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Abstract 

Background:  Selection of livestock based on their robustness or sensitivity to environmental variation could help 
improve the efficiency of production systems, particularly in the light of climate change. Genetic variation in robust-
ness arises from genotype-by-environment (G × E) interactions, with genotypes performing differently when animals 
are raised in contrasted environments. Understanding the nature of this genetic variation is essential to implement 
strategies to improve robustness. In this study, our aim was to explore the genetics of robustness in Australian sheep 
to different growth environments using linear reaction norm models (RNM), with post-weaning weight records of 
22,513 lambs and 60 k single nucleotide polymorphisms (SNPs). The use of scale-corrected genomic estimated breed-
ing values (GEBV) for the slope to account for scale-type G × E interactions was also investigated.

Results:  Additive genetic variance was observed for the slope of the RNM, with genetic correlations between low- 
and high-growth environments indicating substantial re-ranking of genotypes (0.44–0.49). The genetic variance 
increased from low- to high-growth environments. The heritability of post-weaning body weight ranged from 0.28 
to 0.39. The genetic correlation between intercept and slope of the reaction norm for post-weaning body weight 
was low to moderate when based on the estimated (co)variance components but was much higher when based on 
back-solved SNP effects. An initial analysis suggested that a region on chromosome 11 affected both the intercept 
and the slope, but when the GEBV for the slope were conditioned on the GEBV for the intercept to remove the effect 
of scale-type G × E interactions on SNP effects for robustness, a single genomic region on chromosome 7 was found 
to be associated with robustness. This region included genes previously associated with growth traits and disease 
susceptibility in livestock.

Conclusions:  This study shows a significant genetic variation in the slope of RNM that could be used for selecting for 
increased robustness of sheep. Both scale-type and rank-type G × E interactions contributed to variation in the slope. 
The correction for scale effects of GEBV for the slope should be considered when analysing robustness using RNM. 
Overall, robustness appears to be a highly polygenic trait.
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Background
Genotype-by-environment (G × E) interactions occur 
when the expression of the genes carried by an individ-
ual changes depending on the environment in which it is 
raised. This means that the best animal for one environ-
ment might not necessarily be the best one in another 

environment. One approach to this problem is to design 
breeding programs for specific geographical environ-
ments [1]. However, within the same geographical loca-
tion, environments often vary considerably from year to 
year, such as during periods of drought [2]. An alternative 
is to select animals that rank highly across wide-ranging 
environmental conditions. These animals are said to 
be robust, as their breeding value is less sensitive to the 
environment.
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The robustness of an animal cannot be directly meas-
ured, since it is typically raised in a single location at a 
given time point. However, robustness can be inferred 
for a genotype using a reaction norm model (RNM) that 
includes genetic relationships between relatives that 
have been raised in different environments. In a RNM, 
the estimated breeding value (EBV) of each animal is 
modelled as a function of a continuous environmental 
descriptor using random regression. A linear function is 
typically used as it is easier to interpret than higher order 
polynomials [3]. This results in two EBV for each individ-
ual, i.e., an intercept, which captures the average perfor-
mance across environments, and a slope, which captures 
the amount of change in EBV across the environmental 
descriptor. The EBV for the slope is directly treated as 
an EBV for robustness. Many previous studies have used 
RNM to model sensitivity to environmental changes [3, 
4]. For example, Hollema et al. [5] used a linear RNM to 
model variation in the sensitivity of Australian sheep to 
parasite burden using pedigree relationships. The average 
worm-burden of a contemporary group was used as the 
environmental descriptor, and a flatter slope was inter-
preted as a more robust genotype.

More recently, RNM have been extended to include 
genomic information in the form of single nucleotide 
polymorphisms (SNPs) [6]. The use of genomic data 
increases the power for estimating robustness, since it 
captures the genetic linkage between distantly-related 
genotypes in different environments [7]. Compared to 
regular genomic best linear unbiased prediction (GBLUP) 
models that ignore G × E interactions, RNM models 
have shown increased predictive ability [8, 9]. When a 
reference population is well-distributed across environ-
ments, selection based on genomic estimated breeding 
values (GEBV) greatly improves the response to selection 
for robustness [10], as young sires can be selected earlier 
without the need for large progeny tests across multiple 
environments. In addition, genomic RNM can be used 
for genome-wide association (GWA) studies by back-
solving GEBV to SNP effects. This can shed light on the 
molecular basis underlying robustness and improve the 
accuracy of genomic predictions by using models which 
incorporate the molecular information as priors [11].

