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1  | INTRODUC TION

Determining the population origin of individuals is fundamental in 
many ecological, evolutionary, conservation, and management con-
texts (e.g., Allendorf & Luikart, 2007). For example, to allow efficient 

management and conservation, it is critical to study population spe-
cific harvest rates of exploited wild animals, in particular endangered 
ones. In fisheries science, identification of individuals or population 
(stock) proportions is particularly important since exploitation often 
take place in mixed-stock fisheries (Carvalho & Hauser, 1994; Hilborn, 
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Abstract
Determining the origin of individuals in mixed population samples is key in many 
ecological, conservation and management contexts. Genetic data can be analyzed 
using genetic stock identification (GSI), where the origin of single individuals is de-
termined using Individual Assignment (IA) and population proportions are estimated 
with Mixed Stock Analysis (MSA). In such analyses, allele frequencies in a reference 
baseline are required. Unknown individuals or mixture proportions are assigned to 
source populations based on the likelihood that their multilocus genotypes occur in 
a particular baseline sample. Representative sampling of populations included in a 
baseline is important when designing and performing GSI. Here, we investigate the 
effects of family sampling on GSI, using both simulated and empirical genotypes for 
Atlantic salmon (Salmo salar). We show that nonrepresentative sampling leading to 
inclusion of close relatives in a reference baseline may introduce bias in estimated 
proportions of contributing populations in a mixed sample, and increases the amount 
of incorrectly assigned individual fish. Simulated data further show that the induced 
bias increases with increasing family structure, but that it can be partly mitigated by 
increased baseline population sample sizes. Results from standard accuracy tests of 
GSI (using only a reference baseline and/or self-assignment) gave a false and elevated 
indication of the baseline power and accuracy to identify stock proportions and indi-
viduals. These findings suggest that family structure in baseline population samples 
should be quantified and its consequences evaluated, before carrying out GSI.
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Quinn, Schindler, & Rogers, 2003). Knowledge on stock specific har-
vest rates or catch composition can be used to preserve intraspecific 
genetic diversity, as it allows managers to selectively harvest stocks 
according to their relative abundance and productivity.

Assigning stocks or individuals to putative sources of origin can 
be done using various methods or techniques (Cadrin, Friedland, & 
Waldman, 2005), such as tagging data (e.g., Beacham et al., 2019; 
Brodziak, 1993), parasites (e.g. MacKenzie & Abaunza, 1998), age 
structure (e.g., Chasco, Hilborn, & Punt, 2007) and morphometric 
landmarks (Cadrin, 2000). However, over the past decades genetic 
methods have been increasingly used when assessing fish stock or-
igin (see Hansen, Kechnington, & Nielsen, 2001; Manel, Gaggiotti, 
& Waples, 2005; Shaklee, Beacham, Seeb, & White, 1999; Whitlock 
et al., 2018 with references). Such analyses are collectively referred 
to as genetic stock identification (GSI) which includes techniques to 
estimate population proportions in a mixture (Mixed Stock Analysis, 
MSA) and the origin of single individuals (Individual Assignment, 
IA). The practice of using GSI for fisheries management purposes 
began in the 1980s (Pella & Milner, 1987) when genotypes at mul-
tiple loci (allozymes) were becoming commonly available. More re-
cently an increasing number of studies analyzing stock mixtures in 
fisheries have been published (Beacham et al., 2018; Bradbury et al., 
2016; Gilbey et al., 2017; Östergren, Nilsson, Lundqvist, Dannewitz, 
& Palm, 2016; Vaha, Erkinaro, Falkegard, Orell, & Niemela, 2017; 
Whitlock et al., 2018).

In MSA, genotypes in a mixed sample are compared to the ex-
pected genotype frequencies in a representative reference baseline 
containing potential originator populations or stocks, and the most 
likely population proportions (with surrounding uncertainty) are 
estimated statistically. Similarly, IA uses a genetic reference base-
line to identify the most likely population origin of single individu-
als based on the likelihood of their multilocus genotype occurring 
in each reference sample. For MSA and IA both maximum likeli-
hood and Bayesian approaches are available (Anderson, Waples, & 
Kalinowski, 2008; Cornuet, Piry, Luikart, Estoup, & Solignac, 1999; 
Pella & Masuda, 2001). The power and accuracy of GSI depends on 
several factors (e.g., Hansen et al., 2001) including degree of genetic 
differentiation between baseline populations, number and qual-
ity of markers, number of alleles (Beacham et al., 2005; Cornuet et 
al., 1999), temporal genetic stability, and the size of both the mixed 
fishery and reference baseline population samples (Beacham et al., 
2006; Beacham, Mcintosh, & Wallace, 2011).

One aspect of particular importance is that the baseline ade-
quately represents the allele frequencies in the source populations 
of interest. Sampling a species with high fecundity and/or when indi-
viduals occur in a nonrandom familial spatial distribution, requires a 
well-planned sampling design to avoid over-representation of close 
relatives or family members (e.g., full-siblings). In the wild, such fam-
ily sampling might occur when sampling newly hatched juveniles 
at a specific time period or in a limited space (e.g., a short stretch 
of a river) (Hansen, Nielsen, & Mensberg, 1997). Similarly, in fish 
hatchery environments, a limited number of adults are often used 
as broodstock, and offspring may be kept in tanks or trays which 

may hold just a few out of all families. In such situations, sampling 
design is crucial, as the risk of family sampling is obvious. In addition, 
survival rates among families can be highly variable both in wild and 
hatchery environments.

