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Plant growth and development are positively regulated by the endophytic microbiome
via both direct and indirect perspectives. Endophytes use phytohormone production
to promote plant health along with other added benefits such as nutrient acquisition,
nitrogen fixation, and survival under abiotic and biotic stress conditions. The ability of
endophytes to penetrate the plant tissues, reside and interact with the host in multiple
ways makes them unique. The common assumption that these endophytes interact
with plants in a similar manner as the rhizospheric bacteria is a deterring factor to
go deeper into their study, and more focus was on symbiotic associations and plant–
pathogen reactions. The current focus has shifted on the complexity of relationships
between host plants and their endophytic counterparts. It would be gripping to inspect
how endophytes influence host gene expression and can be utilized to climb the
ladder of “Sustainable agriculture.” Advancements in various molecular techniques have
provided an impetus to elucidate the complexity of endophytic microbiome. The present
review is focused on canvassing different aspects concerned with the multidimensional
interaction of endophytes with plants along with their application.
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INTRODUCTION

Earth has been kneeling under the pressure of a rapidly increasing population which has exerted
a lot of stress on the stakeholders, namely, farmers, scientists, and other intermediaries alike.
What the world needs right now is extensive, yet a nature-friendly system of agriculture using
modern tools along with systems sans application of chemical fertilizers (Lareen et al., 2016). The
current system of agriculture is based on the application of chemical fertilizers and other inputs to
enhance productivity, thereby leading to destruction of soil nutrients, groundwater contamination,
eutrophication, and production of greenhouse gasses, thereby, impacting the overall environment
and playing havoc to the health of consumers both humans and animals alike. To overcome
this, microbes with plant growth promoting (PGP) traits are being explored to develop potential
bioinoculants for sustainable and eco-friendly agriculture.

The plants and microorganisms are well known to interact by various natural amalgams that
serve as signaling and nutritive substances for microbes to act upon and influence the nature
of the plant microbiome. Plants are naturally associated with microorganisms in rhizosphere,
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phyllosphere, and endosphere (Dong et al., 2019). The
rhizosphere is the tapered region of soil regulated by plant
root secretions and associated microbial community termed
as root microbiome (Turner et al., 2013; Suneja et al., 2016).
Phyllosphere is the microbial habitat on the exterior of above-
ground plant organs and the most abundant microbial ecosystem
on earth (Vorholt, 2012). Microorganisms living and growing
within their host plants are termed endophytes, constituting the
plant endosphere. Endophytic bacteria usually complete their
life cycle inside host plants without causing any harm to them
(Dudeja et al., 2012). However, these bacteria flourish copiously
in the rhizosphere due to sufficient nutrition supply by plant root
exudates (Canarini et al., 2019).

The abundance of microorganisms in the rhizosphere is
known since the beginning of the 20th Century but the
endosphere region has not been explored much (Sessitsch
et al., 2011). Earlier, the endosphere was known mainly for
the fungal group and as a result, our preliminary information
about bacterial endophytes remained circumscribed. Various
other factors restricted our understanding regarding the action of
bacterial endophytes, which includes culturing hitches and lack
of pioneering identification techniques. However, endophytic
bacteria have attracted a lot of attention since the last two decades
owing to recognition of their ability to promote plant growth
and their biocontrol potential (Vasileva et al., 2019). This review
discusses the PGP endophytic bacteria, their interaction with host
plants leading to variations in colonization patterns and diversity,
mechanisms of plant growth promotion under normal as well as
stress conditions along with omics-led revolution in the field of
exploring their bioactive metabolites.

PLANT GROWTH-PROMOTING
ENDOPHYTIC BACTERIA–HOST PLANT:
INTERACTION AND COLONIZATION

Endophytes (either bacteria or fungi) are defined as colonizers
of the internal plant tissues without causing any disease or
hostile symptoms and obtained from surface-sterilized tissue
of plant (Santoyo et al., 2016; Afzal et al., 2019). Bacterial
endophytes are known to be present in every plant part, namely,
seeds, rhizomes, roots, nodules, stems, and leaves (Alibrandi
et al., 2018). It has been anticipated that endophytic bacteria
referred to as the subclass of rhizospheric bacteria or seed-borne
bacterial communities, commonly termed as PGP rhizobacteria,
established the ability to enter into the host plant (Khare et al.,
2018). They possess all vital PGP traits as present in rhizobacteria,
but their effect on host plants is typically more significant
than rhizobacteria owing to the better adaptation during stress
conditions resulting in augmentation of plant growth (Hardoim
et al., 2008; Afzal et al., 2019).

The rhizosphere is the interaction point between roots and
soil microorganisms (Bulgarelli et al., 2012). Plants release
exudates such as organic acids, amino acids, and proteins from
their roots, which serve as pre-communication signals between
bacterial endophytes and host plants (Kawasaki et al., 2016).
Colonization of bacteria into roots occurs through root hairs and,

to some extent, through the stem and leaves (Maela, 2019). Some
studies have reported that endophytes also colonize through
flowers and fruits of the anthosphere and carposphere (Frank
et al., 2017). A few regular hotspots have been observed for
bacterial colonization such as emergence sites of lateral roots,
outer layers of cells, and root cortex (dos Santos et al., 2018).
Endophytic bacterial colonization is a multi-stage process that
involves (a) chemotactic movement toward roots, (b) root surface
attachment, (c) entry inside the root, and (d) movement and
localization (Gupta et al., 2012; Kandel et al., 2017a). Table 1 cites
various genes involved in the colonization of endophytes.

Bacteria, in the vicinity of the roots, receive chemical signals
from root exudates and move toward them. Saleh et al. (2020)
reported that citric acid, a root exudate of Brachypodium
distachyon, acting as a strong chemoattractant for PGP bacterial
strains. The hypothesis of Streptomyces species being attracted
by the root exudates was tested and confirmed by Worsley
et al. (2021) on the root exudates of Arabidopsis thaliana.
The study demonstrated that phytohormone, salicylate, plays a
specific role in this process. The genes for proteins encoding
motility, chemotaxis, and adhesion are upregulated in response
to root exudates, indicating a two-way interaction between the
endophyte and its host plant (Jha et al., 2018). Chemotaxis is
a significant event in the rhizosphere and the interior parts of
roots, for both movement and colonization (Kawasaki et al.,
2016). Mutant strains of Azorhizobium caulinodans lacking
chemotaxis gene cluster (che) were reported to undergo defective
colonization owing to its significant role in biofilm formation
and exopolysaccharides (EPSs) production (Liu X. et al., 2018;
Liu W. et al., 2018, Table 1). Bacterial endophytes primarily bind
to the root surface (rhizoplane) and detect the possible entry
sites for accessing internal plant tissues (Kandel et al., 2017a).
The entry points used by endophytes to reach the host plant are
the gaps present in the roots where root hairs or lateral roots
arise, as well as the holes in the shoots, wounds, stomata, and
hydathodes (Hardoim et al., 2015). Figure 1 illustrates distinct
steps of colonization.

Many researchers have stated that extensive bacterial
endophyte colonization occurs at the secondary root emergence
site. It is because of rapid endophytic penetration at epidermal
breakage-point, colonizing at the cortex and subsequent
spreading through the endodermis to the vascular tissue
(Mahaffee, 1994; Lodewyckx et al., 2002). Endophytes release
the cell wall–degrading enzymes such as pectinases, xylanases,
cellulases, and endoglucanases before colonizing the roots
(Naveed et al., 2013; Maela, 2019). This phenomenon facilitates
the entry of bacteria within plant tissues (Kandel et al., 2017a).
Various gene sequences have been deduced by comparative
genomics, engaged in biofilm formation, adhesion, and motility,
leading to plant colonization and maintaining healthy plant–
microbe interaction. Bacterial cells synthesize EPSs during the
early colonization phase which help the cells to adhere to the root
surface. The endophytic strain Gluconacetobacter diazotrophicus
produces EPS that serves as a critical factor for adhesion and
colonization in rice roots (Meneses et al., 2011). The study
showed that EPS production by G. diazotrophicus shielded the
bacterial cells from oxidative damage, and also decreased the

Frontiers in Microbiology | www.frontiersin.org 2 May 2022 | Volume 13 | Article 861235

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-861235 May 6, 2022 Time: 15:18 # 3

Rani et al. Endophytism: Plant–Prokaryotic Microbe Interaction

TABLE 1 | Genes involved in colonization of endophytes.