The correlation between the genetic variance in the 
intercept and that in the slope has often been limited to a 
discussion as a correlation between overall performance 
and sensitivity [12]. Beyond this, a correlation implies 
that (1) scale changes in genetic variance occur across 
environments, and (2) information from the intercept is 
used to estimate the EBV for the slope (and vice versa). 
Both of these observations could influence the EBV for 
the slope but are unrelated to the re-ranking of geno-
types. Therefore, it might be important to ensure a level 

of independence between the EBV for the slope and the 
EBV for the intercept in the analysis of robustness.

The objectives of this study were to: (1) estimate the 
genetic variation of robustness in Australian sheep 
between different growth environments using linear 
reaction norms models fitted by random regression; and 
(2) compare the use of direct and scale-corrected GEBV 
for the slope in a genome-wide association study, using 
post-weaning weight (PWWT) as the response variable.

Methods
Data structure
In this study, data from 34,584 sheep recorded in the 
Australian Sheep CRC Information Nucleus Flock (INF) 
and the Meat and Livestock Australia Resource Flock 
(RF) were used. The INF animals were located at eight 
sites across southern Australia between 2007 and 2011. 
Each year, approximately 100 sires from the two main 
sites (Armidale NSW and Katanning WA) were mated 
via artificial insemination, each one with 900 ewes. For 
the six remaining sites, 450 ewes were mated annually, 
with at least 50% of the Kirby/Katanning sires. Then from 
2012 onwards, the program was changed: it used the RF 
and only the Armidale and Katanning sites were kept 
under a similar mating structure, but with about 150 sires 
mated at both sites each year. The management practices 
at each site reflected the typical practices used for raising 
lambs on pasture in each of the respective geographical 
areas. Supplemental feed was occasionally provided in 
years with periods of drought to help maintain the body 
weight of animals.

The population consisted of multiple breeds. Merino, 
Maternal (such as Border Leicester) or Terminal (such 
as Poll Dorset) sires were mated to either Merino or first 
cross Maternal-Merino dams. Only the Merino breed 
had pure-bred representatives, while the remaining 
breeds were represented as crosses. Overall, 39 different 
breed groups were available, referred to as genetic groups 
hereafter. A summary of the breed composition of the 
data is in Additional file 1: Table S1. For more informa-
tion on the INF and RF flocks, see [13].

Phenotypic records for post-weaning growth rate 
(PWGR) and post-weaning weight (PWWT) were used. 
First, PWGR was used to estimate the environmental 
descriptor used in the RNM. The PWGR of each lamb 
was calculated as the difference between weaning and 
post-weaning weights, recorded at approximately 96 
(64–120) and 238 (120–329) days of age, respectively, 
which was divided by the number of days between meas-
urements and expressed in g/day. PWWT was then used 
as the dependent variable for the RNM analysis. The 
distribution of PWGR and PWWT as well as the other 
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descriptive statistics after filtering are available in Addi-
tional file 2: Table S2.

Preparation of the reaction norm data
Since explicit environmental information was not avail-
able for the each of the sites, the best linear unbiased 
estimation (BLUE) of the contemporary group effect for 
PWGR was used to estimate the environmental descrip-
tor. Contemporary groups (CG) were formed as a cohort 
of site × birth year × management group. The manage-
ment group consisted of animals which were subjected 
to the same management decisions within each site × 
year, i.e., they were raised in the same paddocks and 
phenotyped at the same time. PWGR was chosen as the 
environmental descriptor because rate of growth has an 
intuitive relationship with environmental quality, i.e., CG 
that grow more quickly after weaning, are more likely to 
be in a better environment than groups that grow more 
slowly. When implemented in a reaction norm model, 
the slope of a genotype is interpreted as the change in 
GEBV per change in growth environment (g/day). Other 
studies have also demonstrated the value in using alter-
native traits for the environmental gradient (EG), rather 
than the trait used as the reaction norm response vari-
able (i.e., PWWT) [14].

Lambs that had a growth period shorter than 40 days, 
a PWGR more than 4 standard deviations (SD) from 
the mean PWGR or that were born as quintuplets or 
reared as quadruplets were not included in the analy-
sis. Only CG with a minimum of 15 animals were con-
sidered. After filtering, 33,773 individuals from 249 CG 
were available to estimate the CG effects. The model for 
obtaining the BLUE of CG effects was a regular pedigree-
based animal model:

where y is the vector of PWGR records, X is an incidence 
matrix for the fixed effects b , Z1 is an incidence matrix 
relating the records to additive genetic effects ( a ), Q is a 
matrix of the proportion of each animal’s genome origi-
nating from the 39 genetic groups [15], g is the vector of 
the random genetic group effects, and e is the vector of 
the residual effects. Fixed effects included sex, birth-type 
and rear-type interaction, age at post-weaning (linear and 
quadratic) and CG.

