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A central question in evolution is how several adaptive phenotypes are maintained within a species. Theory predicts that the ge-

netic determination of a trait, and in particular the amounts of redundancy in the mapping of genotypes to phenotypes, mediates

evolutionary outcomes of phenotypic selection. In Mediterranean wild thyme, numerous discrete chemical phenotypes (chemo-

types) occur in close geographic proximity. Chemotypes are defined by the predominant monoterpene produced by individual

plants in their essential oil. In this study, we analyze the ecological genetics of six chemotypes nested within two well-established

chemical families (hereafter ecotypes). Ecotypes, and chemotypes within ecotypes, are spatially segregated, and their distribu-

tions track local differences in the abiotic environment. By combining population genomic, phenotypic, and environmental data

from 700 individuals, we show how the genetics of ecotype determination mediates this evolutionary response. Variation in three

terpene-synthase loci explains variation in ecotype identity, with one single locus accounting for as much as 78% of this variation.

Phenotypic selection combined with low segregating genotypic redundancy of ecotypes leaves a clear footprint at the genomic

level: alleles associated with ecotype identity track environmental variation despite extensive gene flow. Different chemotypes

within each ecotype differentially track environmental variation. Their identity is determined by multiple loci and displays a wider

range of genotypic redundancy that dilutes phenotypic selection on their characteristic alleles. Our study thus provides a novel

illustration of how genetic redundancy of a phenotype modulates the ability of selection to maintain adaptive differentiation.

Identifying the precise genetics of the chemical polymorphism in thyme is the next crucial step for our understanding of the origin

and maintenance of a polymorphism that is present in many aromatic plants.
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Impact Summary

Mediterranean aromatic shrubs in the Lamiaceae family

are famous for the diversity of their scents, and are used

both as culinary herbs and in the pharmaceutical industry.

Molecules—primarily monoterpenes—contained in their es-

sential oil confer the different scents. These monoterpenes

can provide a range of ecological functions including pro-

tection against herbivores and temperature and drought stress
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via their antioxidant properties and their ability to main-

tain functional cell membranes under stress. These protective

properties vary among monoterpenes and the identity of the

predominant monoterpene produced by a plant defines dis-

tinct chemical types (chemotypes). In its natural distribu-

tion, Thymus vulgaris (wild thyme) harbors several distinct

chemotypes whose spatial variation is associated with a varia-

tion in highly localized climatic conditions. The predominant

monoterpene is either a phenolic or a nonphenolic type. These

two types are ecotypes with adaptation to sites that can experi-

ence either mild or, in contrast, early, extreme winter freezing.

Chemical variation also exists within phenolic (two chemo-

types) and nonphenolic (four chemotypes) ecotypes and six

chemotypes frequently coexist on a landscape scale. We stud-

ied the ecological genomics of these chemotypes within an

area of 25 km2 in the South of France. To understand how

selection shapes the distribution of this polymorphism, it is

essential to know the genetic basis underlying chemical vari-

ation. Here, we show that genetic variants located in genes of

the monoterpene pathway explain a large fraction of chemo-

type variation, and that the genetic determination of ecotypes

can explain why close populations contain distinct ecotypes

despite extensive gene flow. This can also explain how eco-

types quickly responded to recent climate change. Identifying

candidate genes underlying chemotype variation in thyme will

provide the opportunity to dissect how this crucial chemical

polymorphism has arisen and diversified in aromatic plants.

How to maintain discrete stable phenotypes within a single

species is a long-standing conundrum for ecological and evolu-

tionary theory. Theories for the maintenance of different phe-

notypes abound and besides trivially re-introducing new types

by mutation several mechanisms have been proposed (Debarre

and Lenormand 2011). Negative frequency-dependent selection,

a fitness advantage to a locally rare type, automatically solves

the maintenance problem. Self-incompatibility alleles in an-

giosperms are a known example, where numerous (mating) types

are encoded by a single (super) locus; but examples of many (>2)

adaptive discrete phenotypes maintained by this mechanism are

few and far between; the Rock-Scissor-Paper dynamics in lizard

color morphs is one of the rare examples (Sinervo and Lively

1996). Another solution involves environmental heterogeneity,

with selection maintaining locally adapted alleles conferring al-

ternative phenotypes (Colosimo et al. 2004; Barrett et al. 2019).