Category Genes Function References

Chemotaxis and
motility

fliC3 Encodes flagellin Buschart et al., 2012

MglB Galactose chemotaxis Neumann et al., 2012

pilX Type IV fimbrial biogenesis protein PilX Shidore et al., 2012

FliI Flagellar apparatus Bai et al., 2014; Minamino et al., 2016

Hsero3720 Methyl accepting chemotaxis transducer transmembrane
protein

Balsanelli et al., 2016

Aer Aerotaxis Samanta et al., 2016

RbsB Ribose chemotaxis Reimer et al., 2017

CheZ Response regulator Liu X. et al., 2018; Liu W. et al., 2018

Attachment lapF gene Determines biofilm architecture Martínez-Gil et al., 2010

gumD EPS biosynthesis Meneses et al., 2011

wssD gene Cellulose production mutation Monteiro et al., 2012

waaL O-antigen ligase (LPS biosynthesis) Balsanelli et al., 2013

eps and tasA Biofilm formation Beauregard et al., 2013

PoaA, PoaB, and PoaC Lipopeptide Zachow et al., 2015

Hsero1294 and fhaB Filamentous hemagglutinin proteins Pankievicz et al., 2016

blr2358 EPS biosynthesis Xu et al., 2021

Colonization IacC IAA degradation necessary for efficient rhizosphere
colonization

Zúñiga et al., 2013

N-acyl homoserine lactone
Synthase

Quorum Sensing necessary for cell-to-cell communication
in efficient colonization

EglS Endo-β-1,4-glucanase (Plant cell wall modification) Fan et al., 2016

EPS, exopolysaccharide; LPS, lipopolysaccharide; IAA, indole-3-acetic acid.

FIGURE 1 | Interaction and colonization of plant growth-promoting endophytic bacteria in the host plant (EPS, exopolysaccharides).

concentrations of free radicals. Colonization was found to be
reduced in the case of EPS knockout strain of G. diazotrophicus,
further rescued by the application of wild-type strain (Meneses
et al., 2017). Fernández-Llamosas et al. (2021) used homologous
recombination for insertional disruption of epsF genes in

the genome of Azoarcus sp. CIB depicting their role in the
efficient colonization of rice roots. Xu et al. (2021) identified
EPS biosynthesis gene, blr2358, in Bradyrhizobium diazoefficiens
USDA110, the mutant of which resulted in a reduced capacity
to induce nodules. Other than playing a significant role in
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plant–endophyte interactions, they exhibit antioxidant, anti-
inflammatory, anti-tumor, and prebiotic activities (Liu W.
et al., 2018). Lipopolysaccharide machinery is involved in the
attachment and proliferation of endophyte colonization that
includes the development of flagella and pili, quorum sensing,
and movement of bacteria within the host plants (Rocío Suaìrez-
Moreno et al., 2010; Scharf et al., 2016). The role of cell wall
degrading enzymes in entering and spreading within the host
tissue is also very well established. Fan et al. (2016) highlighted
the importance of endo-β-1, 4-glucanase in penetration of
Bacillus amyloliquefaciens into the host tissue. The disruption
mutant of eglS gene encoding this enzyme halted colonization;
however, overexpression of the same resulted in a substantial
increase in the endophyte population. Mechanism of bacterial
endophyte attachment with plant surface, entry, survival, is
mediated by the cross-talk between host and microorganism, and
a lot is to be studied in this regard.

ENDOPHYTISM VS. PATHOGENICITY:
THIN LINE BETWEEN TWO LIFESTYLES

The prevalence of endophytes is decided by chance and genetic
indicators of bacteria that promote intermodulation between
bacteria and plants, contributing to an active colonization
(Dong et al., 2019). Endophytes maintain a smaller cell
density to prevent a systemic reaction in comparison to
pathogens (Zinniel et al., 2002). They also produce lesser
quantities of cell wall degrading enzymes as compared to
the phytopathogens that secrete deleteriously large amounts
of these enzymes, thereby, preventing the trigger of plant
defense systems (Elbeltagy et al., 2000; Afzal et al., 2019).
Anabolism-related genes are found to be more diverse and in
abundance among the endophytes unlike the phytopathogens
having catabolism genes prominently (Hardoim et al., 2015).
Endophytes undergo several mechanisms to protect themselves
from the plant defense system. Microbe-/pathogen-associated
molecular patterns (MAMPs/PAMPs) are the characteristics of
microbes recognized by pattern recognition receptors (PRRs)
present on the surface of plant cells (Newman et al., 2013).
Endophytic bacteria produce MAMPs which either remain
unrecognized by plant’s PRRs or induce only a weak reaction
as a response in comparison to the pathogenic interactions
(Vandenkoornhuyse et al., 2015). They produce enzymes of
antioxidant machinery such as superoxide dismutase (SOD),
catalase (CAT), peroxidase (POD), glutathione S-transferases
(GSTs), and alkyl-hydroperoxide reductase C (AhpC), to mitigate
the oxidative burst (Zeidler et al., 2004). Bacterial virulence
factors are delivered in the extracellular environment or directly
into the host by the secretion system (Depluverez et al., 2016).
Type-III and Type-VI protein secretion systems, necessary
to deliver effector proteins into the plant by pathogens, are
altogether absent or present scarcely in endophytic bacteria (Liu
W. et al., 2018). Endophytes have been found to undergo a
reduction in genome size, which is associated with differences
in niche specialization (Lòpez-Fernàndez et al., 2015; Zin et al.,
2021). Some bacterial endophytes also downregulate flagella

biosynthesis and upregulate functions related to flagellar motor
rotation to mask up their flagellin PAMPs and move fast within
plants during colonization.

Endophytes have been reported to undergo a change in their
lifestyles from endophytes to pathogenic as a result of any
imbalance in the host–microbe interaction (Mengistu, 2020).
Strategies employed by the plants to distinguish endophytes from
pathogens are still a matter of active research. Plett and Martin
(2018) have indicated that LysM receptor-like kinases (LysM-
RLKs) can differentiate pathogenic signals from those secreted
by the mutualistic microbes. It has been suggested that different
groups of genes are regulated during colonization in the plants to
facilitate the same. The majority of pathways targeted by miRNAs
of plant defense system are turned off. These microRNAs
otherwise remain stable and can be used as a pathogenicity
signal by the plants (Wang et al., 2017). Plants undergo
nutrient monitoring to identify parasites and manipulate the
ratio of MAMP/DAMP signals to identify the mutualistic signals.
However, there are many such receptor/perceptor systems
present throughout the plant kingdom that are yet to be
studied (Plett and Martin, 2018). Many studies have pointed
toward downregulation of plant defense during colonization by
mutualistic partners (Khare et al., 2018). In the recruitment of
an endophytic companion, the plant host often plays a pivotal
role, where the release of specific root exudates and a selective
host plant defense response are considered as crucial factors in
choosing individual endophytes (Kumar A. et al., 2020).

APPREHENDING THE ENDOPHYTES

Enormous benefits provided by endophytes have led to robust
research in this field world over. Harnessing their potential to
the fullest and large scale application requires a more clear
and better understanding of endophytes. It is no less than a
challenge as the methods available for detection, isolation, and
identification are not sufficient to provide the entire picture
of the host–parasite interaction. Cultivation-based studies omit
several microbes because it is not possible to reproduce and
maintain the optimal conditions required for the growth of most
of the microbes (Santoyo et al., 2016). However, the study of
endophytes has come a long way from the typical isolation and
cultivation methods to more sophisticated ones such as advanced
microscopic techniques and “omics”-based studies (Table 2). The
amalgamation of two or more techniques helps to significantly
increase the discriminatory power of the analysis and a better
overview of diversity. Therefore, a combination of techniques
is employed to complement each other and to enrich our
understanding of the detection and patterns of colonization as
shown in Figure 2.

