with
laminin 332 to maintain CSC characteristics and
EMT phenotype in lung cancer.

Liu et al., 2016, 2018

Glycoproteins Fibulin Fibulin-1 Fibulin-1 promotes doxorubicin resistance in breast
cancer cells.

Pupa et al., 2007

Fibulin-3 Fibulin-3 inhibits self-renewal of ALDH+ lung CSCs
and EMT through IGF1R signaling; suppresses
self-renewal of pancreatic CSCs by downregulating
c-MET and ALDH1 expression; works as a
downstream effector of HIF2α to stimulate breast
CSC self-renewal.

Kim et al., 2014a,b; Kwak et al., 2016

Fibrillin Fibrillin-1 Fibrillin-1 supports growth, self-renewal,
attachment and maintenance of human ES cells;
increases the number and clonogenic potential of
MSCs; promotes the expansion of HSCs.

Soteriou et al., 2013; Smaldone et al.,
2016a,b

Laminin Laminin 511 Laminin 511 supports self-renewal of mouse ES
cells and breast CSCs through the interaction with
integrin α6β1.

Domogatskaya et al., 2008; Chang
et al., 2015

Laminin 332
(laminin 5)

Laminin 332 maintains CSC characteristics and
EMT phenotype in lung cancer; supports stemness
of human hepatic CSCs by promoting quiescence,
chemoresistance, the number of side population,
and in vivo tumor growth in a mTORC2-dependent
manner.

Govaere et al., 2016; Liu et al., 2016

Laminin alpha 2 Laminin α2 chain is expressed in the perivascular
niche and crucial for survival, proliferation, and
self-renewal of glioblastoma stem cells.

Lathia et al., 2012

(Continued)
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TABLE 1 | Continued

Role in cancer stemness References

Laminin alpha 5 Laminin α5 is produced by human pluripotent stem
cells (hPSC) and crucial for hPSC self-renewal.

Laperle et al., 2015

Fibronectin FN FN is a marker for EMT-driven cancer stemness and
induces EMT; increases the adhesion, proliferation
and chemoresistance of glioma stem cells as well
as their capacity for differentiation through the
integrin/FAK/paxillin/AKT signaling pathway.

Li et al., 2017; Yu et al., 2018

EDA-FN EDA-FN is required for the sphere formation
capacity, clonogenicity, and tumorigenic capacity of
CD133+/CD44+ colon CSCs; CD133+/CD44+

colon CSCs express higher levels of the EDA
receptor integrin α9β1 than CD133−/CD44−

non-CSCs and EDA binding to integrin α9β1
activates FAK/ERK/β-catenin signaling pathway to
maintain stemness.

Ou et al., 2013

EDB-FN EDB-FN is crucial for mammosphere-forming ability,
expression of CSC markers, self-renewal genes,
drug resistance genes, and EMT markers, and
in vivo tumorigenicity of breast CSCs.

Sun et al., 2015

Vitronectin Vitronectin supports sustained self-renewal and
pluripotency of human ES cells in defined media;
downregulates self-renewal genes and induces
differentiation of prostate CSCs in an αVβ3
integrin–dependent manner.

Braam et al., 2008; Hurt et al., 2010

Fibrinogen Soft 3D fibrin gels promote formation of tumor
spheroids and tumorigenic potential of melanoma
CSCs.

Liu et al., 2012

Tenascin Tenascin-C Oct4+/TNC+ neuroblastoma CSCs, found in the
perivascular niche, display a high degree of
plasticity and serve as progenitors of tumor-derived
endothelial cells; TNC is co-expressed with CD133,
a marker for GBM CSCs, in primary GBM tissues;
TNC+ GBM CSCs exhibit the strongest sphere
forming capacity regardless of CD133 status;
promotes growth of GBM CSCs through α2β1
integrin-mediated upregulation of NOTCH ligand
Jagged1 and other NOTCH signaling components;
strongly enhances the expression of LGR5 and
MSI1, the WNT and NOTCH signaling components
that provide essential signals to stem cells, thereby
promoting the survival and outgrowth of pulmonary
micrometastases; increases side population,
sphere formation, and chemoresistance of
melanoma CSCs.