Only the CG effects for genotyped animals (22,634) 
were extracted. Each animal was assigned the BLUE of 
their CG as their environmental descriptor, which was 
then standardised to have a mean of 0 and variance of 1, 
forming the EG used in the RNM.

This subset of genotyped animals was re-filtered to 
ensure that the animals had a PWWT within 4 SD from 
the mean PWWT, originated from CG of at least 15 other 

(1)y = Xb+ Z1a +Qg + e,

animals, or had at least one half-sib. After filtering, 22,513 
animals from 1582 sires and 11,576 dams across 206 CG 
were available for RNM analysis.

The CG effects ranged from − 2.15 SD (− 72.4 g/day) to 
2.06 SD (69.1 g/day) respectively, with an overall range of 
141.5 g/day. On average, sires had progeny in environments 
with PWWT differing by 59 g/day. A small number of the 
sires (6%) had progeny in only one environment, but these 
were still included since their genomic data can link them 
to other animals across environments. The distribution of 
records and mean PWWT along the EG is plotted in Addi-
tional file 3: Figure S1.

Genotype data
Not all animals were genotyped due budget constraints. 
Genotyped animals were selected randomly from each sire 
to minimise selection bias. The imputed genomic data for 
each individual consisted of 60,400  SNPs. Originally, ani-
mals were genotyped with a 12 k, or one of two 15 k or one 
of two 50 k SNP panels. Approximately 93% of the animals 
were genotyped with one of the 50 k SNP panels. Within 
each panel, SNPs were removed if they were located on 
the X or Y chromosome, deviated greatly from the Hardy–
Weinberg equilibrium (P < 10–15), had call rates lower than 
90% and Gen-Cal scores lower than 0.6. When the correla-
tion between the genotype sample of an animal and that of 
another animal was higher than 0.98, they were removed, 
as this indicated an error in matching ID. Following qual-
ity control, the Beagle 5.1 software [16] was used to impute 
all SNP genotypes to the combined set of 60,400  SNPs. 
The number of reference animals used to impute the SNP 
genotypes for each chip is in Additional file  4: Table  S3. 
After imputation, the combined set was filtered to remove 
SNPs with a minor allele frequency lower than 0.01. Finally, 
60,347 SNPs were available for analysis.

Reaction norm analysis
Two RNM were used to estimate GEBV. The first RNM 
(RNM-HOM) assumed that the residual variance was 
homogenous along the EG, and is described by:

where y is the vector of PWWT records, X is an inci-
dence matrix linking records to the fixed effects b , and 
Z1 and Z2 are incidence matrices linking records to the 
breeding values for the intercept (a1) and the slope (a2) , 
Q is a matrix of the proportion of each animal’s genome 
originating from the 39 genetic groups, g is the vector 
of the random genetic group effects, and e is the vector 
of residual effects. Fixed effects included sex, birth type, 
rear type, age at post-weaning and CG. The Q matrix and 
CG were formed as previously described for the BLUE 
model.

(2)y = Xb+ Z1a1 + Z2a2 +Qg + e,
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The genetic variance of a1 and a2 was modelled accord-

ing to 
[
a1
a2

]
∼ N (0,G⊗ K) where K =

[
σ 2
a1
σa2a1

σa1a2σ
2
a2

]
 and G 

is a relationship matrix based on genomic data, con-
structed following the first method described by Van-
Raden [17].

Genetic groups were modelled as for Eq.  (1). The 
variance of the residual e was modelled according to 
[e] ∼ N

(
0, Iσ 2

e

)
 , where σ 2

e  is the residual variance which 
was assumed to be homogenous across environments.

The second RNM (RNM-HET) was the same as RNM-
HOM, except that residual variance was modelled as a 
function of the EG, as described in [18]. An intercept ( e1) 
and slope ( e2) residual coefficient was used, such that [
e1
e2

]
∼ N (0, I⊗ E) , where E =

[
σ 2
e1

σe2e1
σe1e2 σ 2

e2

]
 . The mod-

els were implemented using genomic residual maximum 
likelihood (GREML) with the MTG2 software [19].