Microscopy is the sole direct method to observe the
endophytes, which helps in understanding the mode of infection,
tissue-specific concentration, and the extent of colonization along
with the plant response (Johnston et al., 2006). Both light and
electron microscopy can reveal the exact location of endophytes
within the plant tissue (Kuldau and Yates, 2000). Electron
microscopy provides us with the ultrastructural analysis of the
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TABLE 2 | Detection of endophytism.

Technique
employed

Endophytes detected Plant References

CLSM Azotobacter chroococcum 67B, Azotobacter chroococcum 76A Solanum lycopersicon Viscardi et al., 2016

Ralstonia sp. M1, Ralstonia sp. MS1, Rhizobium sp. W3, Rhizobium sp.
SS2, Rhizobium sp. R2, Acinetobacter sp. M5, Pantoea sp. MS3,
Brevundimonas sp. R3, Achromobacter sp. RS1, RS3, RS4, RS5, RS8

Triticum aestivum Patel and Archana, 2017

Bacillus cereus strain XB177 Solanum melongena Achari and Ramesh, 2019

Bacillus subtilis strain 1-L-29 Camellia oleifera,
Arabidopsis thaliana

Xu et al., 2020

Streptomyces sp. strain SA51 Solanum lycopersicum Vurukonda et al., 2021

Bacillus siamensis Cicer arietinum L. Gorai et al., 2021

GFP-CLSM-SEM Musa Methylobacteriumsalsuginis Senthilkumar et al., 2021

FISH Arthrobacter agilis UMCV2
Bacillus methylotrophicus M4-96

Fragaria ananassa Hernández-Soberano et al.,
2020

FISH-CLSM Burkholderia graminis G2Bd5 Lolium multiflorum Castanheira et al., 2016

Gordonia KMP456-M40, Enterococcus KMP789-M107, Micrococcus
KMP789-MA53, Staphylococcus KMP123-MS2, Staphylococcus
KMP123-MS3, Acinetobacter KMP123-MA14, Bacillus KMP123-MS1

Mangroves Soldan et al., 2019

Firmicutes, Gammaproteobacteria Citrus limon Faddetta et al., 2021

DOPE-FISH-CLSM Streptomyces mutabilis Triticum aestivum Toumatia et al., 2016

FISH-GFP-CLSM Pseudomonas G1Dc10, Paenibacillus G3Ac9, Sphingomonas
azotifigens DSMZ 18530

Lolium multiflorum Castanheira et al., 2017

DOPE-FISH-
CLSM-SEM

Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria,
Firmicutes, and Actinobacteria

Cucumis melo reticulates
group cv. ‘Dulce’

Glassner et al., 2018

Fluorescence
microscopy

Diazotrophic endophytes Oryza sativa Kandel et al., 2015

ROS staining
combined with
Light microscopy

Burkholderia gladioli Panicum virgatum White et al., 2014

Enterobacter cloacae Agave tequilana Lima et al., 2018

B. amyloliquefaciens Gossypium Irizarry and White, 2018

LMT2b (Microbacterium sp.), LMY1a (Pseudomonas baetica), LTE3
(Pantoea hericii), LTE8 (Paenibacillus sp.), LYE4a (Pseudomonas
oryzihabitans), LYY2b (Pantoea vagans), LLE3a (P. agglomerans)

Oryza sativa L., Cynodon
dactylon L.

Verma et al., 2018

Pseudomonas sp., Bacillus sp., Paenibacillus sp.,
Microbacterium sp., Exiguobacterium sp.

Triticum aestivum Patel et al., 2021

SEM Azospirillum spp., Azoarcus spp., Azorhizobium spp. Triticum aestivum L. Dal Cortivo et al., 2017

TEM Azotobacter chroococcum Arnebia hispidissima Singh and Sharma, 2016

Bacillus subtilis and Serratia marcescens Centella asiatica War Nongkhlaw and Joshi,
2017

Bacillus methylotrophicus Potentilla fulgens

Bacillus sp. Houttuynia cordata

SEM
TEM

Enterobacter hormaeche RCE1, Enterobacter asberiae RCE2,
Enterobacter ludwigii RCE5, Klebsiella pneumoniae RCE7

Citrus reticulate Thokchom et al., 2017

GFP-SEM-TEM-
Real Time
RT-PCR

Bacillus amyloliquefaciens Zea mays, Arabidopsis
thaliana and Lemna minor

Fan et al., 2011

PCR-DGGE Burkholderia sp. J62
Pseudomonas thivervalensis Y-1-3-9

Rape plants Chen et al., 2013

FRET A. chroococcum Avi2 strain Oryza sativa Banik et al., 2016

Serial dilution
plating-CLSM-Bio-
PCR

Pseudomonas putida BP25 (PpBP25) Arabidopsis thaliana Sheoran et al., 2016

(Continued)
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TABLE 2 | (Continued)

Technique
employed

Endophytes detected Plant References

Light microscopy-
TEM-SEM-Qpcr

Shinella sp. UYSO24
and Enterobacter sp. UYSO10

Saccharum officinarum Taulé et al., 2016

Real Time PCR Pseudomonas putida Piper nigrum L. Agisha et al., 2017

GFP, green fluorescent protein; CLSM, confocal laser scanning microscopy; SEM, scanning electron microscopy; FISH, fluorescence in situ hybridization; DOPE-
FISH, double labeling of oligonucleotide probes for FISH; ROS, reactive oxygen species; TEM, transmission electron microscopy; Real time RT-PCR, real time reverse
transcriptase polymerase chain reaction; PCR-DGGE, polymerase chain reaction denaturing gradient gel electrophoresis; FRET, fluorescence resonance energy transfer.

FIGURE 2 | Techniques used for the detection of endophytism.

endophytes (Pimentel Esposito-Polesi et al., 2017). Transmission
electron microscopy (TEM) and scanning electron microscopy
(SEM) yield valuable information about the inner structure
and surface of the sample, respectively (Ramanujam et al.,
2016). Electron microscopy has provided a lot of assistance
in the detection of endophytes, the extent of colonization,
interaction with the host, and establishment within the plant
environment (War Nongkhlaw and Joshi, 2017). Fluorescence
in situ hybridization is a powerful technique to analyze the
microorganisms and screen various microbial communities
employing group-specific probes. It involves targeting 16S rRNA
gene’s conserved region or species-specific probe to observe the
individual cells of endophytic bacteria (Castanheira et al., 2017).
Green fluorescent protein (GFP) tagging and β-glucuronidase
(GUS) staining rely on the broad host plasmids containing
constitutively expressed GUS or GFP genes for tracking bacteria
within the endosphere (Robertson-Albertyn et al., 2017). GFP-
tagged endophytes fluoresce in the presence of UV or blue
light and oxygen thus unfolding the information concerned
with the success of colonization as well as the sites of entry
(Reinhold-Hurek and Hurek, 2011).

Reactive oxygen species (ROS) staining is a more convenient
and cost-effective method than the visualization techniques,
for instance, TEM and Fluorescent microscopy. Similar to
ROS, hydrogen peroxide (H2O2) and superoxide (O2

−) radicals

associated with the microbial invasion of eukaryotic cells
are stained by 3,3′-diaminobenzidine tetrachloride (DAB) and
nitroblue tetrazolium (NBT), respectively. DAB results in brown
coloration, indicating the presence of endophytes in tissues
(White et al., 2014). NBT stains superoxide radicals, which
reduce NBT and it results in dark blue and water-insoluble
formazan (Shinogi et al., 2003). It is used to detect endophytes
in different plant tissues unlike DAB, which is not able to detect
endophytes in shoot tissues because of the inability of DAB to
penetrate the same.

Genomics-based studies such as next-generation sequencing
and continued development in bioinformatics have allowed
a significant improvement in our understanding of plant–
endophyte interactions. Metagenomics and transcriptomics in
particular are proving to be extremely useful for analyzing the
functional characteristics of endophyte species (Kaul et al., 2016).
Molecular methods are being readily employed to cultivate
bacteria for their identification and enable to distinguish the
bacterial populations in plant tissues (Afzal et al., 2019). These
have allowed a more rigorous analysis of endophytic bacteria’s
abundance and community composition (Santoyo et al., 2016).
Different molecular methods used to characterize the endophytic
bacteria include 16S rDNA sequencing, randomly amplified
polymorphic DNA (RAPD), BOX-A1R-based repetitive
extragenic palindromic PCR, amplified ribosomal DNA
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restriction analysis, enterobacterial repetitive intergeneric
consensus, denaturing gradient gel electrophoresis (PCR-DGGE)
and repetitive extra-genic palindromic sequence.