Recently, increased theoretical attention has been drawn to 
potential effects of close relatives (i.e., family structure) on com-
mon population genetics analyses, including estimates of allele fre-
quencies, F-statistics, expected heterozygosity (He), effective and 
observed numbers of alleles, and tests for deviations from Hardy-
Weinberg (HWE) and linkage equilibrium (LE). Using computer sim-
ulated data, Wang (2018) showed that inclusion of excessive close 
relatives in samples upwardly biased estimates of FST, reduced the 
value of He (given the same sample size with and without siblings), 
and induced Hardy-Weinberg and linkage disequilibria. Waples and 
Anderson (2017) addressed problems that can arise when routinely 
removing putative siblings from samples before performing popu-
lation genetic analyses, and showed that such purging can degrade 
precision of estimates of allele frequency and FST and bias estimates 
of effective population size (Ne). They suggested that removal of sib-
lings should be performed on a case-by-case basis, as it is difficult to 
make generalizations about specific situations.

The effects of close relatives on unsupervised Bayesian clus-
tering algorithms using StruCture (Pritchard, Stephens, & Donnelly, 
2000), which can be used without baseline samples to identify indi-
viduals or groups of populations in a mixed sample (e.g., Manel et al., 
2005), has also been studied in detail (Anderson & Dunham, 2008; 
Rodriquez-Ramilo & Wang, 2012). It was concluded that the clus-
tering algorithm may overestimate the number of inferred clusters, 
when close relatives are present. The suggestion was therefore to 
identify and remove excessive full-siblings before clustering analy-
sis, since that may improve the ability of the algorithms to infer the 
correct number of population clusters.

Although the influence of family structure on various popula-
tion genetic metrics has been investigated, there has to date been 
little focus on the influence of family structure on GSI (but see 
Banks, Rashbrook, Calavetta, Dean, & Hedgecock, 2000). Neither 
Wang (2018) nor Waples and Anderson (2017) specifically ad-
dressed genetic assignment tests in their theoretical evaluations 
based on simulated data, although the latter authors highlighted 
the need for empirical evaluations of effects of full-siblings (and 
on removing them) on MSA and IA. We have only found one em-
pirical study that explicitly analyzed the effect of coancestry be-
tween individuals on their assignment to a baseline (Guinand et 
al., 2006), but that study of lake trout (Salvelinus namaycush) in the 
Great Lakes did not investigate MSA or the effect of inclusion of 
close relatives in a baseline.

A common feature of software designed specifically for MSA and 
IA is the option to evaluate the reference baseline using a variety of 
simulations. Such analyses are commonly performed as a starting point 
in empirical studies to help to define the power of the reference base-
line, and to allow for reliable estimates of stock proportions or assign-
ment of individual fish. Self-assignment tests remove each individual 
from the baseline and assign it back to the most likely population origin, 
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while the 100% simulation test consists of simulating mixture geno-
types from one population at a time, followed by estimates of their oc-
currence in the baseline populations. Potentially, both these standard 
accuracy tests may be affected by family structure in baseline samples.

In the Baltic Sea, fishing on Atlantic salmon (Salmo salar) is 
mainly undertaken in the southern Main basin and along the coasts 
of Sweden and Finland (Figure 1). In those areas, salmon from sev-
eral wild and hatchery reared populations are exploited in mixed-
stock fisheries (Karlsson & Karlström, 1994; Siira, Erkinaro, Jounela, 
& Suuronen, 2009) and knowledge on stock-specific harvest rates 
is therefore central for conservation and management (Östergren et 
al., 2015; Whitlock et al., 2018). In total, about five million hatchery 

reared salmon smolts (1 and 2-year-old juveniles) are released annu-
ally into the Baltic Sea as mitigation for reproduction losses due to 
hydroelectric power production (ICES, 2018). This amount is almost 
twice as high as the annual natural production during the last de-
cade (approximately 2–3 million wild smolts per year) (ICES, 2018). 
Large-scale tagging programmes of released reared salmon have been 
undertaken since the 1950s (Carlin, 1955), and previous studies on 
recaptured tags have investigated stock specific harvesting (e.g., ICES, 
2018). In addition to the use of Carlin-tags, which in the Baltic mainly 
gives information on reared stocks, there has been an increasing use of 
molecular techniques during the last 15 years to identify catch compo-
sition of both hatchery and wild stocks using genetic MSA. Such anal-
ysis on salmon have been performed on several occasions (Koljonen, 
2006; Koljonen & McKinnell, 1996; Koljonen, Pella, & Masuda, 2005; 
Östergren et al., 2015, 2014; Whitlock et al., 2018), and is carried out 
on an annual basis within the work of ICES WGBAST (e.g., ICES, 2018).