Fukunaga-Kalabis et al., 2010;
Oskarsson et al., 2011; Pezzolo et al.,
2011; Nie et al., 2015; Sarkar et al.,
2017

Secreted Protein
Acidic and Rich in
Cysteine (SPARC)

Overexpressed in endometrial CSCs; Most
abundantly secreted by non-prostate CSCs and
enhances the invasiveness and metastatic
dissemination of prostate CSCs in a paracrine
manner; plays a key role in maintaining dormancy of
prostate cancer cells by upregulating BMP7 in bone
marrow stromal cells; SPARC is highly expressed
by HSCs that recently colonized the bone marrow.
HSCs in a SPARC-deficient niche show an
accelerated return to quiescence, thereby
becoming resistant to serial 5-FU treatment.

Ehninger et al., 2014; Mateo et al.,
2014; Yusuf et al., 2014; Sharma et al.,
2016

(Continued)
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TABLE 1 | Continued

Role in cancer stemness References

Periostin (POSTN) POSTN promotes a stem cell-like trait and a
mesenchymal phenotype in human mammary
epithelial cells and breast cancer cells; plays an
essential role in the crosstalk between CSCs and
their niche to permit metastatic colonization;
recruits Wnt ligands and increases Wnt signaling in
breast CSCs, thereby promoting CSC maintenance
and expansion; POSTN and its receptor αVβ3
integrin are highly expressed in CSC-enriched
basal-like breast cancer; POSTN–β3 integrin
signaling is required for the maintenance of breast
CSCs by activating the ERK signaling pathway and
regulating NF-kB–mediated transcription of IL6 and
IL8; Glioma stem cells secrete POSTN to recruit M2
tumor-associated macrophages through αVβ3
integrin to support tumor growth; Secreted POSTN
promotes GBM stem cell invasion and engraftment
through αVβ3 and αVβ5 integrins.

Malanchi et al., 2011; Wang et al.,
2013; Mikheev et al., 2015; Zhou W.C.
et al., 2015; Lambert et al., 2016

Thrombospondin Thrombospondin 1
(TSP1)

TSP1 inhibits stem cell self-renewal by
downregulating the expression of self-renewal
genes through its receptor CD47 in primary murine
endothelial cells; decreases the expression of
self-renewal genes and sphere-forming capacity in
human colon cancer (HCT116), non-small cell lung
cancer (A549), and cervical cancer (HeLa) cell lines;
CD47, a TSP1 receptor, is highly expressed in
circulating hematopoietic stem cells, leukemia cells,
breast CSCs, pancreatic CSCs, and AML leukemia
stem cells and required for self-renewal of these
CSCs.

Jaiswal et al., 2009; Majeti et al., 2009;
Kaur et al., 2013; Cioffi et al., 2015;
Zhang et al., 2015a; Zheng et al., 2015;
Kaur et al., 2016

Mucin Mucin 1 MUC1 is highly expressed in AML stem cells,
pancreatic CSCs, and breast CSCs; MUC1
overexpression increases stem cell properties in
cord blood CD34+ cells and breast cancer cells;
MUC1 is overexpressed and hypoglycosylated in
the side population of MCF7 breast cancer cells;
Staurosporine-induced apoptosis activates
CD44+/CD24− breast CSCs by upregulating
MUC1 and EpCAM.

Engelmann et al., 2008; Fatrai et al.,
2008; Curry et al., 2013; Stroopinsky
et al., 2013; Zhou N. et al., 2015

Mucin 4 MUC4 stabilizes HER2 expression and maintains
ovarian CSCs; increases CD133+ pancreatic CSCs
and confers gemcitabine resistance.

Mimeault et al., 2010; Ponnusamy
et al., 2011

Mucin 16 (CA125) High levels of MUC16 are associated with poor
clinical outcome and CSC-like properties;
C-terminal domain of MUC16 enriches pancreatic
CSCs through JAK2-mediated upregulation of
LMO2 and NANOG.

Das et al., 2015; Zhang et al., 2015b

Nidogen (entactin) NID1 Nidogen-1 promotes EMT and cisplatin resistance
in ovarian cancer cells

Zhou et al., 2017

Proteoglycans Syndecan (CD138) Syndecan-1 Loss of syndecan-1 in epithelial cells induces a
mesenchymal phenotype; Shedding of syndecan-1
by MMP7 promotes chemoresistance; Syndecan-1
induces CSC phenotype via NF-kB/IL-6/STAT3 and
Wnt signaling pathways.

Kato et al., 1995; Ibrahim et al., 2013;
Wang et al., 2014

Glypican Glypican-3 Glypican-3 promotes self-renewal of
hepatocellular CSCs.