Ten bacterial endophytes were isolated and identified from
three different cereals, Triticum aestivum, Oryza sativa, and
Zea mays (Liu et al., 2017a). These isolates were classified by
879F-RAPD and 16S rDNA sequencing followed by clustering
into seven groups signifying a clonal origin and assigned
into four genera, Paenibacillus, Enterobacter, Pantoea, and
Klebsiella. Recently, Zheng et al. (2020) identified root nodule
endophytes from Sesbania cannabina and Glycine soja using
PacBio’s circular consensus sequencing of full-length 16S rDNA
gene for more accurate taxonomic information. These nodule
isolates were assigned to 18 genera and 55 species, Ensifer
being the predominant genera. PacBio technology helps in
less ambiguous classification and provides finer taxonomic
details. This technique has also recently been used to explore
microbial communities in different samples (Singer et al., 2016;
Motooka et al., 2017; Pootakham et al., 2017). Lastochkina
et al. (2020) performed RAPD-PCR analysis to confirm the
identity of Bacillus subtilis within the internal tissues of T.
aestivum L. The endophytic diversity and detailed analysis of
endophytic bacterial composition from the commercial crop
(Paullinia cupana) of Brazil using PCR-DGGE were studied. The
study disclosed the presence of phyla Firmicutes, Proteobacteria,
Actinobacteria, Bacteroidetes, and Acidobacteria, Firmicutes
being the predominant phylum (Bogas et al., 2015). The
endophytic community of Distichlis spicata, Plucheaab sinthiodes,
Gaultheria mucronate, and Hieracium pilosella growing in
extreme environments of Chile (Atacama desert and Patagonia)
was studied. The composition and diversity were analyzed using
quantitative PCR and high-throughput gene sequencing of 16S
rDNA. The endophytes from both the regions were categorized
into phylum Proteobacteria, Firmicutes, Actinobacteria, and
Bacteroidetes (Zhang et al., 2019). Upon extensive data mining
of endophytic diversity from various plants, it has been observed
that the members of phylum Proteobacteria, Actinobacteria, and
Firmicutes were the most dominant (Rana et al., 2020; Bhutani
et al., 2021).

PLANT GROWTH PROMOTING
ENDOPHYTIC BACTERIA: THE BASE OF
“SUSTAINABLE AGROECOSYSTEM”

Plant growth promoting endophytic bacteria (PGPEB) are well
known to enhance the growth of plants directly and indirectly.
They benefit directly to host by the concerted activity of biological
nitrogen fixation, phytohormones production, phosphate
solubilization, and modulation of 1-aminocyclopropane-1-
carboxylic acid (ACC) deaminase expression for better growth
under normal and stress conditions. Endophytes being in direct
association with plants provide nitrogen in the functional
form to their host either by fixing atmospheric nitrogen or
by producing ammonia (Marques et al., 2010; Brígido et al.,
2019). The frequent usage of nitrogen in the form of chemical
fertilizers predominantly increases the cost of crop production.

Hence, ammonia production by bacterial endophytes is an
essential attribute for the selection of desirable bioinoculants
(Li et al., 2017).

Solubilization and mineralization of phosphate are
accomplished by bacterial endophytes, which assist in lowering
the pH by releasing various organic acids that break Ca-
bonded phosphorus in the bound form of soil (Sharma et al.,
2013). Members of several genera have been reported as
efficient phosphate solubilizers, such as Rhizobium, Bacillus,
Serratia, Arthrobacter, Burkholderia, Pseudomonas, Erwinia, and
Microbacterium (Oteino et al., 2015; Li et al., 2017; Srinivasan
et al., 2018). The production of phytohormones by PGPEB is
another mechanism that significantly boosts the growth of plants
and alters the plant morphology (de Souza et al., 2015). IAA is a
commonly produced auxin by endophytic bacteria that controls
various growth processes in plants, including cell division,
elongation, differentiation, gravity, and light responses (Bhutani
et al., 2018a). Thus, it aids the host plant in nutrient absorption
(Dhungana and Itoh, 2019). There have been numerous studies
documenting IAA-producing endophytic bacteria in addition
to endogenous IAA in plants (Khan and Doty, 2009; Mohite,
2013; Etesami et al., 2015; Bhutani et al., 2018b; Maheshwari
et al., 2021). The application of IAA-producing bacteria to plants
has demonstrated substantial upsurge in growth and yield. In
addition to this, microbial IAA has been reported as a signaling
molecule in several interactions between plants and microbes
(Duca et al., 2014).

Gaseous phytohormone, ethylene and its precursor 1-
aminocyclopropane 1-carboxylic acid (ACC), play a significant
role in response to a wide range of stresses (Glick, 2014).
Symbiotic bacteria ease the negative impact of ethylene on
plants by expressing the ACC deaminase (ACCD). A variety
of endophytic bacteria such as Azospirillum, Ralstonia,
Pseudomonas, Rhizobium, Agrobacterium, Enterobacter,
Achromobacter, and Bacillus mojavensis possess ACC deaminase
gene and are characterized for ACCD activity (Blaha et al.,
2006; Glick et al., 2007; Maheshwari et al., 2020). Transgenic
varieties of plants have been developed which, by expressing
the bacterial ACCD gene, have improved stress tolerance
mechanisms (Stearns and Glick, 2003; Singh et al., 2015). But the
addition of ACCD-producing endophytic bacteria could be more
cost-effective, readily available, and environmentally sustainable,
with higher acceptability compared to transgenics (Glick, 2012;
Barnawal et al., 2016).

Plant growth-promoting endophytic bacteria–based
biofertilizers can be envisioned as the future nutrient delivery
system for plants. This approach, if carried out effectively,
can bring about “real” green revolution, which will be more
sustainable and reliable (Lugtenberg and Kamilova, 2009;
Liu et al., 2017b). To develop these endophytes as microbial
inoculants in agriculture, their functional characterization based
on PGP traits and in vivo evaluation to check their efficacy should
be the first prerequisite (de Souza et al., 2015; Alori and Babalola,
2018). Ferchichi et al. (2019) evaluated in vitro and in vivo
efficacy of bacterial endophytes from three species of Lupinus.
Two endophytes Paenibacillus glycanilyticus and Pseudomonas
brenneri possessed desired functional characters and promoted
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plant growth in vivo and in vitro that can be developed as
eco-friendly biofertilizers to boost up Lupinus productivity.
Recently, the multifunctional potential of Paenibacillus polymyxa
isolated from bulbs of Lilium lancifolium was assessed (Khan M.
S. et al., 2020). The bacterial isolate possessed various PGP traits,
including the production of IAA, siderophores, ACCD, fixation
of nitrogen, and solubilization of phosphate. It also promoted
the plant growth of different Lilium varieties under greenhouse
conditions. The study demonstrated that the potential of
P. polymyxa can be evaluated as an effective bioinoculant.
Before any ex-planta application for the agricultural crop,
some pre-requisites need to be fulfilled for selection as an
inoculant. These factors include colonization ability in plant
roots, competition with other microflora and their survival in
soil, upsurge exudate production which acts as a bridge between
plant and bacteria, and improvement of soil health (Beauregard
et al., 2013; Carvalhais et al., 2013; Ríos-Ruiz et al., 2019).
Seven bacterial endophytes were isolated from different legume
crops, namely, Glycine max, Vigna unguiculata, Vigna mungo,
Vigna radiata, and Arachis hypogaea and categorized on the
basis of PGP traits. These isolates were used to bacterize the
seeds of A. hypogaea for plant growth stimulation experiments
using gnotobiotic systems and in pots. The results depicted a
positive influence on A. hypogaea growth. Additional treatment
given along with chemical fertilizer at 50% recommended dose,
positively affected A. hypogaea growth, but the negative effect was
seen over the bacterial population when the dose of fertilizers
exceeded more than 50%. Their results suggested that root
nodules harbor the endophytic population, which augments the
growth of a plant, and the addition of fertilizers adversely affects
their population and activity (Dhole et al., 2016). The 28 bacterial
endophytes were isolated from dry and germinating seeds of
Cicer arietinum and characterized for PGP attributes. Molecular
identification analysis showed that these endophytes belong to
Pseudomonas sp., Enterobacter sp., Bacillus sp., Mixta sp., and
Pantoea sp. These were applied to C. arietinum roots and led to
an increase in plant length, biomass, and chlorophyll content
along with biocontrol activity against Fusarium oxysporum
(Mukherjee et al., 2020). Maheshwari et al. (2019a) isolated and
investigated endophytic bacteria from C. arietinum and Pisum
sativum for PGP attributes. Most efficient isolates were identified
as Pantoea agglomerans, Bacillus cereus, Bacillus sonorensis,
Bacillus subtilis, Pseudomonas chlororaphis, Ornithibacillus sp.,
and Ochrobactrum sp. These studies convey direct evidence for
the occurrence of valuable endophytes, which can be further
harnessed as bioinoculants for improving plant health.