To fill the knowledge gap on how close relatives in baseline pop-
ulation samples affects GSI, we investigated the effects of family 
structure in baseline population samples on the performance of 
GSI methods (MSA and IA). We approached these questions by 
analyzing empirical baselines from seven hatchery reared Atlantic 
salmon populations in the Baltic Sea combined with a comple-
mentary simulation exercise. Our key questions were as follows: 
(a) What are the effects of various degree of family structure in 
baseline population samples on GSI estimates (IA and MSA)? (b) 
Does the baseline population sample size influence the results at 
various degree of family structure? (c) How are commonly used 
tools for evaluation of baselines (e.g., self-assignment and 100% 
simulations) affected by a varying degree of family structure in 
baselines? (d) What is the best way to mitigate the potential ef-
fects of family structure on GSI estimates?

2  | MATERIAL S AND METHODS

2.1 | Study design

2.1.1 | Empirical study

The empirical data set, in total 1,870 fish, comprised of indi-
viduals (mainly juveniles) from seven hatchery reared stocks of 
salmon used for compensatory release in Swedish Baltic Sea riv-
ers impacted by hydroelectricity schemes (Figure 1). In total, nine 
hatcheries were sampled, since two rivers had two hatcheries each 
(but use the same broodstock), and sampling took place at two 
occasions, in 2006 and 2013/2014 (Table 1). The study design is 
outlined below (Figure 2). In brief, the empirical data was first ana-
lyzed for the existence of family structure (i.e., full-siblings) using 
the software Colony (Wang, 2004; Wang & Santure, 2009) (see 
Appendix S1). We then pooled temporal baseline population sam-
ples from the same population, in accordance with recommenda-
tions by Waples (1990). Full details of all reference baselines can 
be found in Figures S1-S5.

F I G U R E  1   Map showing the geographic location of fish 
hatcheries where fish were sampled. River and hatchery 
names are also given in Table 1 [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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Following temporal pooling, four empirical baselines were de-
fined (EB1–EB4; Figure 2). The first baseline (EB1) consisted of all 
sampled individuals and thus contained the original family struc-
ture, which mirrored how sampling had been performed in hatch-
eries. We defined this baseline to have a medium family structure 
(relative to additional baselines in this study). In the second baseline 
(EB2), defined to have a weak family structure, we excluded full-sib-
lings (FS) inferred by Colony from all samples (i.e., we just kept one 
individual per inferred FS family). In the third and fourth baselines 
(EB3 & EB4) we reduced the maximum number of individuals per 
sample to 75 (from originally 201–365 per stock; Table 1). In base-
line EB3, we created a strong family structure by keeping large fam-
ily groups in all samples. Because there was different family group 
sizes in the different empirical baseline population samples, the EB3 
baseline varied in terms of both number of individuals and number 
(and size) of families per sample (see Table 2 and Figure S3). In base-
line EB4 we created a weak family structure of randomly selected 
nonrelated individuals from baseline EB2; hence, this baseline con-
sisted of equal numbers (and sizes) of families (n = 75, Figure S4) 
with the exception of river population Skellefteälven (n = 58) where 

the number of families available was lower. For clarity reasons, we 
hereafter refer to the four empirical baselines using their codes and 
also their sizes/levels of family structure: EB1 (Large/Medium), EB2 
(Large/Weak), EB3 (Small/Strong), and EB4 (Small/Weak) (see also 
Figure 2).

In addition to the above four baselines, we constructed two em-
pirical mixture test samples with known river origin for an evaluation 
of GSI performance. The two empirical mixture test samples (TS1 & 
TS2) consisted of non-related individuals not used in the baseline 
EB3 (Small/Strong) or EB4 (Small/Weak) (i.e. surplus individuals 
purged when decreasing sample sizes) (Figure 2). TS1 consisted of 
equal number of individuals (n = 22) from four populations whereas 
TS2 consisted of unequal number of individuals (n = 4–30) from six 
populations (Figure 2, Table 3).

2.1.2 | Simulation study

In the simulation study, we defined nine baselines (SB1–SB9, 
Figure 2) simulated using Colony (Appendix S1) based on the 

River (hatchery)

Baseline sample (n)
Sampled 
life stage2006 2013 2014

Ångermanälven (Forsmo & Långsele)a 59 149 J + J

Dalälven (Brobacken & Västanå)a 116 128 J + J

Indalsälven (Bergeforsen) 119 246 J + A

Ljusnan (Ljusneströmmar) 119 214 J + A

Luleälven (Heden) 119 156 J + J

Skellefteälven (Kvistforsen) 119 82 J + J

Umeälven (Norrfors) 117 127 J + J

aSampling took place at two hatcheries. J, juveniles; A, adults. 