Sun et al., 2017

(Continued)
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TABLE 1 | Continued

Role in cancer stemness References

Glypican-4 Knockdown of GPC4 sensitizes pancreatic cancer
cells to 5−FU and inhibits stem cell–like properties by
suppressing Wnt/β−catenin pathway.

Cao et al., 2018

Small leucin-rich
proteoglycans
(SLRP)

Decorin Suppresses tumor cell growth, migration,
angiogenesis, and metastasis in melanoma,
osteosarcoma, and breast cancer; inhibits neural
stem cell differentiation; inhibits ES cell self-renewal
but promotes trophoblast stem cell self-renewal and
commitment; suppresses the numbers of
hematopoietic stem cells in the bone marrow and
spleen; glioblastoma and neuroblastoma CSCs
produce high levels of decorin to acquire
temozolomide resistance and a quiescent phenotype.

Grant et al., 2002; Reed et al., 2005;
Barkho et al., 2006; Shintani et al.,
2008; Stock et al., 2011; Ichii et al.,
2012; Farace et al., 2015; Nandi et al.,
2018

Lumican Glioblastoma and neuroblastoma CSCs produce
high levels of lumican and decorin to acquire
temozolomide resistance and a quiescent phenotype.

Farace et al., 2015

Biglycan Biglycan is highly expressed in colon CSCs and
promotes chemoresistance of colon cancer cells by
activating NF-kB signaling.

Fang et al., 2010; Liu et al., 2018

Asporin Asporin inhibits TGF-β1-induced EMT and expansion
of breast CSCs.

Maris et al., 2015

Versican High levels of versican are detected in
CD133+/CD44+ prostate CSC spheroids; The
C-terminal G3 domain of versican enhances
self-renewal of breast CSCs and confer
chemoresistance through EGFR/AKT/GSK-3β

signaling.

Du et al., 2013; Oktem et al., 2014b

Aggrecan Aggrecan is expressed by neural stem cells and its
expression is decreased upon differentiation;
CD133+/CD44+ prostate CSC spheroids express
high levels of aggrecan.

Kabos et al., 2004; Oktem et al., 2014a

Testican Testican-1 mediates EMT and confers acquired
resistance to lapatinib in HER2-positive gastric
cancer

Kim et al., 2014c

Non-proteoglycan
polysaccharides

Hyaluronan (HA) Breast CSCs produce high levels of HA; HA
promotes the interaction of breast CSCs with
tumor-associated macrophages to activate other
stromal cells that augment the growth of CSCs;
Excessive HA production promotes acquisition of
CSC properties via Twist and the TGF-β-Snail
signaling axis in breast cancer; HA-CD44 interaction
induces Nanog-Stat-3 interaction, resulting in
multidrug resistance in breast and ovarian cancer;
HA–CD44 interaction stimulates stem cell marker
expression, stemness properties and
chemoresistance in head and neck CSCs.

Bourguignon et al., 2008, 2012; Okuda
et al., 2012; Chanmee et al., 2014;
Shiina and Bourguignon, 2015

paired macrophages to promote metastasis to distant organs
(Roussos et al., 2011).

Mechanical Properties
Tumor ECM is typically stiffer than normal tissue ECM due
to overexpression of many ECM components (e.g., collagens
I, II, III, V, IX, and XI, heparan sulfate proteoglycans) and

ECM-modifying enzymes [e.g., lysyl oxidase (LOX)] (Levental
et al., 2009). Mechanical properties conferred by ECM stiffness
are transmitted to CSCs through the formation of focal adhesions
and subsequent activation of mechanotransduction pathways
(e.g., Rho/ROCK, YAP/TAZ). ECM stiffness plays a crucial
role in regulating stem cell self-renewal and differentiation.
Several studies have demonstrated that ECM stiffness directs
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FIGURE 1 | Schematic representation of how the ECM modulates cancer stemness. In addition to providing cues that transform non-CSCs into CSCs (through
EMT) and maintain a stemness state, the ECM can modulate CSC metabolism, influence immune cell recruitment, and serve as a reservoir for growth factors and
other signaling molecules that aid in CSC self-renewal and maintenance. Furthermore, the ECM provides not only a physical barrier to CSCs from cytotoxic drugs,
but also anchorage sites for CSCs for cell division and metastatic colonization. CSCs are also able to modify their local ECM through upregulation of ECM degrading
and modifying enzymes (such as MMPs and LOXs). Solid long arrows represent downstream signaling activation or event, solid short arrows represent elevated
activity or expression, dotted arrows represent growth factor release or immune cell migration, red lines with flat heads represent inhibition.