The genetic (co)variance matrix for breeding values 
between environments along the EG were estimated as: 
V̂ = �K�′ , where K is the additive genetic (co)variance 
matrix for the intercept and the slope, and � is a 100 × 2 
matrix containing a vector of 1s for the intercept and a 
vector of 100 standardised environmental values ranging 
from the minimum to the maximum value of the EG. The 
genetic correlation matrix between environments was 
computed from V̂.

For RNM-HET, the residual variance for environment 
at level i was calculated as the element i, in the matrix 
R̂, which was estimated as: R̂ = �E�′, where E is the 
(co)variance matrix for the residual intercept and slope 
regression coefficients, and � is the same as above.

The heritability of PWWT in environment i was esti-
mated as: h2i =

Vai
Vai

+Vei
 , where Vai is the additive genetic 

varaince estimated for environment i and Vei is the resid-
ual variance in environment i. Standard errors for the 
variance components and heritabilities were estimated 
using a Taylor series expansion [20].

To observe how parameters changed along the EG, 
the genetic variance, correlation and heritabilites from 
the two models were compared betweem three dis-
tinct environments: − 1.5 SD, 0 SD and 1.5 SD, refer-
ing to low-, average- and high-growth environments, 
respectively. Evaluation of changes in parameters was 
limited to this range of EG values, as estimates outside 
this range may be biased since they are based on rela-
tively small amounts of data [21]. To further validate 
the reaction norm variance parameters, the data were 
split into three sections based on the EG: low (< − 1.13 
SD), average (> 0.59 SD and < 0.59 SD) and high (> 1.13 
SD), such that the mean EG of each section was − 1.55, 
0.06 and 1.52 SD for low, average and high sections, 

respectively. In total, 3157, 9375 and 3384 animals were 
included in the low, average and high sections, respec-
tively. A multi-trait model (MTM), which considered 
performance in the three sections as different traits but 
allowed them to be genetically correlated, was then fit-
ted. This provided a robust estimate of the parameters 
for the three distinct environments, which could be 
used as a benchmark for the reaction norms, as done 
in [22].

Genome‑wide association (GWA) analysis
To obtain scale-corrected GEBV for the slope ( a∗2) from 
RNM-HOM and RNM-HET for GWA analysis, the fol-
lowing genetic regression was used:

where a1 and a2 are the GEBV for the intercept and the 
slope, respectively, σ 2

a1
 is the variance in intercept and 

σa1a2 is the covariance between intercept and slope, esti-
mated from the respective RNM models. The aim of this 
formula was to remove the variation in GEBV for the 
slope that originated from scale effects. To distinguish 
the different GEBV for the slope, the terms direct slope 
( a2 ) and scale-corrected slope ( a∗2 ) are used.

The GWA analyses were performed by separately 
back-solving the GEBV for the intercept ( a1 ), the direct 
slope ( a2 ) and scale-corrected slope ( a∗2 ) to SNP effects 
for each model, following [23]:

where û is the vector of SNP effects, d is a scalar calcu-
lated as 2

∑60347
i=1 p(1− p) , where p is the allele frequency 

for SNP i , W is the SNP matrix corrected for allele fre-
quency differences ( W = M − 2 ∗ (p− 0.5) , M is the 
SNP matrix coded such that 0 represents the heterozy-
gous genotype, and − 1 and 1 represents the homozygous 
genotypes), G−1 is the inverse of the genomic relation-
ship matrix [17], and a is the vector of GEBV (either a1 , 
a2 , or a∗2).

An approximate p-value of each SNP effect was esti-
mated based on a t-distribution, calculated as the prob-
ability of the 95th percentile of the GEBV distribution 
[24]. A Bonferroni correction was used to avoid false 
positives. A SNP was considered significant when its 
p-value was lower than 0.05/60,347, giving a threshold 
of −  log10(p) > 6.08. Genes in the genomic regions that 
were significantly associated with the scale-corrected 
slope were detected based on the Ovis aries v3.1 assem-
bly using the NCBI genome data viewer [25].

(3)a∗2 = a2 −
σa1a2

σ 2
a1

a1,

(4)û =
WG−1a

d
,
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Results
Additive genetic variation was observed for the slope, 
indicating the presence of G × E interactions and genetic 
variation in robustness for PWWT (Table 1). The genetic 
correlation between the intercept and the slope, obtained 
from the additive genetic (co)variance components, was 
much lower in RNM-HET (0.18) than in RNM-HOM 
(0.52). Overall, RNM-HET provided a better fit based on 
the log-likelihood, which indicated that the residual vari-
ance was heterogenous along the EG.