TA B L E  1   Baseline population samples 
included in the study indicating sample 
year and sampled life stage

F I G U R E  2   Flowchart illustrating the study design. Boxes represent baselines evaluated based on empirical (EB1–EB4, blue) and simulated 
data (SB1–SB9, yellow), and empirical (TS1 & TS2, blue) and simulated (TSS1 & TSS2, yellow) mixture test samples. EB1 includes all original 
baseline population samples. The sizes (small/n = 75, medium/n = 150, large/n = 300) and the level of family structure (weak, medium, 
strong) of baseline population samples is indicated. For EB1 (Large/Medium) and EB2 (Large/Weak) the baseline population samples 
size (large) are ranges for the seven populations included in the baselines (see Table 2). Empirical mixture test samples (TS1 & TS2) were 
created from nonrelated surplus siblings. Simulated baselines and mixture test samples (TSS1 & TSS2) were created with Colony using allele 
frequencies in the baseline EB2 (Large/Weak), i.e., the large empirical baseline with one individual per full-sibling family [Colour figure can 
be viewed at wileyonlinelibrary.com]
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empirical allele frequencies in baseline EB2 (Large/Weak). The 
baseline population samples in the nine simulated baselines 
consisted of three levels of family structure (weak, medium and 
strong) combined with three sample sizes (75, 150 and 300 in-
dividuals per baseline population sample). The degree of family 
structure was defined as follows; weak – the same as in the EB2 
(Large/Weak) baseline in the empirical study (i.e. non-related in-
dividuals), medium – same average family structure as in baseline 
EB1 (Large/Medium), and strong – the strongest family structure 
in the empirical data, which was an equal family size of 15 indi-
viduals per baseline sample. The family structure in SB1–SB9 is 
graphically depicted in Figure S5.

Also in the simulation study we used two mixture test samples 
(TSS1 & TSS2, Figure 2). Those consisted of nonrelated individuals, 
simulated with Colony using allele frequencies in the baseline EB2 

(Large/Weak). Similar to the empirical study, TSS1 consisted of an 
equal number of individuals (n = 22) from four populations, whereas 
TSS2 consisted of unequal number of individuals (n = 4–30) from six 
populations (Figure 2, Table 3).

2.2 | Genetic analyses

Tissue samples consisted of fin clips from hatcheries stored indi-
vidually in labeled tubes with ethanol (95%). DNA was extracted 
followed by PCR and genotyping of 17 polymorphic microsatellite 
markers (on average c. 10 alleles/locus; Table 2). Baseline popu-
lation samples from 2006 were genetically processed in Finland 
(Jarmo Koskiniemi, University of Helsinki), whereas baseline popu-
lation samples from 2013/2014 (from broodstocks) were analysed 

TA B L E  2   Summary statistics for baselines used when testing GSI performance of pooled temporal samples before (EB1 [Large/Medium]) 
and after (EB2 [Large/Weak]) reduction of full-siblings, and after sample size reduction (EB3 [Small/Strong] and EB4 [Small/Weak])

Baseline Hatchery population Sample size (n) N Fam Unbiased Hz (He) Ave. No Alleles FIS p-value FIS

EB1 (Large/Medium) Ångermanälven 208 79 0.7183 10.59 0.004 n.s.

EB2 (Large/Weak) 79 79 0.7179 10.24 0.002 n.s.

EB3 (Small/Strong) 75 24 0.7156 9.24 0.002 n.s.

EB4 (Small/Weak) 75 75 0.7180 10.18 0.007 n.s.

EB1 (Large/Medium) Dalälven 244 97 0.7411 10.35 0.007 n.s.

EB2 (Large/Weak) 97 97 0.7411 10.12 0.012 n.s.

EB3 (Small/Strong) 75 11 0.7311 7.88 –0.009 n.s.

EB4 (Small/Weak) 75 75 0.7439 9.47 0.004 n.s.

EB1 (Large/Medium) Indalsälven 365 144 0.7117 10.00 –0.007 n.s.

EB2 (Large/Weak) 144 144 0.7137 9.88 –0.015 n.s.

EB3 (Small/Strong) 75 13 0.6979 7.29 –0.008 n.s.

EB4 (Small/Weak) 75 75 0.7054 9.18 –0.02 n.s.

EB1 (Large/Medium) Ljusnan 333 135 0.7295 10.88 –0.009 n.s.

EB2 (Large/Weak) 135 135 0.7286 10.71 –0.015 n.s.

EB3 (Small/Strong) 75 5 0.7027 6.35 –0.014 n.s.

EB4 (Small/Weak) 75 75 0.7277 9.71 0.003 n.s.

EB1 (Large/Medium) Luleälven 275 131 0.7258 11.47 0.01 n.s.

EB2 (Large/Weak) 131 131 0.7209 11.24 –0.004 n.s.

EB3 (Small/Strong) 75 15 0.7243 8.88 0.001 n.s.

EB4 (Small/Weak) 75 75 0.7207 10.76 –0.006 n.s.

EB1 (Large/Medium) Skellefteälven 201 58 0.7147 9.06 –0.015 *

EB2 (Large/Weak) 58 58 0.7251 8.59 0.015 n.s.

EB3 (Small/Strong) 58 5 0.6760 6.12 –0.111 ***

EB4 (Small/Weak) 58 58 0.7251 8.59 0.015 n.s.

EB1 (Large/Medium) Umeälven 244 87 0.6913 10.76 0.005 n.s.

EB2 (Large/Weak) 87 87 0.6962 10.06 –0.003 n.s.

EB3 (Small/Strong) 75 19 0.6913 8.06 0.018 n.s.

EB4 (Small/Weak) 75 75 0.6956 9.94 0.001 n.s.