human mesenchymal stem cells (MSCs) and neural stem cells
to differentiate into different cell lineages (Engler et al., 2006;
Saha et al., 2008; Winer et al., 2009). Human MSCs cultured
on hydrogel with an elastic modulus very similar to bone
marrow, exhibit enhanced self-renewal and multipotency (Winer
et al., 2009). In the case of melanoma CSCs, three-dimensional
(3D) soft fibrin matrices promote histone 3 lysine residue 9
(H3K9) demethylation and increase SOX2 expression and self-
renewal, whereas stiff matrices exert the opposite effects (Liu
et al., 2012; Tan et al., 2014). Conversely, breast CSCs increase
CSC marker expression on stiff matrix through integrin linked
kinase (ILK) signaling (Pang et al., 2016; You et al., 2016),
suggesting that the effect of matrix stiffness on stemness is
cancer type specific.

ECM MODULATES BIOCHEMICAL CUES
TO DRIVE CANCER STEMNESS

EMT/De-Differentiation
The ECM can provide external cues that induce EMT, one of the
cellular transformation processes that has been shown to route
some cancer cell types from a differentiated to a stem cell state
(Mani et al., 2008). Collagen I has been shown to induce EMT
through activation of ILK and subsequently NF-κB-dependent
inactivation of GSK-3β (Medici and Nawshad, 2010), along with
the nuclear translocation of β-catenin (Li et al., 2010). Collagen
XVII and laminin-5 can also induce EMT-driven cancer stemness
through the activation of FAK/Akt paired with inhibition of GSK-
3β (Liu et al., 2018). The induction of EMT and CSC phenotypes

by the ECM seems to be driven by a master regulator, Akt. Akt
activation, which can be achieved via intracellular focal adhesion
proteins such as FAK and ILK, subsequently modulates the
activity of downstream effectors. For instance, Akt can activate
NF-κB, which has been shown to upregulate the expression the
stemness genes SOX2, NANOG and KLF4 in breast and prostate
cancer cells (Liu et al., 2010; Moreira et al., 2015). Akt, as well
as ILK, can also inactivate GSK-3β, which increases the nuclear
translocation of β-catenin, a transcription factor that is associated
with stemness and is also an activator of NOTCH and Wnt
signaling (Vadlamudi et al., 2005; Fang et al., 2010). Therefore,
ECM regulates the switch between CSC and non-CSC states
by inducing EMT.

Self-Renewal/Maintenance
The ECM also promotes CSC self-renewal. In this regard,
collagen I has been shown to preserve stemness in malignant and
non-malignant stem cells by activating transcriptional programs
that induce self-renewal (Kirkland, 2009; Suh and Han, 2011).
Binding of collagen to α2β1 integrin results in the nuclear
translocation of Bmi1, a stemness-inducing transcription factor
downstream of Hedgehog signaling. Studies have shown that
Bmi1 is a transcriptional target of Gli1, a stemness related gene,
and that FAK/Ras signaling enhances the expression of Gli1
(Goel et al., 2013). Akt/p-S6K1 signaling has also been shown
to play a regulatory role in activity of Gli1 (Wang et al., 2012).
Laminin and fibronectin signaling also plays a crucial role in CSC
self-renewal. Laminin 511 can sustain breast cancer stemness
through activation of α6β1 integrin, in a TAZ-dependent manner
(Chang et al., 2015). TAZ expression and nuclear localization
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induce the expression of the stemness transcription factors,
OCT4, SOX2 and NANOG in non-malignant and malignant
cells (Varelas et al., 2008; Chang et al., 2015; Xiao et al., 2015).
Fibronectin’s extra domain A (EDA) has also been demonstrated
to positively regulate CSC self-renewal through activation of α9β1
integrin/FAK/ERK/Akt/β-catenin pathway (Ou et al., 2013).

Growth Factor Reservoir and Release
The ECM might serve as a reservoir for factors that aid in the
sustenance of CSCs. Embryonic stem cells (ESCs) have been
shown to utilize matrix metalloproteases 1 (MMP1) to release
ciliary neurotropic factor (CNTF) from an ESC-derived matrix,
which enhances ESC self-renewal though JAK/STAT3 signaling
(Przybyla et al., 2013), a pathway that has also been implicated
in promoting self-renewal of breast CSCs (Wang et al., 2018).
Hematopoietic stem cells (HSCs) also upregulate MMP-9 to
release soluble kit-ligand, also known as stem cell factor (SCF),
which promotes survival signaling and chemoresistance in many
types of cancers (Foster et al., 2018). CSCs are thought to remodel
their matrices more significantly than their non-cancer stem cell
counterparts (Raja et al., 2015) as CSCs upregulate expression of
different MMPs. This may enable them to effectively degrade and
remodel ECM matrices (Inoue et al., 2010; Long et al., 2012) to
release growth factors and cytokines to promote their survival.