The genetic variance increased by 177% from low- to 
high-growth environments in RNM-HOM (Fig.  1a), but 
increased only by 39% across the same environments in 
RNM-HET, although the greatest increase in RNM-HET 
was between average- and high-growth environments 
(61%). This still showed substantially lower scale-type G 
× E interactions and indicated considerable bias in the 
genetic parameters of RNM-HOM.

The estimates of heritability in RNM-HOM followed 
the same pattern as the genetic variance, increasing by 

92% from low- to high-growth environments (Fig. 1b). 
The heritability in RNM-HET was higher in low-growth 
environments (0.39) than in average- and high-growth 
environments (0.28–0.33). The residual variance 
increased by 74% from low- to high-growth environ-
ments in RNM-HET (see Additional file 5: Figure S2).

Genetic correlations between low- and high-growth 
environments were 0.49 and 0.44 in RNM-HOM and 
RNM-HET, respectively (Fig.  2), which indicated a 
high degree of rank-type G × E interactions along the 
EG and variation in robustness. Overall, both mod-
els produced similar estimates of rank-type G × E 
interactions.

The parameter estimates of RNM-HET were largely 
consistent with those of the MTM (see Additional file 6: 
Table  S4). However, the genetic correlations obtained 
with the MTM were slightly lower between similar 
environments (Low vs Average, Average vs High) and 
higher between the less similar environments (Low vs 
High) than with RNM-HET. The parameter estimates of 

Table 1  Variance of the additive genetic intercept (σ 2
a1

) and slope (σ 2
a2

), the residual intercept (σ 2
e1

), slope (σ 2
e2

) and covariance 
(σ e1σ e2), as well as genetic group (g) variance

The correlation between additive genetic intercept and slope ( ra1a2 ) and the log-likelihood (LKH) are also reported
a RNM-HOM: linear reaction norm model with homogenous residual variance; RNM-HET: linear reaction norm model with heterogenous residual variance
b Based on a log-likelihood ratio test using a chi-square distribution, RNM-HET provided a better fit (p = 1.7 × 1015)

Modela
σ
2

a1
σ
2

a2
ra1a2 σ

2

e1
σ
2

e2
σ e1e2 g LKH

RNM-HOM 7.40 (0.31) 1.28 (0.16) 0.52 (0.04) 17.52 (0.26) – – 11.45 (3.85) − 46,938.28

RNM-HET 6.98 (0.31) 1.19 (0.17) 0.18 (0.06) 18.17 (0.31) − 0.32 (0.23) 1.55 (0.14) 10.88 (3.69) − 46,870.32b

Fig. 1  Genetic variance and heritability along the environmental gradient. Estimates of a genetic variance ( Va ) and b heritability ( h2 ) with 95% 
confidence intervals along the environmental gradient. RNM-HOM: linear reaction norm model with homogenous residual variance, RNM-HET: 
linear reaction norm model with heterogenous residual variance
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RNM-HOM were substantially different from those of 
the MTM, which suggests that RNM-HOM was biased.

GWA analysis and scale correction
The correlation between back-solved SNP effects for the 
intercept and the direct slope in RNM-HOM was high 
(0.85), indicating a large amount of scale-type G × E 
interactions (Fig. 3a). The correlation was lower in RNM-
HET (0.31), but still suggested scale effects (Fig.  3c). 
These correlations were considerably higher than the 
genetic correlations based on the estimated (co)variance 
components for the intercept and the slope in both mod-
els in Table 1 (RNM-HOM 0.85 vs 0.52, RNM-HET 0.31 
vs 0.18).

To estimate the scale-corrected SNP effects follow-
ing Eq.  (3), the correction formulas for the scale-cor-
rected GEBV of RNM-HOM and RNM-HET were: 
a∗2 = a2 − 0.21a1 and a∗2 = a2 − 0.075a1 , respectively. 
Due to the higher genetic correlation between the inter-
cept and the slope in RNM-HOM, the GEBV and sub-
sequent SNP effects for the slope were more strongly 
corrected than in RNM-HET, because they contained 
more scaling effects. Once back-solved, the scale-cor-
rected SNP effects for the slope were far less correlated 
with the intercept for both RNM-HOM (0.11) and RNM-
HET (−  0.06) (Fig.  3b and d). Therefore, the correction 
appeared to remove the effect of scale-type G × E inter-
actions on the SNP effects for the slope.

A region that was significantly associated with the 
scale-corrected slope (described later) is highlighted in 
red in all the plots in Fig. 3. Before the correction, several 
SNPs in this region were associated with the intercept, 

especially in RNM-HOM. The correction uncovered this 
region in RNM-HOM by lifting away the associations of 
these SNPs. This also occurred in RNM-HET, but to a 
lesser extent.