Note: Estimates of unbiased heterozygosity, average number of alleles, FIS with corresponding p-values are shown (calculated based on 2,380 
randomisations).
FIS is shown with its level of significance (*** p < 0.001, ** p < 0.01, * p < 0.05, n.s. non-significant).
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in Sweden (SLU Aqua). To assure fully comparable genotypes 
scored at the two laboratories, a marker calibration (i.e., replicated 
allele length scoring of same individuals) was performed. Details 
on laboratory procedures, microsatellites screened and marker 
calibrations are provided as supportive information in Whitlock et 
al. (2018).

Part of the Swedish baseline population samples used in this 
study (<40%) were also used in the study by Whitlock et al. (2018). 
A test for repeatability and error rate at scoring of alleles at the 
SLU Aqua laboratory was performed on ethanol-stored fin-clips 
from two baseline population samples; approximately 10% (n = 30) 
of the individuals from Ljusnan and Skellefteälven sampled in 
2013 were reanalysed de novo (from DNA extraction to scoring 
of alleles).

2.3 | Statistical analysis

We used the maximum likelihood approach implemented in the 
computer software Colony 2.0.4.4 (Wang, 2004; Wang & Santure, 
2009) to identify full-siblings in each of the empirical baseline 
population samples. Colony was also used to simulate base-
line and test sample data for the simulation study (see details in 
Appendix S1).

The program FStat (Goudet, 1995) version 2.9.3.2 was used to 
estimate expected heterozygosity (He), FIS and pairwise FST (Weir & 
Cockerham, 1984). The same program was used to conduct statis-
tical tests for deviations from Hardy-Weinberg equilibrium (2,380 
randomisations) and genetic differentiation between pairs of sam-
ples (21,000 randomisations).

2.4 | Evaluation of GSI performance

We used the program onCor (Kalinowski, Manlove, & Taper, 2007) 
for evaluating the GSI performance of each baseline, divided 
into two approaches: MSA and IA. All analyses with onCor were 

performed similarly for empirical and simulated data, as outlined 
below. Throughout, we applied the program default settings with 
1,000 bootstraps.

We decided to use onCor for this study based on two main 
criteria; (a) It is/has been widely used in GSI studies and (b) is us-
er-friendly and has several built-in simulation tests (e.g., 100% 
simulation and self-assignment-test) very commonly used in pub-
lished GSI studies. Several other computer programs developed 
for GSI analysis exists, e.g., CBayeS (Neaves, Wallace, Candy, & 
Beacham, 2005), GeneClaSS2 (Piry et al., 2004), ruBiaS (Moran & 
Anderson, 2019) and Spam (Debevec et al., 2000), but a compari-
son of outcomes from different software was beyond the scope of 
this study. Furthermore, when evaluated in other studies, onCor 
has been shown to perform equal to several of those alternative 
software (Debevec et al., 2000; Griffiths et al., 2010; Ikediashi, 
Billington, & Stevens, 2012; Vaha et al., 2017). Therefore, we be-
lieve that our approach would have produced similar results inde-
pendent of computer program used.

2.4.1 | Mixed Stock Analysis

First, we performed commonly used tests for power of the base-
lines to accurately estimate stock proportions, 100% simulations 
(Kalinowski et al., 2007), by simulating pure mixture samples from 
each baseline population (mixture sample size n = 200, number of 
simulations = 100, baseline sample size same as empirical baseline). 
As onCor uses allele frequencies in all baseline population samples 
(one at the time) to create mixture samples, effects from family 
structuring is passed on from empirical to simulated data. After MSA 
of the simulated 100% mixture files, we used the average results to 
evaluate accuracy. Second, we performed MSA on our predefined 
mixture test samples for the empirical (TS1 & TS2) and simulated 
(TSS1 & TSS2) data.

2.4.2 | Individual assignment

With onCor we initially performed a self-assignment test with a 
leave-one-out (LOO) procedure to evaluate how accurate individual 
fish can be assigned to their population of origin. For self-assign-
ment, onCor assigns individuals with complete genotypes to puta-
tive sources of origin. Assignment accuracy for each baseline was 
evaluated using mixtures of individuals of known origin, similarly as 
for MSA (above). We defined accuracy of the IA as the proportion of 
fish correctly assigned to their source population.

2.4.3 | Statistical analyses in R

Statistical comparisons of baseline performance were done using 
R (r-project.org; R version 3.5.1). Differences between baselines in 
average accuracy of 100% simulation tests, self-assignment tests, 

TA B L E  3   Mixed-fishery files used for testing GSI on empirical 
individuals (TS1 & TS2) and simulated genotypes of known origin 
using the baseline EB2 (Large/Weak) (TSS1 & TSS2). See text for 
details

TS1 & TSS1 TS2 & TSS2

n % n %

Ångermanälven 0 0 4 0.05

Dalälven 22 0.25 8 0.09

Indalsälven 22 0.25 30 0.34

Ljusnan 22 0.25 20 0.23

Luleälven 22 0.25 14 0.16

Skellefteälven 0 0 0 0

Umeälven 0 0 12 0.14
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and IA-tests with real data (TS1, TS2, TSS1 and TSS2) were inves-
tigated using Wilcoxon, Kruskal-Wallis rank sum test and Multiple 
comparison test after Kruskal-Wallis (library [pgirmess] [Giraudoux, 
2013]). A 3D scatterplot with regression plane was produced using 
the Scatterplot3d package (Ligges & Maechler, 2003).