Many models also illustrate how local selection can maintain phe-

notypic differentiation despite drift and the swamping effect of

migration (Savolainen et al. 2013; Yeaman 2015).

The genetic basis of phenotypic variation is critical here.

Whether one or many loci encode phenotype variation and

whether these loci segregate independently or as a single entity

(supergene) determines the likelihood of local selection maintain-

ing phenotypic variation in the face of gene flow. Theory suggests

that the number of genotypes that, at a given time, segregate in a

population and are phenotypically redundant, so called segregat-

ing redundancy, is a critical parameter governing both the pre-

dictability of evolution (Chevin et al. 2010; Lässig et al. 2017)

and the capacity of locally heterogenous selection to maintain

different adaptive phenotypes (Láruson et al. 2020). The level of

segregating (genotypic) redundancy determines in fact the inten-

sity of selection on individual alleles. Higher redundancy (sev-

eral different genotypes can produce the same phenotype) makes

it more difficult to either fix or eliminate individual alleles com-

pared to situations where alternative phenotypes are determined

by one or a few genotypes. Redundancy may also help maintain

phenotypic differentiation in the face of high gene flow, as several

genotypes producing the same adapted phenotype can contribute

to withstand swamping due to the immigration of divergent alle-

les (Láruson et al. 2020).

Studies on the genetics of ecologically important phenotypes

have, often conveniently, focused on cases of a single locus with

major phenotypic effect: for example, Eda locus in Sticklebacks

(Colosimo et al. 2004) and Agouti in Mice (Barret et al. 2019). As

Stinchcombe and Hoekstra (2008) and Sella and Barton (2019)

point out, this is at odds with the view that phenotypic varia-

tion in fitness-related traits is controlled by genetic variation at

a few (2-5) loci with major effects (oligogenic traits) or many

(>10) loci with small individual effects (polygenic traits). Sev-

eral decades of quantitative genetics on the model plant Ara-

bidopsis thaliana illustrate the challenges of studying the genetic

architecture of polygenic traits of ecological importance such as

flowering time (Zan and Carlborg 2019) or rosette growth (Wi-

eters et al. 2021). In such cases, many crosses (F2 or recombi-

nant inbreed lines) or numerous accessions in genome-wide as-

sociation studies are needed to detect genetic variants with small

effects.

Studying traits spanning a continuum of genetic architec-

tures is still, however, much needed to more broadly understand

how phenotypic variation is maintained and how natural selection

can change ecologically important traits (Láruson et al. 2020) and

thereby mediate evolutionary response. Here, we focus on a key

ecological trait with oligogenic inheritance: the chemical compo-

sition of volatile oils in aromatic plants. This type of variation

allows us to directly relate genotypes to alternative phenotypes

while moving away from a single locus case. In doing so, we

have been able to study the level of genetic redundancy of phe-

notype conditions and how phenotypic selection translates into

selection on individual alleles.

The evolutionary ecology of the Mediterranean aromatic

wild thyme (Thymus vulgaris) has been studied extensively for
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almost 50 years. Thymus vulgaris contains at least seven dis-

tinct chemical phenotypes (called chemotypes) (Saez and Stahl-

Biskup 2002), each chemotype producing a different predomi-

nant monoterpene, which represents 50–80% of the chemicals

in the essential oil (Thompson et al. 2003). In wild thyme,

the predominant monoterpene is either a phenolic or a non-

phenolic molecule. This distinction defines two ecotypes that

track variation in the abiotic environment: the phenolic eco-

type occurs in areas with milder winters and more severe sum-

mer drought than sites where the nonphenolic occurs (areas

with occasional severe early winter freezing [Gouyon et al.