The effect of the scale correction was also observed 
in the genomic reaction norms of genotypes before and 
after correction (Fig.  4). Genotypes with a large inter-
cept effect had a greater correction in the slope. The 
sign of the slope also changed after correction for some 
genotypes.

In RNM-HOM, Manhattan plots for the direct and 
scale-corrected slope detected different signals (Fig.  5a, 
b). The direct slope yielded a signal on chromosome 11, 
which was also associated with the intercept (see Addi-
tional file 7: Figure S3), but it disappeared when using the 
scale-corrected slope, and a new signal was detected on 
chromosome 7.

The same region on chromosome 7 was detected using 
the direct slope from RNM-HET, although it was not sig-
nificant. However, this region was significant when using 
the scale-corrected slope in RNM-HET. In spite of signif-
icant differences between the Manhattan plots of the two 
models using the direct slope, the Manhattan plots for 
scale-corrected slope from both models were very simi-
lar, and the correlation between their SNP effects was 
very high [0.99, (see Additional file 8: Figure S4)]. Over-
all, the GWA analysis suggests that robustness is a highly 
polygenic trait that is regulated by many genes with small 
effects.

The three most significant SNPs associated with 
robustness were within an 881-bp region on chromo-
some 7 (Table 2). The allele substitution effect for these 
SNPs indicated that the animals with genotypes carrying 
the minor allele were approximately 4 g heavier at post-
weaning for each one SD decrease in EG, compared to 
genotypes carrying the major allele. Only one of these 
SNPs was significant based on the Bonferroni-corrected 
p-value, which indicates a weak association. The three 
SNPs were located within the SLC24A1 gene, which 
encodes a sodium/potassium/calcium exchanger. Eight 
other genes were located within a 500-kb region sur-
rounding the most significant SNP (Table 3).

Discussion
Reaction norm models
Additive genetic variation was observed for the slope of 
the RNM, which indicated the presence of G × E inter-
actions for PWWT in different growth environments. 
Both scale- and rank-type G × E interactions appeared 
to contribute to the variation in the slope, as evidenced 
by the differences in genetic variance along the EG and 
the much lower than 1 genetic correlations between envi-
ronments. Other studies have identified significant G × E 

Fig. 2  Genetic correlations between low-, average- and high-growth 
environments. Estimates of genetic correlations between 
low- (− 1.5 SD, green), average- (0 SD, black), and high- (1.5 SD, 
purple) growth environments from the two models. RNM-HOM: linear 
reaction norm model with homogenous residual variance, RNM-HET: 
linear reaction norm model with heterogenous residual variance
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interactions for body weight of sheep using RNM [5, 26, 
27], although the genetic correlations between environ-
ments found in our study are slightly lower than those in 
previous studies The estimates of heritability for PWWT 
in the best model, i.e., RNM-HET, were comparable to 
those obtained in previous studies for body weight in 
Australian sheep (0.31–0.39) [28, 29]. Overall, our find-
ings demonstrate variation in the performance of sheep 
between growth environments, which can be captured 
using RNM.

We found that fitting heterogenous residual variance 
significantly improved the fit of the RNM, as reported 
in similar RNM studies of livestock [4, 27, 30]. When 
homogenous residual variance was assumed, the genetic 
variance increased by approximately 177% along the EG, 

which greatly over-estimated the amount of scale-type 
G × E interaction. Scale-type G × E interaction was 
detected at a much lower level after fitting heterogenous 
residual variance. This agrees with [31], who found that 
not accounting for existing heterogenous residual vari-
ance inflated the scale-type G × E interactions. In spite 
of the difference in scale-type G × E interactions, esti-
mates of genetic correlation between environments were 
similar for the two models, RNM-HOM and RNM-HET. 
The low genetic correlation (0.44–0.49) suggested a large 
amount of re-ranking between environments, which was 
evident in Fig. 4, when the reaction norms of genotypes 
crossed over along the EG.