3  | RESULTS

3.1 | Genetic analysis

Among the 1,870 individuals in the original empirical baseline popu-
lation samples, 96.5% had complete genotypes at all 17 microsatel-
lites; one individual had missing data at three loci, five at two loci and 
60 at one locus, resulting in overall 0.23% missing genotypes. Repeat 
genotyping of a subset of individuals resulted in a repeatability of 
100%, and hence an estimated error rate of zero.

3.2 | Family analysis with Colony

Colony identified full-siblings (FS) in all empirical baseline popu-
lation samples consisting of two to 19 FS individuals per family. 
Relatively strong family structure was detected in some of the 
baseline population samples. For example, the sample Ljusnan 
(year 2006, n = 119) had the lowest number of families (s = 12) of 
which six consisted of 15 FS-individuals each. We here use family 
to describe one “FS unit” that can include one or several individu-
als. The family structure of our pooled temporal baseline popula-
tion samples, baseline EB1 (Large/Medium), is illustrated in Figure 
S1.

3.3 | Statistical analysis

3.3.1 | Basic genetic analysis

No locus displayed consistent deviations from Hardy Weinberg 
Equilibrium (HWE) within temporal baseline population samples, 
and all loci were retained for further analysis. Significant devia-
tions from HWE across loci occurred in three and two baseline 
population samples from 2006 and 2013/2014, respectively, in 
most cases as heterozygote excesses (FIS < 0). After pooling tempo-
ral baseline population samples, significant deviations from HWE 
across all 17 loci (FIS ≠ 0) was detected in one baseline population 
sample when all individuals were retained (baseline EB1 (Large/
Medium), Table 2) and in no baseline population sample when sur-
plus full-siblings had been removed (baseline EB2 (Large/Weak), 
Table 2). There was significant genetic differentiation among 
baseline samples in all evaluated empirical baselines (EB1–EB4). 
Pairwise FST estimates ranged between 0.02 and 0.10, with higher 
estimates among baseline population samples with stronger family 
structure (Tables S1-S3).

3.3.2 | Evaluation of baseline performance – MSA

The estimated mean accuracy (across populations within each base-
line) of 100%-simulations was high (>95%) and increasing with levels 
of family structure for all empirical and simulated baselines, although 
it was somewhat lower for empirical compared to simulated ones 
(Figure 3). The within baseline variance in estimated accuracy de-
creased with increasing family structure and sample size, illustrated 
by a decreasing (narrower) 95% CI (Figure 3).

In the empirical data, the 100% simulations showed signifi-
cant differences in average estimated accuracy between baselines 
(Kruskal-Wallis chi-squared = 21.897, df = 3, p < .05) due to signifi-
cant differences between EB2 (Large/Weak) & EB3 (Small/Strong), 
and EB3 (Small/Strong) & EB4 (Small/Weak) (multiple comparison 
test after Kruskal-Wallis; p < .05, Figure 3). Highest average es-
timated accuracy was noted for the eB3 (Small/Strong) baseline 
(99.9%) and the lowest for the eB4 (Small/Weak) baseline (97.2%) 
(Figure 3).

In the simulated data, there were significant variation in av-
erage estimated accuracy determined from 100%-simulations 
within each sample size class (n = 75, 150, 300; Kruskal-Wallis 
chi-squared, df = 3, p < .05, Figure 3), due to differences between 
weak and strong family structure. Significant differences in av-
erage estimated accuracy within family structure (weak, medium 
and strong) were also noted, indicating an effect of baseline pop-
ulation sample size (multiple comparison test after Kruskal-Wallis 
p < .05, Figure 3).

Mixed Stock Analysis of empirical (TS1 & TS2) and simulated (TSS1 
& TSS2) test mixture samples of known origin in general showed 
good performance, i.e., 95% CI did overlap the true stock proportions 
(Figure 4, Figure S6). In total, only at two out of 44 comparisons (sample 
Ljusnan in EB3 (Small/Strong) and sample Luleälven in SB6 (n = 150/
Strong) the 95% CI did not overlap the true stock proportions, and in 
both these cases the baselines had a strong family structure. However, 
the MSA of TS1 & TS2 resulted in a substantial mis-assignment of in-
dividuals to Ångermanälven when the baseline family structure was 
strong, i.e. EB3 (Small/Strong) (Figure 4, Figure S6).

3.3.3 | Evaluation of baseline performance – IA

The IA analyses showed similar results as the MSA. The self-assignment 
tests for all baselines, including both empirical and simulated data, 
showed an increasing estimated accuracy (proportion of correctly as-
signed individuals) with increasing levels of family structure (Figure 5). 
Compared to the 100%-simulations (see above), estimated accuracy 
of self-assignment was in general lower and with wider 95% CI, and 
the empirical baselines showed lower estimated accuracy than simu-
lated ones. Also, the within baseline variance in estimated accuracy 
decreased with increasing family structure and baseline population 
sample size, illustrated by a decreasing (narrower) 95% CI (Figure 5).