Metabolic Reprogramming and
Autophagy
The ECM serves as a functional repository for a plethora of
factors that dynamically modulate the tumor microenvironment
to promote CSC metabolism. Focal adhesion formations
transduce ECM signaling into the tumor cells and activate the
PI3K pathway which increases glycolysis, in addition to activating
glutamine signaling in a Ras- and Myc- dependent manner.
Furthermore, a stiff ECM acts as a driver of glycolysis in CSCs
(Pickup et al., 2014). On the contrary, accumulating evidence
suggests that CSCs also utilize OXPHOS, fatty acid oxidation
and glutaminolysis (Sancho et al., 2016; Martinez-Outschoorn
et al., 2017). In this regard, it has been demonstrated that CSCs
with high telomerase activity upregulate glycolysis and OXPHOS
in lung and ovarian cancers (Bonuccelli et al., 2017). Given the
diversity of tumors and their microenvironments, it is possible
that based on the availability of nutrients, CSCs can manipulate
their metabolism. For example, while CSCs in a hypoxic
microenvironment may survive by means of glycolysis, CSCs in a
normoxic environment use oxidative metabolism. Furthermore,
CSCs utilize metabolites secreted by cancer-associated fibroblasts
such as lactate and ketone bodies to fuel OXPHOS (Nazio et al.,
2019). Recycling of nutrients via autophagy is another way by
which CSCs not only self-renew but also acquire drug resistance
(Mowers et al., 2018). Autophagy impairment downregulates
the expression of CSC markers and consequently the CSC
self-renewal capacity in breast, liver, ovarian and pancreatic
cancers, osteosarcoma and gliobastoma (Nazio et al., 2019).
ECM-receptor ligation has been shown to induce autophagy
(Neill et al., 2014; Kawano et al., 2017). Collagen VI, a promoter
of tumorigenesis (Chen et al., 2013) and a supporter of stem cell

niches (Urciuolo et al., 2013), also functions as an autophagy
inducer in skeletal muscle stem cells by functionally interacting
with decorin, a small leucin-rich proteoglycans (SLRP) that
has been shown to induce stemness in glioblastoma (Farace
et al., 2015). A growing number of studies indicate that collagen
VI directly maintains CSCs by activating the Akt–GSK-3β–
β-catenin–TCF/LEF axis, which is required for activation of
autophagy (Fan et al., 2018). Decorin signaling, independent of
Collagen VI, can also maintain stemness of trophoblasts and
prevent their differentiation (Nandi et al., 2018).

ROLE OF HYPOXIA IN ECM-DERIVED
CANCER STEMNESS

Solid tumors frequently contain highly hypoxic regions and
tumor hypoxia is positively associated with poor prognosis.
Hypoxic tumor cells express stem cell markers, are highly
undifferentiated and exhibit enhanced clonogenic potential
in vitro and tumor initiating potential in vivo (Desplat et al.,
2002; Jogi et al., 2002; Das et al., 2008; Kim et al., 2009).
Furthermore, hypoxia can lead to increased ECM deposition
and remodeling. Histological studies on clinical tumor samples
have shown increased collagen deposition resulting in fibrosis
in hypoxic regions of tumors (Shekhar et al., 2003). In addition
to cancer cells, fibroblasts cultured under hypoxic conditions
show increased type I procollagen α1 mRNA (Falanga et al.,
1993; Tamamori et al., 1997; Norman et al., 2000). Abrogating
HIF1α expression inhibits collagen deposition from both breast
cancer cells and fibroblasts in vitro and in vivo (Gilkes et al.,
2013a,b, 2014; Xiong et al., 2014). ECM remodeling enzymes such
as LOX, LOX-like protein 2 (LOXL2), LOXL4, MMP2, MMP9
and MMP14 and growth factors inducing collagen deposition
(e.g., VEGF) are HIF-regulated genes that are involved in tumor
fibrosis (Gilkes et al., 2014). Since all these factors have been
previously implicated cancer stemness, it is not surprising that
the ECM acts a functional conduit for hypoxia-derived signals
that foster cancer stemness.