The genetic correlation between the intercept and the 
slope is commonly interpreted as a genetic correlation 

Fig. 3  Scatterplots between direct and scale-corrected SNP effects for the slope against the intercept. Scatterplots and correlations between SNP 
effects for the direct slope (a and c) and scale-corrected slope (b and d) against the intercept. Significant SNPs on chromosome 7 are highlighted 
in red. RNM-HOM-DIR: linear reaction norm model with homogenous residual and direct breeding value for slope; RNM-HOM-COR: linear reaction 
norm model with homogenous residual and corrected breeding value for slope; RNM-HET-DIR: linear reaction norm model with heterogenous 
residual and direct breeding value for slope; RNM-HET-COR: linear reaction norm model with heterogenous residual and corrected breeding value 
for slope
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between overall performance and robustness, i.e., a 
high correlation indicates that genotypes that perform 
well tend to be more sensitive [32, 33]. This interpreta-
tion is problematic, as low-performing genotypes with 
negative intercepts will also have proportionally larger 

slopes (i.e., are equally as sensitive). Alternatively, a 
genetic correlation between the intercept and the slope 
could simply represent a scale effect, where some of 
the variance in GEBV along the EG is due to heteroge-
nous genetic variance. This variation would not involve 

Fig. 4  Reaction norms before and after scale-correction. Reaction norms for nine individuals representing the nine largest half-sib families with 
the largest distribution along the environmental gradient. Individuals are distinguished by colour. RNM-HOM-DIR: linear reaction norm model with 
homogenous residual and direct breeding value for slope; RNM-HOM-COR: linear reaction norm model with homogenous residual and corrected 
breeding value for slope RNM-HET-DIR: linear reaction norm model with heterogenous residual and direct breeding value for slope; RNM-HET-COR: 
linear reaction norm model with heterogenous residual and corrected breeding value for slope
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re-ranking and therefore might not reflect robustness. 
Thus, we used genetic regression to account for scale, 
where the GEBV for the slope and subsequent SNP 
effects were adjusted so that they were independent 
of the genetic correlation with the intercept. The same 

approach has been used in the analysis of residual feed 
intake [34].

Genome‑wide association analysis
The direct GEBV for the slope have been used in GWA 
studies to identify SNPs associated with robustness [6, 
35, 36]. However, this approach could result in SNPs 
that are associated with the intercept masking the SNPs 
associated with re-ranking. This was demonstrated in 
RNM-HOM, for which the high correlation between SNP 
effects for the intercept and slope (0.85) masked the SNPs 
associated with reranking (Fig. 3a) and identified a region 
on chromosome 11 that affects robustness. Adjusting the 
GEBV to account for the scale-type G × E interactions 
by applying genetic regression reduced the correlation 

Fig. 5  Genome-wide SNP associations for the direct and scale-corrected slope. Genome-wide SNP associations for the slope using direct (a and c) 
and scale-corrected (b and d) GEBV for the slope, for both RNM-HOM and RNM-HET. RNM-HOM-DIR: linear reaction norm model with homogenous 
residual and direct breeding value for slope; RNM-HOM-COR: linear reaction norm model with homogenous residual and corrected breeding value 
for slope; RNM-HET-DIR: linear reaction norm model with heterogenous residual and direct breeding value for slope; RNM-HET-COR: linear reaction 
norm model with heterogenous residual and corrected breeding value for slope

Table 2  SNPs associated with level of robustness

MAF minor allele frequency; ASE allele substitution effect, expressed in g per unit 
SD of the EG

p: Bonferroni-corrected p-value

Chromosome Base pair MAF − log10(p) ASE (g/SD EG)

7 12,312,079 0.49 5.73 − 4.0

7 12,312,384 0.39 5.61 − 4.0

7 12,312,960 0.49 6.63 − 4.4

Table 3  List of known genes in a 500-kb window surrounding the most significant SNP

Gene symbol NCBI gene ID Distance from the most 
significant SNP (kb)

Gene description

SLC24A1 101121857 0 Sodium/potassium/calcium exchanger

INTS14 101121097 30.0 Integrator complex subunit 14

HACD3 101120835 59.5 3-hydroxyacyl-CoA dehydratase 3

DPP8 101119728 106.5 Dipeptidyl peptidase 8

IGDCC4 101111715 189.1 Immunoglobulin superfamily DCC subclass member 4

IGDCC3 101111458 222.3 Immunoglobulin superfamily DCC subclass member 3

DENND4A 101122440 138.6 C-myc promoter-binding protein

RAB11A 780464 212.1 ras-related protein Rab-11A

MEGF11 101123125 240.6 Multiple epidermal growth factor-like domains protein 11
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between the SNP effects considerably (0.11) and removed 
the signal on chromosome 11. The GWA analysis was 
able to reveal SNPs on chromosome 7 that were associ-
ated with robustness, independent of the scale effects. 
This phenomenon was also observed in RNM-HET, 
although it was less affected by scale. In this case, the 
region on chromosome 7 was non-significant when using 
the direct GEBV for the slope (−  log10[p] = 5.98), but 
was significant after scale-correction (−  log10[p] = 6.63). 
These findings suggest that correcting for scale effects on 
the GEBV for the slope can greatly influence the genomic 
regions detected and the interpretation of GWA analyses 
for robustness.