INDUCING CLIMATE CHANGE
RESILIENCE IN FLORA

Plant community throughout the world is suffering in terms
of growth, development, and yield as a result of climate
change–induced environmental stress manifested in the form
of drought, flood, temperature extremes, salinity, heavy metal
toxicity combined with biotic stresses caused due to herbivores,
pathogens, and so on. Enough studies have reported the

significant role played by endophytes in mitigating abiotic and
biotic stress (Rani et al., 2021). Different mechanisms have been
deciphered revealing the complex regulation involved in the
stress tolerance conferred by the endophytes to the host plants.
Drought, salinity, and temperature extremes have been reported
as the most devastating abiotic stresses for crops as far as the yield
is concerned. Plants respond to drought and salinity via stomatal
closure, reduced turgidity, osmotic stress, ultimately reducing
growth and yield (Van Zelm et al., 2020). Increased evaporation
induced by high temperature leads to water loss resulting in the
formation of protein aggregates as a result of protein folding
inhibition, whereas low temperature leads to the formation of ice
crystals causing permanent damage to cells (Lamers et al., 2020).
Extreme temperature alters membrane fluidity (Nicolson, 2014).

Endophytes alleviate these stresses by upregulating
aquaporins, improving the level of abscisic acid, ACCD activity,
enhancing enzymatic and non-enzymatic ROS scavenging
machinery and osmolytes, higher expression of ion channels
KAT1 and KAT2 resulting in decreased Na+/K+, adjusting
gene expression, and reducing malondialdehyde (MDA) content
(Cohen et al., 2015; Gond et al., 2015; Barnawal et al., 2016;
Abdelaziz et al., 2017; Xu et al., 2017; Zhang et al., 2017; Sapre
et al., 2018; Wang et al., 2018). Likewise, toxic metal ions
evoke oxidative stress by generating ROS which promote DNA
damage/impairment of DNA repair mechanisms, membrane
functional integrity, nutrient homeostasis, and perturb protein
function and activity (Tamás et al., 2014). Endophytes induce
heavy metal tolerance to their hosts by reducing the mobility
of heavy metals by chelation or intracellular sequestration
and limiting the translocation of heavy metal ions from roots
to shoots (Leonhardt et al., 2014). Table 3 describes various
endophytes conferring abiotic stress protection to their hosts by
different mechanisms.

PLANT GROWTH PROMOTING
ENDOPHYTIC BACTERIA-ASSISTED
BIOCONTROL OF PHYTOPATHOGENS

Several microbes (viruses, bacteria, and fungi), nematodes, and
insects are responsible for infecting plants leading to biotic stress.
Physical barriers such as cuticle, wax, trichomes, etc., form first
line of defense for the plants (Iqbal et al., 2021). Promoting
the availability and absorption of nutrients, augmentation of
stress tolerance and disease resistance of disease are the key
means of plant disease control by endophytic bacteria (Hamilton
et al., 2012). The most commonly reported bacterial genera
with biocontrol activity are Bacillus, Actinobacteria, Enterobacter,
Pseudomonas, Paenibacillus, and Serratia (Ek-Ramos et al., 2019).
These mechanisms can be broadly grouped into direct and
indirect biocontrol activities (Figure 3).

Direct biocontrol involves the production of growth-
inhibiting compounds such as siderophores, hydrogen cyanide,
cell wall–degrading enzymes, and quorum-sensing inhibitors.
Siderophore complex provides Fe to plants during the scarcity
and assists them in iron acquisition (Dimkpa, 2016). A lot of
work has been done to screen siderophore-producing endophytic
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TABLE 3 | Endophytes inducing abiotic stress tolerance in host plants.

Stress tolerance Host Endophytes Mechanism of action References

Drought Arabidopsis thaliana Azospirillum brasilense Enhancement of ABA Cohen et al., 2015

Populus deltoids Rhodotorula graminis,
Burkholderia vietnamiensis,
and Rhizobium tropici

Host plant damage reduced by ROS
scavenging machinery

Khan A. et al., 2016

Oryza sativa Piriformospora indica Regulation of miR159/miR396 that target MYB
and GRF transcription factors involved in
regulation of growth and hyposensitivity
response

Fard et al., 2017

Zea mays L. Piriformospora indica Enhanced antioxidant enzyme activity, proline
accumulation, and expression of
drought-related genes and lowered membrane
damage

Xu et al., 2017

Elymus dahuricus and Triticum
aestivum

Alternaria alternata LQ1230 IAA secretion contributes to the growth and
upregulation of antioxidant enzymes activities
and osmoregulatory substances

Qiang et al., 2019

Hordeum vulgare Piriformospora indica Resources in host redistributed to reduce
negative impact of stress and presence of
aquaporin water channels sustained

Ghaffari et al., 2019

Salinity Lycopersicon esculentum Pseudomonas fluorescens
and Pseudomonas migulae

ACC deaminase activity Ali et al., 2014

Chlorophytum borivilianum Brachybacterium
paraconglomeratum strain
SMR20

Potential deamination of ACC in the host roots
leading to decreased production of stress
ethylene, delayed chlorosis and senescence
that resulted in improved yield of plants

Barnawal et al.,
2016

Triticum aestivum Dietzia natronolimnaea Enhanced expression of TaST, a salt
stress-induced gene

Bharti et al., 2016

Oryza sativa Bacillus pumilus Effective salt tolerance, survivability, root
colonization and multifarious PGP trait,
significant reduction in antioxidant enzyme
activities and MDA content

Khan Z. et al., 2016

Zea mays Pseudomonas fluorescens
002

Release of IAA and protection of plants against
the inhibitory effects of NaCl

Zerrouk et al., 2016

Triticum aestivum Arthrobacter
protophormiae SA3, Dietzia
natronolimnaea STR1, and
Bacillus subtilis LDR2

IAA content of wheat increased under salt and
drought stress conditions. SA3 and LDR2
inoculation counteracted increase of ABA and
ACC

Barnawal et al.,
2017

Triticum aestivum Chryseobacterium gleum
sp. SUK

Improved root-shoot length, fresh-dry weight,
chlorophyll, proteins, amino acids, phenolics,
flavonoids content and decreased level of
proline, Na+ uptake, increase in K+ uptake

Bhise et al., 2017

Cicer arietinum Mesorhizobium ciceri and
Bacillus subtilis

Decreased H2O2 concentration and improved
proline contents.