1986; Thompson et al. 2007]). A local population is typi-

cally composed of one ecotype with one or two chemotypes;

when two chemotypes coexist, they are most often of the same

ecotype.

Long-term reciprocal transplant experiments have confirmed

the adaptive nature of phenolic and nonphenolic ecotypes to

the abiotic environment. At nonphenolic sites, fitness differences

were such that survival of nonphenolic transplants was more than

twice as high as that of phenolic transplants during a winter that

involved an early severe freezing event. At phenolic sites, the sur-

vival of phenolic transplants was likewise twofold higher than

the survival of nonphenolic chemotypes following the extremely

hot summer of 2003 (Thompson et al. 2007). Interestingly, in the

study area we present in this article, the lack of severe winter

frost in the last three decades is associated with an increase in

the frequency of the phenolic ecotype and serves as a dramatic

example of rapid phenotypic response to ongoing climate change

(Thompson et al. 2013).

In this study, we examine how genetic determination of

chemotypes and environmental variation contributes to main-

tain this striking polymorphism. Previous crossing experiments

demonstrated that chemotype variation is strongly heritable and

likely controlled by the segregation of genetic variants at rela-

tively few (5-6) independent loci with strong epistatic interac-

tions (Vernet et al. 1986). More recent studies point to an ef-

fect of gene dosage with quantitative effects within chemotypes

(Thompson et al. 2003). However, this polymorphism has never

been studied using a genomic approach, and the genetic poly-

morphism underlying chemical variation remains to be identi-

fied. Here, we combine population genomic data with phenotypic

and environmental data from 21 populations located at geograph-

ically close sites. Together, these naturally occurring populations

harbor six distinct chemotypes in two main ecotypes (Figure 1A).

Having so much phenotypic variation present in geographically

close sites is a unique situation: It allows to study single nu-

cleotide polymorphism (SNP) phenotype association and envi-

ronmental selection on many different types without the con-

founding effect of population genetic structure that often arises

at larger spatial scales.

Materials and Methods
PLANT MATERIAL

In June 2016, 21 sites were sampled within an area around the

village of Saint-Martin-de-Londres (Figure 1A). The sampling

of sites was based on prior knowledge of spatial chemotype vari-

ation in this area. Sites were chosen to maximize the diversity

of abiotic environment as well as to span the known spatial gra-

dient of chemotype diversity in the region. At each location, 12

individuals were randomly sampled, while ensuring that individ-

uals were growing at least 1.5 m apart. For each individual, fresh

leaves were gathered in sealed plastic bags and stored in cooling

bags until returned to the labs where samples were kept at −80°C

until DNA extraction. In addition, leaves (shoot tip 2 cm) for GC-

MS analysis were sampled in 1 mL of methanol. After 24 h, the

methanol extractions were transferred to fresh tubes and stored at

−80°C until analyzed on GC-MS.

PHENOTYPING: CHEMOTYPES

The chemotype of the plants sampled from the 21 sites (252

individuals) was determined as the identity of their predom-

inant monoterpene (either geraniol, alpha-terpineol, thuyanol,

linalool, carvacrol, or thymol) determined from GC-MS. In

brief, methanol extracted samples were analyzed on a Shimadzu

GCMS-QP21010 fitted with a flame ionization detector and a

fused silica capillary column SLB-MS (30 × 0.25 mm; 0.25-μm

thickness). Helium was used as a carrier gas. The compounds

were identified by comparing retention time and mass spectra

with standards from Mass Spectral Library.

To increase information on chemotype frequency within and

among sites, we added available data on individual plants sam-

pled from the same sites that were chemotyped just few years

prior to our sampling. Our dataset representing chemotype fre-

quency at the 21 sites thus consists of chemotype identity of 702

individual thyme plants: 252 individuals sampled in 2016 in this

study, and 450 individuals from 2013 (see Thompson et al. 2013

for details).