Interestingly, the correlation between the SNP effects 
for the intercept and scale-corrected slope in both mod-
els was not exactly zero. However, the genetic regres-
sion used for the scale-corrected slope was based on 
the estimated genetic (co)variance components, rather 
than the (co)variance of the GEBV used to back-solve 
the SNP effects. These (co)variances are not identical, as 
the genetic (co)variance components estimate the vari-
ance of the true breeding values ( Va ), while the variance 
of the GEBV is equal to Va × r2 , where r is the accuracy 
of the GEBV. Unless the accuracies of the GEBV are all 
perfect (i.e., 1), the scale-correction might not result in a 
correlation of 0 between the back-solved SNP effects for 
the intercept and the scale-corrected slope. This could 
explain the small deviations from 0 found in this study.

Intuitively, the correlation between SNP effects esti-
mated from the GEBV for the intercept and the slope 
are expected to be similar to the genetic correlation esti-
mated in the RNM. However, the correlation between 
SNP effects for the intercept and the slope was consider-
ably higher in both models, which may be explained by 
the fact that random regression models do not estimate 
GEBV for the intercept and the slope independently. 
Similar to a multi-trait model, they allow information 
from one trait (the intercept) to inform the GEBV of the 
other trait (the slope) through the covariance. This shar-
ing of information can result in GEBV for the two traits 
having a higher correlation than the estimated genetic 
correlation [37]. It is conceivable that the RNM ‘bor-
rowed’ a large amount of information from the intercept 
to estimate the GEBV for the slope, especially consider-
ing that there was more variation in the intercept than 
in the slope. This could explain the higher correlation of 
SNP effects that were back-solved from the GEBV com-
pared to the genetic correlation estimated in the RNM. 
Unlike a multi-trait model, in which the two traits can 
be analysed independently, the intercept and slope of the 
reaction norm must be estimated simultaneously. There-
fore, using the genetic regression which accounts for this 
correlation could be especially important when using 

random regression models to study the genomics of reac-
tion norms.

One genomic region on chromosome 7 was signifi-
cantly associated with the robustness of PWWT to differ-
ent growth environments. Several genes identified in this 
region are associated with body weight and composition-
related traits in livestock. The SLC24A1, DENND4A and 
RAB11A genes are associated with both average daily gain 
in Nellore cattle [38] and back-fat thickness in a compos-
ite cattle breed [39]. Similarly, MEGF11 is associated with 
feed efficiency in cattle and pigs [40, 41], and body length 
in cattle [40]. Intriguingly, some of these genes have been 
implicated in disease-related traits. For example, Wang 
et al. [42] showed that SLC24A1 is involved in respiratory 
and metabolic alkalosis in chickens under heat stress, 
and speculated that it may have a driving role in stabi-
lizing the acid–base balance in the blood. SLC24A1 has 
also been shown to be downregulated in cows with sub-
clinical mastitis [43], while MEGF11 is associated with 
somatic cell count in cattle [44]. In addition, the IGDCC4 
and IGDCC3 genes encode antibodies [25], which are a 
critical component of the immune system. All of these 
pathways could be important when animals are raised in 
challenging environments.

The identification of these genes improves our under-
standing of the biology of robustness. However, the value 
of this information for increasing the accuracy of pre-
diction of robustness is likely negligible, since the effect 
of these genes appears to be very small. Implementing 
selection for robustness based on GBLUP should effi-
ciently capture these polygenic effects without the need 
to understand the underlying biology [45].

While the results of this study demonstrate the impor-
tance of considering the impact of scale-type G × E 
interactions when analysing robustness, the impact of 
the scale-correction in affecting selection decisions and 
genetic progress in breeding programs is less clear. A 
genotype which ranks highly across environments for 
traits such as body weight is evidently more valuable than 
a genotype which only ranks highly in specific environ-
ments. Simulations that explore selection for robustness 
under various scenarios of G × E interactions are needed 
to further understand the impact of the scale-correction, 
as well as the value of selecting for robustness in breeding 
programs.

Conclusions
This study demonstrates the existence of important G × 
E interactions for PWWT of sheep in different growth 
environments and highlights the possibility of select-
ing sheep based on their robustness. Correction of slope 
breeding values using a genetic regression is suggested to 
account for scale-type G × E interactions on estimates 
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of robustness. The genetic architecture of robustness in 
sheep appears to be highly polygenic.
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