Egamberdieva
et al., 2017

Avena sativa Klebsiella sp. Biochemical parameters such as proline
content, electrolyte leakage, MDA content and
antioxidant enzyme activities analyzed and
found to be notably lesser in IG3 inoculated
plants

Sapre et al., 2018

Oryza sativa Burkholderia strain P50 ACC deaminase activity and united PGP traits
of P50 successfully alleviate salt stress in rice
seedlings by improving morphological and
biochemical parameters and decreasing ROS
scavenging antioxidant enzymes, osmolytes
and stress ethylene

Sarkar et al., 2018

Capsicum annuum L. Bacillus sp. Induced high levels of proline production and
antioxidant enzyme activities

Wang et al., 2018

(Continued)
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TABLE 3 | (Continued)

Stress tolerance Host Endophytes Mechanism of action References

Oryza sativa Curtobacterium albidum
strain SRV4

SRV4 expressed positive attribute for nitrogen
fixation, EPS, HCN, IAA, and ACCD activity
leading to improvement in plant growth
parameters, photosynthetic efficiency,
membrane stabilization index and proline
content, antioxidative enzymatic activities and
K+ uptake

Vimal et al., 2019

Heat Lycopersicon esculentum
Mill

Paraburkholderia
phytofirmans

Accumulation of sugars, total amino acids,
proline, and malate, promotion of gas exchange

Issa et al., 2018

Glycine max Bacillus cereus SA1 Induction in the endogenous levels of several
phytohormones (ABA and SA), essential amino
acids

Khan M. A. et al.,
2020

Cold Arabidopsis thaliana Burkholderia phytofirmans
strain PsJN

Significant changes in PS-II activity, differential
accumulation of pigments

Su et al., 2015

Solanum lycopersicum Mill. Pseudomonas
vancouverensis and
P. frederiksbergensis

Improved reactive oxygen species levels and
reduced membrane damage and high
expression of cold acclimation genes LeCBF1
and LeCBF3

Subramanian et al.,
2015

Lycopersicon esculentum Bacillus cereus; Bacillus
subtilis; Serratia sp.

Promoting soluble sugar, proline, and osmotin
accumulation, enhancing antioxidant defense
system

Wang et al., 2016

Heavy metal Miscanthus sinensis Pseudomonas koreensis
AGB-1

High tolerance to Zn, Cd, As, and Pb by
extracellular sequestration, increased CAT and
SOD activities

Babu et al., 2015

Solanum nigrum Pseudomonas aeruginosa Enhanced Cd stress tolerance Shi et al., 2016

Panicum virgatum L. Pseudomonas putida Bj05,
Pseudomonas fluorescens
Ps14, Enterobacter spp.
Le14, So02, and Bo03

Plants protected from inhibitory effects of Cd,
plant growth improved and Cd concentration
decreased

Afzal S. et al., 2017

Zea mays L. Gaeumannomyces
cylindrosporus

Height, basal diameter, root length, and
biomass of maize seedlings increased
significantly under Pb stress

Ban et al., 2017

Glycine max L. Sphingomonas sp. Reduced Cr translocation to roots, shoot, and
leaves and oxidative stress was significantly
reduced regulating reduced GSH and
enzymatic antioxidant CAT

Bilal et al., 2018

Oryza sativa Enterobacter ludwigii
SAK5, Exiguobacterium
indicum SA22

Protection against heavy metal Cd and Ni
hyperaccumulation by enhanced detoxification
mechanisms

Jan et al., 2019

Brassica juncea Serratia sp., Enterobacter
sp.

Phytohormone production, phosphate
solubilization, and antioxidative support
responsible for Cd resistance

Ullah et al., 2019

Saccharum officinarum Pseudomonas fluorescens,
Kosakonia radicincitans,
Paraburkholderia tropica,
and Herbaspirillum
frisingense

Alleviating Al stress Labanca et al.,
2020

Brassica napus L. Serratia sp. IU01 Minimized the magnitude of the oxidative
damage and advantages in terms of growth
promotion and alleviating Cd toxicity

Shah et al., 2020

ABA, abscisic acid; MYB, myeloblastosis family; GRF, growth-regulating factors; ACCD, 1-aminocyclopropane-1-carboxylic acid deaminase; MDA, malondialdehyde;
HCN, hydrogen cyanide; SA, salicylic acid; CAT, catalase; SOD, superoxide dismutase; GSH, glutathione.

bacteria–mediated improvement in plant growth along with
biocontrol of phytopathogens (Lacava et al., 2008; Pandey
et al., 2015; Passari et al., 2016; Walitang et al., 2017; Yan et al.,
2018; Maheshwari et al., 2019b). A number of studies have
demonstrated that siderophore-producing bacteria support the
plants to endure both biotic and abiotic stresses. In a study by

Ruiz et al. (2015), Pseudomonas protegens strain survived in
the presence of Fusaric acid (mycotoxin)-producing Fusarium
strains by producing metal scavenging siderophores (pyoverdine
and pyochelin). Recently, Butaite et al. (2017) found that non-
and low-pyoverdine siderophore producers coexist in various
natural populations. The non-siderophore producers with
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FIGURE 3 | PGPEB-mediated direct and indirect biocontrol of phytopathogens (JA, jasmonic acid; E, ethylene; ISR, induced systemic resistance; PR, pathogenesis
related; ROS, reactive oxygen species; CW, cell wall).

suitable siderophore receptors can utilize external siderophores.
The producers are different in the types of pyoverdine they
secrete and offer protection against exploitation by non-
producers and acquisition of iron unaccessible to opposing
strains lacking the proper receptors.

Hydrogen cyanide (HCN) production leads to the growth
inhibition of pathogens due to biogenic cyanogenesis. Cyanide,
a metabolic inhibitor, inhibits the cytochrome C oxidase and
the other metalloenzymes of the pathogen and thus helps the
plant to combat against soil-borne diseases (Voisard et al., 1989;
Blumer and Haas, 2000; Dheeman et al., 2019; Maheshwari
et al., 2019a; Swarnalakshmi et al., 2019). Dubey et al. (2014)
reported Bacillus subtilis strain producing HCN and other
metabolites that inhibit the growth of phytopathogen Fusarium
oxysporum. HCN-producing endophytes isolated from Glycine
max exhibited in vitro antagonism against a wide range of
phytopathogens, namely, Sclerotium rolfsii, Rhizoctonia solani,
Alternaria alternata, F. oxysporum, Macrophomina phaseolina,
and Colletotrichum truncatum (Dalal et al., 2015). The bacterial
endophytes obtained from the medicinal plant Clerodendrum
colebrookianum Walp possessed in vitro PGP activities including
HCN production. These endophytes exhibited in vitro and
in vivo biocontrol activity against various phytopathogenic
fungi (Passari et al., 2016). Quorum sensing is mediated by
small diffusible signaling molecules called autoinducers which

mediate the regulation of diverse functions such as virulence
and biofilm formation. Endophytic bacteria can interfere in
quorum sensing using quorum sensing inhibitors and quorum
quenching enzymes to control bacterial infections as a result
of suppressing the formation of biofilm (Zhou et al., 2020).
Many endophytic bacteria have been reported to produce
lactonases and acylases which results in quorum quenching
by the inactivation/degradation of major signaling molecules
involved in quorum sensing, N-acyl homoserine lactones
(Rashid et al., 2012).

Indirectly, endophytic bacteria are known to trigger jasmonic
acid and ethylene-mediated induced systemic resistance which
induces a defense mechanism and protects the plants from future
attacks of plant pathogens (Miliute et al., 2015). It leads to
the production of pathogenesis-related proteins, phytoalexins,
defense-related enzymes such as polyphenol oxidase (PPO) and
phenylalanine ammonia lyase, formation of physical barriers
such as cuticles and modification of cell wall (Wiesel et al.,
2014). Mao et al. (2019) demonstrated endophytic bacterial strain
REB01 to induce disease resistance against rice sheath blight
caused by R. solani via enhancing the activity of PPO, POD
enzymes, and reducing the MDA content. Kim et al. (2019)
isolated and selected pine endophytic bacteria on the basis of
the relative expression of defense-related genes, Pseudomonas
putida 16 YSM-E48, Curtobacterium pusillum 16YSM-P180,
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and Stenotrophomonas rhizophila 16YSM-P3G, effective against
Bursaphelenchus xylophilus (pinewood nematode) causing pine
wilt disease. Asghari et al. (2020) reported induction of systemic
resistance in Vitis vinifera, by Pseudomonas sp. Sn48 and
Pantoea sp. Sa14 against Agrobacterium tumefaciens through
improvement in the levels of PR1, PR2, and PR4 gene expression
levels of plantlets.