ENVIRONMENTAL VARIABLES

Soil variables
At each site, 1 kg of soil was collected with two to three differ-

ent representative samplings within each site. Soils were dried at

40°C for 48 h, sieved at 2 mm, and stored in a cool room prior to

analysis. Water retention potential was calculated as the percent-

age of water lost after drying a wet soil for 48 h at 40°C. Water

retention capacity was calculated as the percentage of water re-

maining in this previously 40°C-dried soil by a repeated drying of

the sample at 110°C for 5 h. Organic matter was estimated as the

percentage of matter lost after burning a dried sample at 500°C

during 5 h.
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Figure 1. Overview of locations and genetic differentiation. (A) Location of the 21 populations used for the study. Every population

(dot) is colored to represent the composition (P/NP) of proportion of phenolic ecotypes in each population, ranging from purely phenolic

(P: orange) to purely nonphenolic (NP: blue). Shades of gray depict elevation (altitude in meters above sea level). (B) First (PC1) and

second (PC2) principal components of SNPs variation. Every individual (dot) is colored by its ecotype identity (blue dots: nonphenolic;

orange dots: phenolic). (C) Boxplots depicting the distribution of Fst (n = 3920 SNPs) among sites (21 populations), ecotypes (phenolic vs.

nonphenolic), and among chemotypes (six different individual chemotypes). Triangles ticks denote the Fst values for three SNPs used to

build the genotype to ecotype map (Figure 3A). Note that other SNPs with high Fst display no phenotype associations.

Temperature variables
At each site, two data loggers were placed from January to Febru-

ary and from May to September. Data loggers were secured on

branches of thyme or other small shrubs about 20-40 cm above

the ground. Data loggers recorded temperature every 30 min. A

few data loggers were lost in the January-February period (Fig-

ure S1). After collecting data loggers, the recorded temperature

was extracted and, for each site, used to create the temperature

variables.

The individual variables used were percentage water in soil,

soil water retention and percentage organic matter in the soil

(“pctsoilwater,” “pctwaterret,” “pctorgmat”), the mean daily min-

imum and maximum temperature in winter (“mint”, “maxt”),

minimum temperature in the coldest month (“mintjan”), the num-

ber of days where moderate to strong freezing was recorded

(below −8°C, “freezemoderate”), the mean daily minimum

and maximum temperature in the summer (“maxsumt,” “mean-

sumt”), the number of days exceeding 40 or 45°C (“dayabove45,”

“dayabove40”), and the mean summer daily temperature ampli-

tude (“meansumamplit”). For summer temperature, we omitted

the data recorded between 12:00 p.m. and 04:00 p.m., as direct

sunlight may cause data loggers to record unusually high tem-

peratures not representative of the site. We checked that omitting

these time intervals did not alter the ranking of the warmest to

coldest sites.

LOCUS-TARGETED GENOTYPING

We used a locus-targeted genotyping by sequencing procedure.

A set of 20,000 DNA baits (myBaits, Arbor Biosciences) was

designed to target candidate genes previously identified by

transcriptome sequencing (Mollion et al. 2018), known genes

encoding enzymes of the monoterpene biosynthesis pathway
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previously identified in T. vulgaris or close relatives (Gen-

Bank Accessions: JF940523.1, KM272332.1, KM272331.1,

KU699534.1, KU699532.1, KU699531.1, KU699530.1,

KU699529.1, KR920616.1, KC461937.1, JX946358.1,

JX946357.1), along with 300 anonymous targets that were

genes identified by transcriptome sequencing but not expected to

be associated to phenotypes.

Plant DNA was extracted from 15 mg of fresh young

leaves. Genomic library preparation for multiplexed individuals

and enrichment step by bait capture follow published protocols

(Mascher et al. 2013) with some modifications. Briefly, for each

genotype a genomic barcoded library was built; 48 barcoded li-

braries were mixed together for the capture by hybridization step.

To increase the specificity of the enrichment step, we used a cap-

ture, washing, and recapture procedure. Captured DNA was se-

quenced by sets of 144 genotypes on two runs of HiSeq 3000

Illumina NGS sequencer (full protocol available as Methods in

the Supporting Information).