ECM MODULATES IMMUNE
SURVEILLANCE IN CSC
MICROENVIRONMENT

Extracellular matrix can profoundly influence recruitment of
immune cells into the tumor microenvironment. CSCs can evade
immune surveillance by altering this microenvironment to favor
their survival. For example, ECM drives the activation of pro-
survival pathways such as PI3K/AKT, which has been shown to
facilitate immune evasion in CSCs (Dituri et al., 2011). ECM
proteins can recruit immunosuppressive cells such as tumor-
associated macrophages (TAMs) (Stahl et al., 2013; Lu et al.,
2014) and regulatory T cells (Bollyky et al., 2011) that have
been known to promote CSC survival, while simultaneously
blocking the recruitment of antitumorigenic immune cells such
as cytotoxic T cells (O’Connor et al., 2012). In addition, the ECM
composition can dramatically modulate the activation state of the
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tumor infiltrating immune cells. For instance, a stiff collagen-
rich or POSTN-rich ECM allows macrophage polarization to a
pro-tumorigenic M2 phenotype (Wesley et al., 1998; Zhou W.C.
et al., 2015). Following recruitment, the M2 macrophages activate
several CSC survival signaling pathways including Src, NF-κB
(Lu et al., 2014), STAT3/SOX2 (Yang et al., 2013) and Hedgehog
(Jinushi et al., 2011). ECM can also impair proliferation and
activation of T cells, that are required for capturing and
killing CSCs (Di Tomaso et al., 2010). A collagen-rich ECM
can inhibit T-cell proliferation and activation through type I
collagen-dependent fusion of LAIR receptors (Meyaard, 2008;
Frantz et al., 2010) in addition to sequestering growth factors
required for T cell proliferation (Meyaard, 2008; O’Connor
et al., 2012). Furthermore, TAMs (Martinez and Gordon, 2014)
and neutrophils (Yakubenko et al., 2018) that can selectively
reorganize the ECM to promote malignant growth of cancers are
preferentially recruited to the microenvironment.

CSC TARGETING THERAPIES

Currently, there are several inhibitors targeting various aspects
of ECM-induced cancer stemness that are undergoing clinical
testing. For example, the CD47 blocking protein TTI-621
(Petrova et al., 2017) is currently being assessed in a
number of phase I clinical trials (NCT03013218, NCT02663518,
NCT02216409, NCT02678338) for various types of cancers.
Other groups have targeted FAK with the inhibitor VS−6063
(Defactinib) (Lin et al., 2018), which has completed clinical phase
I and II trials (NCT01778803, NCT01943292, NCT01951690)
with one of those clinical trials assessing for CSCs as an
endpoint (NCT01778803). Other inhibitors of stemness-related
molecules further downstream of ECM signaling are also being
tested in clinical trials, such as the STAT3 inhibitor BBI−608
(Sonbol et al., 2019) in a phase II trial that will test for
presence of CSC as an endpoint (NCT02279719) and in a
phase III clinical trial aimed at reducing CSCs by targeting
phosphorylated Stat3 positive cancer cells (NCT02753127). The
β-catenin pathway inhibitors PRI-724 and CWP232291 (Tai et al.,
2015) are currently being tested in two phase I clinical trials
(NCT01764477, NCT01398462). Inhibition of the Hedgehog
pathway with the inhibitor GDC−0449 (Vismodegib) (Basset-
Séguin et al., 2017), is also currently being clinically evaluated

in a phase II trial which will test for the presence of pancreatic
CSCs (NCT01088815).

CHALLENGES AND CONCLUSION

Although the above drugs may effectively reduce the number
of CSCs, there are still many potential challenges that ECM
components in a tumor microenvironment may set that could
interfere with an otherwise successful treatment regimen. Firstly,
ECM proteins have been shown to act as a physical barrier,
making drug delivery to cancer cells more difficult. Secondly,
ECM proteins can de-differentiate non-CSCs into CSCs, which
makes eliminating all CSCs more challenging. Thirdly, ECM
plays a role in modulating immune cell recruitment, hence,
potential immunotherapeutic strategies could be hindered by
dysregulated ECM components. Finally, the ECM has a very
complex and dynamic nature: different ECM molecules are
expressed in a time and tissue-specific manner where various
isoforms of the same molecule can play opposing functions in
cancer stemness in a context-dependent manner. Considering
these concerns, it is crucial that future studies further elucidate
the role of ECM components on cancer stemness in order to
design therapies that effectively eradicate all CSCs.
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