Some of the endophytic bacteria undergo rhizophagy,
biphasic cycle of alternation between the root intracellular
phase (nutrients extracted by plants) and a free-living soil
phase (acquisition of nutrients by bacteria) (Dudeja et al.,
2021). “Endobiome interference” is the term used to describe
the phenomenon in which other endophytes interfere with
rhizophagy and extract the nutrients from native microbes post-
colonization. Although the mechanism behind this remains
poorly understood, it has been hypothesized that the oxidative
resistance of microbes reduces the capacity of host cells to control
the intracellular microbes using ROS produced by NOX enzymes
on the root cell plasma membranes. They can be explored to
develop bioherbicides to target competitive weeds (White et al.,
2019). This way they enhance stress in the host and inhibit their
growth leading to an eco-friendly biocontrol option (Verma et al.,
2021). Kowalski et al. (2018) explored endobiome interference
by the application of a bacterial endophyte, Micrococcus luteus,
isolated from the seedling root hairs of Lycopersicon esculentum,
to arrest the growth of a weedy plant sp., Phragmites australis,
by targeting its growth promotional native microbiome. It
also illustrates a vital precaution to be taken before applying
any exogenous endophytes, that is, to analyze the interactions
between the endophytes being applied and the native microflora
(Verma et al., 2021). Table 4 describes numerous studies
depicting the biocontrol potential of the bacterial endophytes.

HARNESSING “OMICS” FOR
ENHANCING THE BIOACTIVE
METABOLITES

Bioactive compounds are mostly secondary metabolites produced
by the microbes in an active culture cultivation process. Their
unique properties have led to lots of research regarding their
applications in healthcare as feed supplements, pharmaceuticals,
and so on (Singh nee’ Nigam, 2009). Endophytes have been
reported to produce many secondary metabolites similar to
their host under in vitro systems. This ability can lessen
our dependency on endangered plants for the extraction of
metabolites (Sharma et al., 2021). Several approaches have
been employed to harness novel metabolites or to enhance the
production of already known ones to support and flourish their
large scale application (Du and van Wezel, 2018). Co-culture
engineering by culturing more than one type of endophyte
together can make us exploit the intermicrobial communications
for the enhanced production of bioactive metabolites. A number
of studies have reported the production of new metabolites by
this method (Stierle et al., 2017; Arora et al., 2018; Gautam et al.,
2019). The associated disadvantages such as compatibility issues,

competition for substrates, and data acquisition problems pose
remarkable challenges (Padmaperuma et al., 2017; Jawed et al.,
2019). A number of reports have demonstrated the precise effects
of endophytes on the production of secondary metabolites of
the host (Khare et al., 2018). Table 5 sums up recent studies
dealing with the enhancement of bioactive compounds of the host
owing to the endophytes. Other than enhancing the bioactive
compounds of the host, endophytes serve as a great treasure of
new metabolites which remains largely unexplored looking at the
vast diversity of endophytic flora.

Some approaches have been developed in the recent past
to trigger the expression of Biosynthetic gene clusters (BGCs)
present in the genome of microbes (endophytes) that can
yield some valuable secondary metabolites but remain either
silent or poorly expressed. In most cases, BGCs remain
silent under laboratory conditions due to complex regulation
involved at transcriptional, translational, and post-translational
levels. Therefore, the study of changes in gene expression at
various levels needs to be done. Recent progress made in
bioinformatics, especially genome mining tools have pushed the
boundaries of “omics” technologies toward new horizons. It has
revolutionized our understanding of the pathways controlling the
expression of BGCs.

Genome mining is a powerful approach that can estimate the
genetic potential of microbial strain by scanning genomes
of interest and identifying the metabolites encoded by
BGCs (Ziemert et al., 2016). Whole-genome sequencing
and its comparative analysis yield the reconstruction of
primary and secondary metabolic pathways that help in
suggesting the key metabolic genes to be utilized for metabolic
engineering (Palazzotto and Weber, 2018). Metabolic and
genetic engineering involves the modulation of biosynthetic
enzymes at cellular level/upregulation and downregulation of
transcription and translation genes/knock-out and knock-in
of desired genes and have been effective in enhancing the
production of specific metabolites (Stephens et al., 2015).
Mining tools such as antibodies and secondary metabolites
analysis shell) (antiSMASH), generalized retro-biosynthetic
assembly prediction engine (GRAPE), prediction informatics
for secondary metabolomes (PRISM3) have been successful in
overcoming the drawbacks associated with manual analyses
to some extent. A number of natural products encoded by
BGCs remain uncharacterized owing to the complicated
regulations occurring at transcriptional, translational, and
post-translational levels.

Transcriptome-based studies provide a comparative profile
of gene expression and help to assess the key regulators which
are in turn used for manifesting the designer strains having the
ability to overproduce secondary metabolites (Chaudhary et al.,
2013). Proteomics complements other two omics approaches,
namely, transcriptomics and genomics, yielding information
on differential pathways regulation highlighting key players
in the biosynthesis of natural products, which can be used
to target for rational engineering (Palazzotto and Weber,
2018). Comparative transcriptomics and proteomics are used
to identify the alterations in gene expression associated with
the overproduction which are subsequently re-engineered into
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TABLE 4 | Biocontrol of phytopathogens using bacterial endophytes.

Host Plant Endophytes Disease Causing agent Mechanism References

Diseases caused by fungi

Zea mays L. Bacillus amyloliquefaciens
subsp. subtilis

Ear rot and stalk rot Fusarium moniliforme PR-1, PR-10 genes highly
induced

Gond et al.,
2015

Nicotiana
glauca

Alcaligenes faecalis S18,
Bacillus cereus S42

Fusarium wilt Fusarium oxysporum f. sp.
lycopersici

Proteolytic and chitinolytic
activity, HCN production

Aydi Ben
Abdallah et al.,
2016

Salicaceae
plants

Burkholderia strains WP40
and WP42

Root rot, Ear blight or scab,
Take all, Seed blight or rot

Rhizoctonia solani AG-8,
Fusarium culmorum,
Gaeumannomyces graminis
var. tritici, Pythium ultimum

Production of HCN and
antifungal metabolite,
occidofungin

Kandel et al.,
2017b

Dodonaea
viscosa L.

Bacillus, Pseudomonas,
and Streptomyces

Black mold, Fusarium wilt Aspergillus niger, Fusarium
oxysporum

Chitinase, protease and
antifungal activity

Afzal I. et al.,
2017

Fragaria ×
ananassa
(Duch.)

Staphylococcus sciuri
MarR44

Celery stunt anthracn-ose Colletotrichum nymphaeae Production of antifungal
metabolites (VOCs)

Alijani et al.,
2019

Saccharum
officinarum

Bacillus subtilis Fusarium wilt Fusarium strains Production of surfactin Hazarika et al.,
2019

Pisum sativum Pseudomonas chlororaphis Black mold, Fusarium wilt Aspergillus niger and Fusarium
oxysporum

HCN production Maheshwari
et al., 2019a

Oryza sativa L. Bacillus subtilis Bacterial blight of rice, stalk and
ear rot, and root rot

Xanthomonas oryzae, Fusarium
verticillioides, Rhizoctonia
solani, and Sclerotium rolfsii

Lipopeptide genes encoding
surfactin, iturin D, bacillomycin
D having antagonistic activities

Kumar V. et al.,
2020

Lilium
lancifolium

Paenibacillus polymyxa Fusarium wilt, gray mold and
cankers

Botryosphaeria dothidea,
Fusarium oxysporum, Botrytis
cinerea, and Fusarium fujikuroi

Production of antibiotic
secondary metabolites

Khan M. S.
et al., 2020

Pennisetum
glaucum

Bacillus subtilis Downy mildew Sclerospora graminicola Production of siderophore,
HCN and ACC deaminase
activity.

Sangwan et al.,
2021

Glycine max Bacillus cereus and
Pseudomonas sp.

Fusarium wilt Fusarium oxysporum,
Macrophomina phaseolina, and
Alternaria alternata

Production of cellulase,
chitinase, and HCN

Dubey et al.,
2021

Helianthus
annuus

Priestia koreensis Fusarium wilt Fusarium oxysporum Production of essential
secondary metabolites and
hydrolytic enzymes

Bashir et al.,
2021

Disease caused by bacteria

Pistacia
atlantica L.

Pseudomonas protegens Bacterial canker Pseudomonas syringae pv.
syringae Pss20 and
Pseudomonas tolaasii Pt18

Production of siderophore and
protease

Tashi-Oshnoei
et al., 2017

Pyrus
communis L.