READ ALIGNMENT AND SNP CALLING

All reads were mapped using BWA (Li and Durbin 2009) against

a reference that comprises our full de novo transcriptome as-

sembly (Mollion et al. 2018) and GenBank reference sequences

from candidate genes (see list of accessions above). Each final se-

quence in the reference was tagged as either “full candidate” (FC:

transcriptome candidates of the GenBank sequences), “anony-

mous target” (AT), or “background” (BG). All bamfiles were

sorted and indexed, and PCR and optical duplicates were marked

using samtools before SNPs were called using read2snps version

2.0 (Gayral et al. 2013) and GATK version 3.8 (Van der Auw-

era 2013) using default settings. A set of individuals that were

independently baited/sequenced and processed were used to as-

sess the overall reliability of the SNP calling (see Methods in the

Supporting Information and Table S1).

PRINCIPAL COMPONENTS OF SNPs VARIATION AND

GENETIC DIFFERENTIATION

To summarize the patterns of genetic variation, we performed

a principal component analysis (PCA) on the genotypes scores

of all common SNPs. Each individual SNP genotype score was

centered and reduced before performing a PCA. A probabilistic

PCA, as implemented in the R package pcaMethods (Stacklies

et al. 2007), was used and 10 PCs were computed. The PCs were

used for accounting for population structure when detecting SNP-

phenotype (ecotype or chemotype) and SNP-environment associ-

ations.

To quantify genetic differentiation between population, eco-

type, and chemotypes, we estimated Fis and Fst via Weir and

Cockerham estimators using the R package NAM (Xavier et al.

2015) on the set of nonredundant SNPs. A set of nonredun-

dant 3920 SNPs was obtained using the quality control function

snpQC in the NAM package (requesting less than 50% missing

data per SNP, and excluding highly correlated SNPs, threshold

0.98). If two SNPs had at least 98% identical genotypes across

all individuals called, they were considered as redundant.

SNPs-ECOTYPE AND SNPs-CHEMOTYPE

ASSOCIATIONS

We tested for associations between the nonredundant 3920 SNPs

and chemotype (or ecotype) identity across the sample of indi-

viduals of the 21 sites. We evaluate association by comparing the

fit of two logistic regression models. The first is a background

model (M0) where five PCs of SNPs variation are used to predict

chemotype:

M0: binary chemotype ∼ PC1 + PC2 + PC3 + PC4 + PC5.

We expect M0 to have some predictive power because of

small genetic differentiation between populations and the fact

that populations differ for their ecotype (chemotype) composi-

tion.

The second model is a SNP model (M1) that also uses a sin-

gle SNP genotype (coded as 0, 1, 2) as predictor:

M1: binary chemotype ∼ PC1 + PC2 + PC3 + PC4 + PC5

+ SNP.

Models were fitted by maximum likelihood for each SNP as-

suming a binomial distribution for the binary phenotype identity

(Methods in the Supporting Information).

SEGREGATING REDUNDANCY UNDERLYING

DISCRETE PHENOTYPES

A set of T (possibly multilocus) genotypes Gi, i = 1, …, T, seg-

regate with genotypic frequency pi (
T∑

i = 1
pi = 1). A set of K dis-

crete phenotypes Pj , j = 1, …, K , are “encoded” by the set of T

genotypes G1, …, GT. We define a coefficient wi j that, for each

pair (Gi, Pj ), measures how strictly phenotype Pj is determined

(encoded) by genotype Gi. The genotype to phenotype map (en-

coding) can be genetically strict or loose depending on the ge-

netic architecture of the K phenotypes. We use the conditional

probability that genotype Gi will produce phenotype Pj to mea-

sure how strict is the genotype to phenotype map for a given Pj:

wi j = Prob (Pj |Gi )

Note that wi j = 1 captures the case where individuals with

a specific genotype Gi always produce phenotype Pj.

We measure segregating redundancy using a statistic analo-

gous to the effective number of genotypes (akin to Nei’s effective

number of alleles at a locus defined via Nei’s heterozygosity).