In the self-assignment test of empirical data, 97.8% of individuals 
were assigned to a putative source of origin (onCor excluded c. 2.2% 
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of individuals that were missing one or more genotype data, Table 
S8). The results from the self-assignment tests showed significant 
variation in average estimated accuracy between baselines (Kruskal-
Wallis chi-squared = 16.748, df = 3, p < .05) due to significant dif-
ferences between baselines EB2 (Large/Weak) & EB3 (Small/Strong) 

and EB3 (Small/Strong) & EB4 (Small/Weak) (multiple comparison 
test after Kruskal-Wallis, p < .05, Figure 5). The highest average es-
timated accuracy from self-assignment was obtained for EB3 (Small/
Strong) (96.0%) and lowest for EB4 (Small/Weak) (83.8%) baseline 
(Figure 5).

F I G U R E  3   Evaluation of baseline 
accuracy using 100% simulations in 
onCor. Results from empirical (left) and 
simulated (right) baselines ordered by 
increasing family structure in baselines 
from left to right. Average mean accuracy 
across populations within each baseline 
(with 95% CI) is shown [Colour figure can 
be viewed at wileyonlinelibrary.com]
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In simulated data, there were also significant variation in aver-
age estimated accuracy of self-assignment between levels of family 
structure within each size class (n = 75, 150, 300; Kruskal-Wallis chi-
squared, df = 3, p < .05), due to differences between weak and strong 
family structure. In contrast, no significant differences could be seen 
in estimated accuracy between baselines of different size but with 
the same level of family structure (multiple comparison test after 
Kruskal-Wallis, p > .05, Figure 5).

The IA of mixture samples of known origin (empirical: TS1 & TS2, 
simulated: TSS1 & TSS2) showed results similar to the MSA of the 
same mixture samples, with true accuracy decreasing with increasing 
family structure (Figure 6). Individual Assignment for the empirical 
test sample TS1 showed that the weak family structure baseline EB4 

(Small/Weak) resulted in a significantly higher true accuracy than the 
strong family structure baseline EB3 (Small/Strong) (Average true 
accuracy: 85% vs. 49%, Wilcoxon rank sum test; W = 15.5, p < .05, 
Figure 6). In addition, a lower number of mis-assigned fish was noted 
in IA with EB4 (Small/Weak) than with EB3 (Small/Strong) (Tables 
S5 and S6). Similarly, the IA of TS2 resulted in on average 79% and 
56% correctly assigned individuals for the eB4 (Small/Weak) and EB3 
(Small/Strong) baseline, respectively (Tables S7 and S8). However 
this difference was nonsignificant due to large 95% CI (Wilcoxon 
rank sum test, W = 27, p = .18).

Individual Assignment of simulated test samples (TSS1 & TSS2) 
showed a similar pattern as described above for empirical data. 
True accuracy decreased with increasing family structure, but in the 

F I G U R E  5   Evaluation of baseline 
accuracy using self-assignment 
procedures (leave-one-out) in onCor. 
Results from empirical (left) and simulated 
(right) baselines ordered by increasing 
family structure in baselines from left 
to right. An average of accuracy across 
populations within each baseline with 95% 
CI is shown [Colour figure can be viewed 
at wileyonlinelibrary.com]
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F I G U R E  6   Individual assignment (IA) 
of two test samples of known origin using 
onCor. Results from empirical (TS1, top left 
and TS2, bottom left) and simulated (TSS1, 
top right and TSS2, bottom right) data, 
ordered by increasing family structure in 
baselines from left to right. An average 
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with 95% CI is shown [Colour figure can be 
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larger baseline sample sizes (150 and 300 individuals) the decrease 
in true accuracy was only obvious for the strong family structure 
(Figure 6). Within each level of family structure, true accuracy was 
always highest for baselines with the largest baseline population 
sample size. For example, in the IA of TSS2, the average true accu-
racy when using a baseline with strong family structure was 55% 
for SB3 (Small/Strong) and 88% for SB9 (Large/Strong) (Figure 6). 
Plotting average accuracy versus. family structure by baseline pop-
ulation sample size illustrated further that the effect of increasing 
family structure was less pronounced at larger baseline population 
sample sizes (Figure 7). The relationship between true accuracy, 
family structure and baseline population sample size was also illus-
trated in a 3D plot with a regression plane (Figure 8). This showed 
how true accuracy decreased with increasing family structure, and 
at the same time that the effect was mitigated (at least partly) by an 
increasing baseline population sample size.

4  | DISCUSSION

In this study, we show that nonrepresentative family sampling lead-
ing to inclusion of close relatives in a genetic reference baseline 
may introduce biases when evaluating the contribution of different 
populations in mixed samples using mixed stock analysis (MSA) and 
when assigning individuals to putative sources of origin using indi-
vidual assignment (IA).

The influence of full-siblings in the reference baseline was sim-
ilar for analyses of both empirical and simulated genotypes, with 
larger bias in MSA and IA estimates with higher level of family struc-
ture. Using simulated data, we investigated if an increased baseline 
population sample size could mitigate this bias caused by family 
structure. This exercise showed that the bias was still apparent but 
indeed became less pronounced when baseline population sample 
sizes were larger. Although we did not evaluate consequences of in-
creasing baseline population sample sizes and the number of families 
included, we expect that to result in even higher precision without 

introduced bias as we have shown that both larger sample sizes and 
inclusion of more families both increase true accuracy. Hence, the 
true accuracy of MSA and IA seems to be affected by both family 
structure and baseline population sample size, where a strong family 
structure and small baseline population sample size gives lowest true 
accuracy and largest bias. Interestingly, we noted that compared to 
IA, MSA of test samples of known origin seemed to be less sensitive 
to family structure since the estimated proportions with their 95% CI 
usually included true proportions.