Fluorescent Pseudomonas
sp.

Fire blight disease Erwinia amylovora Production of antibiotic, PCA,
DAPG, pyrrolnitrin and
pyoluteorin.

Sharifazizi
et al., 2017

Ventilago
madraspatana

Enterobacter sp. CS66 Soft rot and black leg disease Pectobacterium atrosepticum Quorum quenching Shastry et al.,
2018

Citrus sinensis Bacillus cereus Si-Ps1,
Pseudomonas
azotoformans La-Pot3-3

Bacterial apical necrosis Pseudomonas syringae pv.
syringae (Pss) B7289 and
Pss3289

Quorum quenching Akbari Kiarood
et al., 2020

Disease caused by nematode

Musa Streptomyces sp. Wilting leaves, gall formation Meloidogyne javanica Higher abundance of
bacterivores

Su et al., 2017

P. densiflora, P.
koraiensis, P.
thunbergia, P.
rigida

Stenotrophomonas and
Bacillus sp.

Drying out Bursaphelenchus xylophilus Production of amocarzine,
mebendazole and flubendazole
compounds

Shanmugam
et al., 2018;
Ponpandian
et al., 2019

Fragaria
ananassa

Bacillus cereus BCM2 Root-knot disease Meloidogyne incognita Production of chitosanase,
alkaline serine protease, and
neutral protease

Hu et al., 2020

PR, pathogenesis related; VOC, volatile organic compounds; PCA, phenazine-1-carboxylic acid, DAPG: 2,4-diacetyl phloroglucinol.
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TABLE 5 | Bioactive compounds enhancement in host plants by endophytes.

Host plant Endophytes Bioactive compound Applications References

Papaver somniferum Stenotrophomonas maltophilia Morphine, Thebaine,
Codeine, and Oripavine

Used as analgesics, antitussives and
anti- spasmodic

Liscombe and Facchini,
2008; Bonilla et al., 2014

Aristolochia elegans Piriformospora indica Aristolochic acid Antimicrobial properties Bagde et al., 2014

Curcuma longa Azotobacter chroococcum CL13 Curcumin Anti-inflammatory, antioxidative,
antimalarial activities

Kumar et al., 2016

Putterlickia verrucosa;
Putterlickia retrospinosa

Hamigera avellanea Maytansine Cancer chemotherapy Kusari et al., 2014

Salvia miltiorrhiza Paecilomyces sp. Salvianolic acid Antioxidative activities Tang et al., 2014

Chamomilla recutita L.
Rauschert

Bacillus subtilis Co1-6, Paenibacillus
polymyxa Mc5Re-14

Apigenin-7-O-glucoside Anti-inflammatory capacity Schmidt et al., 2014

Panax ginseng Paenibacillus polymyxa. Ginsenosides Anticancerous properties Gao et al., 2015

Artemisia annua L. Piriformospora indica DSM 11827,
Azotobacter chroococcum W-5

Artemisinin Artemisinin combination therapies
(ACTs) to control malaria

Arora et al., 2016

Aloe vera Piriformospora indica Aloin Numerous therapeutic applications Sharma et al., 2014

Stevia rebaudiana Piriformospora indica Enhanced production of
Steviol glycosides

High potency sweeteners Kilam et al., 2017

Crocus sativus L. Mortierella alpine CS10E4 Crocin, Picrocrocin, and
Safranal

Anti-tumor activities Wani et al., 2017

Kadsura angustifolia Umbelopsis dimorpha SWUKD3.1410 Schitriterpenoids/
schinortriterpenoids.

Antihepatitis, antitumor and anti-HIV
activities

Qin et al., 2018

Salvia miltiorrhiza Chaetomium globosum D38 Phenylpropionic acids and
tanshinones

Flavoring agents used in spices
(Phenylpropionic acids); Cardiovascular
and cerebrovascular protective actions
(Tanshinones)

Zhai et al., 2018

Coleus forskohlii Phialemoniopsis cornearis SF1,
Macrophomina pseudophaseolina SF2,
Fusarium redolens RF1

Davanone, Ethyl cinnamate Perfumery products, flavoring agents Mastan et al., 2019

the organism of interest by considering key genes involved
in complex mechanisms. However, its success depends on the
reproducibility of the overproducing mechanism in the new
target strains (Chaudhary et al., 2013). One of the most important
tools of system biology toolbox is metabolomics which catalogs
all small metabolites in a biological sample. NMR- and MS-based
metabolomic analysis facilitates measurement of low–molecular
weight metabolites allowing the metabolic comparison of various
biological samples leading to the identification of secondary
metabolites from orphan BGCs. A comprehensive picture of
metabolic networks helps to engineer the primary metabolism via
cofactors and precursors for the biosynthesis of any secondary
metabolite (Nguyen et al., 2012). Metagenomics is the most
commonly used approach to study the chemistry of uncultivated
bacteria. It provides a culture-independent approach to exploring
the hidden potential of microorganisms.

Omics analysis in isolation is unable to completely unfurl
the complexities involved in microbial metabolism associated
with the production of secondary metabolites. Therefore, it is
necessary to undertake their integration to get better insights into
the same (Chaudhary et al., 2013). The combined use of multi-
meta-omics approaches such as metabologenomics involves
a combination of genome sequencing and automated gene
clusters prediction with MS-based metabolomics. It provides us
a complete picture of microbial metabolism shedding light on
the silent BGCs and the role of natural products (Palazzotto

and Weber, 2018). Precision engineering is another modern
approach that integrates information from different sources,
transcriptome profiling (DNA microarrays), proteome profiling
(2D gel electrophoresis), and metabolic profiling (HPLC), thus
enabling a more precise identification of key genetic targets
and pathways engineered for strain improvement (Gao et al.,
2010). Many microbes engineered by metabolic engineering
are being used in industrial-scale processes; however, it is
associated with challenges such as titers, yields, and productivities
required for commercial viability. Different aspects of microbial
physiology can also create obstacles for metabolic engineering
(Montaño López et al., 2022).

LIMITATIONS AND CHALLENGES

Word “endophyte” searched on Google scholar (January 05,
2022) showed 80,100 results indicating extensive research
happening in this arena. However, some lacunae need to be filled
with regard to the research on endophytes. A sufficient number
of studies have not been conducted to study the variations such
as plant–microbe interactions on the field induced by a range
of environmental and physiological conditions unlike in vitro.
Information about the synergistic interaction between different
microbial taxa such as bacteria, archaea, and fungi, is sparse with
most of the studies focusing on each taxa separately.
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Although the importance of biofertilizers and biocontrol
potential of endophytes over conventional and environment
degrading chemical pesticides are well known, some drawbacks
of biopesticides are responsible for our slow speed on this eco-
friendly path. High production cost and limited period of activity
as compared to the chemical ones along with lower potency
make it difficult for the farmers to opt for it. Owing to their
target-specific nature, they control a specific portion of pests in
the treated area and may leave the other damage-causing pests
unaffected (Kawalekar, 2013). Lesser insights are available into
the overlaps present in the metabolic pathways of endophytes
and host plants, which leads to the production of a particular
bioactive compound (Mishra et al., 2021). More research
targeted at unfurling the genetic controls involved in stress
tolerance conferring potential as well as bioactive compounds
accumulation capability of the microbe is to be undertaken to
unfold the molecular mechanisms behind the same.

CONCLUSION

Plant and endophytes exist in close interaction with each
other and provide increased productivity as a bonus. The
effects and functions of these associations have not been
understood fully thereby calling for a more in-depth study. It
would be more beneficial if more knowledge of endophytes’
ecology and their molecular interaction is made available
for harnessing and application in agriculture. This research
will have a progressive impact on the environment in the
direction of chemical fertilizer–free cultivation and better

contribution to the economy. Also, the optimization of growth
conditions as well as nutrient media for the endophytes
having enormous potential to be applied particularly in
pharmaceutical and agricultural sectors needs to be done at
the earliest. “Omics” combined with recent computational
data mining tools can help unravel the functions of complex
plant microbiome, which can provide us with more competent
microbes as far as stress tolerance and enhancing the bioactive
metabolites is concerned.
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