The reason why family structure induced a bias in MSA and IA 
is most certainly related to the methodology in these assignment 
techniques. The MSA relate genotypes in the mixture to expected 
genotype frequencies in the reference baseline population samples. 
Similarly, IA assigns individuals in a mixture sample to the baseline 
population sample that would have the highest probability of pro-
ducing the given genotype. If a baseline population sample consists 
of only a fraction of the actual population, as might be the case 
when family structure is present, reference allele frequencies may 
not be representative for the true population, resulting in biased 
assignment results. In particular, if baseline populations are weakly 
differentiated, unknown individuals might have higher likelihood to 
be assigned to “wrong” baseline population rather than to the biased 
fraction sampled from the correct one.

Another important finding in this study was that simulation tests, 
commonly used in GSI studies to initially evaluate accuracy and 
power estimates of baselines, resulted in incorrectly elevated esti-
mates of power and accuracy when the proportion of full-siblings in 
a baseline was high. For example, using the empirical baseline with 
strong family structure EB3 (Small/Strong) estimates of known mix-
tures gave a true accuracy of 20%–35% for the baseline population 
sample Ljusnan, whereas estimates of simulation tests using the 
same baseline suggested 100% estimated accuracy. Thus, accuracy 
was overestimated by ~70% when full-siblings were included. The 
reason for high estimated accuracy in simulation and self-assignment 
tests when family structure is strong is probably due to biased al-
lele frequencies and upwardly biased differentiation among baseline 

F I G U R E  7   Individual assignment (IA) 
of test sample of known origin (TSS2) 
using onCor. The average accuracy 
against family structure by size (n = 75, 
n = 150, n = 300 for the three panels, 
respectively) is shown with regression line 
per size [Colour figure can be viewed at 
wileyonlinelibrary.com] Family structure
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population samples, which in turn will lead to higher power of such 
tests (e.g., Hansen et al., 2001).

We also noted from the analyses of our simulated data that 100% 
simulations and self-assignment tests can be more reliable when in-
creasing the size of the baseline population samples. In baselines with 
strong family structure, bias was less pronounced when using a base-
line population sample size of, for example, 300 individuals compared 
to a baseline with only 75 individuals per baseline population sample, 
indicating that a larger representation of a population may improve 
these commonly used baseline evaluation tests. Nevertheless, our 
findings highlight the important contradicting results that family struc-
ture falsely improved results from accuracy tests and at the same time 
negatively affected GSI estimates of real data.

The question raised is how to handle full-siblings in GSI analysis? 
We conclude that family structure may often induce bias, so remov-
ing excessive full-siblings from baseline population samples appears 
warranted. At the same time, a large baseline population sample size 
is important for high accuracy of GSI estimates (e.g., Beacham et 
al., 2011; Hansen et al., 2001). Thus, accuracy in GSI analyses may 
often depend on a trade-off between baseline population sample 
size and keeping family structure at a low level. Increasing repre-
sentative (i.e., without surplus siblings) baseline population sample 
sizes seems to be the first alternative. However, researchers may 
often face additional complications like availability of samples, and/
or costs of sampling and genetic analysis, so improving the baseline 
by increasing its sample sizes might not always be an option, and 
indeed in studies of European salmon baseline sample size is often 
smaller than the optimum (Beacham et al., 2011).

Waples and Anderson (2017) evaluated effects on various down-
stream genetic analyses (but not assignment tests) of different ap-
proaches to reduce family structure in simulated data and one empirical 

example. They concluded that there is no one-size-fits-all method 
for choosing how many full-siblings to retain. Rather they suggested 
that researchers should be aware of potential effects in downstream 
genetic analysis, which could depend on the magnitude and distribu-
tion of family structure in their samples. In addition, it was suggested 
that keeping two individuals per full-sibling family seemed as a good 
compromise since that did not completely degrade the performance 
of allele frequency estimates, and yielded a higher effective sample 
size than when removing all but one full-sibling per family. Waples and 
Anderson (2017) further made the important point that the purpose 
of the study in question is important, as different scientific questions 
might lead to different conclusions regarding handling of siblings. For 
example, if the purpose is to produce estimates of the effective num-
ber of breeders that produced the sampled generation, one should 
take a large random sample and ignore any possible family structure.

To our knowledge, this study is the first to analyze the effect 
of family structure on GSI estimates using empirical genetic data. 
We also present a complementary simulation exercise. Based on 
our findings we recommend that baseline population samples 
should always be checked for existence of close relatives so that 
researchers become aware of the family structure in baseline 
population samples and can evaluate the consequences for GSI 
estimates (and accuracy tests). If family structure is strong in a 
baseline population sample, efforts to increase the number of 
representative individuals is recommended. If initial sample sizes 
are already large (say, >150) they may be reduced by excluding 
excessive full-siblings until at least a moderate family structure is 
achieved.
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