We use the phenotype-specific weighting wi j when calculating

the effective number of genotypes.
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We calculate a (weighted) genotypic diversity that is segre-

gating for determining each phenotype Pj as

Dj = 1 −
T∑

i = 1

ψ2
i j,

where ψi j = piwi j∑
i piwi j

.

The ψi js are estimated as the frequency of each genotype Gi

weighted by probability wi j that it will produce an individual with

phenotype Pj . If all possible genotypes have same probability to

produce Pj , then ψi j = pi.

The segregating redundancy for phenotype Pj , SR j , is the

effective number of genotypes encoding Pj :

SR j = 1

1 − Dj
.

If T genotypes can encode phenotype Pj , SR j will be max-

imal and equal to T when all T genotypes are equally frequent

and encode Pj with identical probability (ψi j = 1/T for all i).

If few genotypes Gi encode Pj with high probability or geno-

types have unbalanced frequencies, then SR j will be lower. The

minimum SR j is 1: this is the limit situation where despite the

fact that T genotypes coexist in the population only one genotype

is effectively “encoding” phenotype Pj . For a given amount of

phenotypic selection affecting phenotype Pj , SR j measures how

much phenotypic selection “percolates” at the genotype(s) level.

The SNPs-ecotype and the SNP-chemotype associations detected

were used to define multilocus genotypes. We use observed fre-

quency of genotypes and discrete phenotypes to estimate pis, the

wi j , ψi j , and SR js. Resampling (500 bootstraps at the individual

level) was used to obtain SEs around SR j estimates.

ECOTYPE/CHEMOTYPE-ENVIRONMENT ASSOCIATION

To characterize environment variation, we performed a PCA on

the centered and reduced environmental variables measured at the

21 sites. All environmental variables were centered and normal-

ized (to unit variance) before PCA. Principal component (PC)

1, PC2, and PC3 account for 45%, 28%, and 12%, respectively,

of the total variation measured across sites. PC1 correlated with

variables measuring winter freezing and PC2 strongly correlated

with the number of days exceeding 40°C (Figure S1).

We used a (multinomial) logistic regression where counts

of individuals in each ecotype (phenolic C, T vs. nonphenolic

G, aT, U, L) or all six chemotypes (G, aT, U, L, C, T) at each

site (using all 702 chemotyped individuals) are used as response

variables and the PCs of environment variation used as predic-

tors (De Mita et al. 2013). Likelihood ratio tests comparing the

deviance of models were used to obtain statistical significance

for the effect of the different (principal) components of environ-

ment variation on ecotype/chemotype distribution. Likelihood ra-

tio tests were conducted assuming that differences in likelihoods

are approximated by a chi-squared distribution (with P degrees

of freedom if models differ for P fitted parameters). To quantify

the amount of variation accounted for by each model, we used the

pseudo R2 computed as 1 – Dev(Mi)/Dev(M0), where Dev(Mi) is

the deviance of model Mi and Dev(M0) is the deviance of a model

with no predictors (merely fitting an intercept).

SNPs-ENVIRONMENT ASSOCIATION

We used a similar logistic regression framework as the one

described above for SNP-phenotype associations. Instead of

using phenotypes as response variables, we use variation of

SNP frequency from site to site as a response variable and

test whether SNPs covary with the environment measured us-

ing Environmental PC1 and PC2 (Methods in the Supporting

Information).

Results and Discussion
LOW GENETIC DIFFERENTIATION AMONG

POPULATION DESPITE STRIKING PHENOTYPIC

DIFFERENCES

Our genomic data were produced by the resequencing of tar-

get genomics regions (after enrichment of genomic DNA) in

252 individuals. The target regions are candidate genes of the

monoterpene biosynthesis pathway (14 genes) and a larger set

of anonymous genes (384 genes) that were previously charac-

terized by transcriptome sequencing (Mollion et al. 2018). Tar-

geted resequencing yielded an average coverage of 2.46 per in-

dividual in targeted regions and 0.007 in the rest of the map-

pable reference genome. This corresponds to a 300-fold cover-

age increase relative to the coverage we would have achieved

by whole genome resequencing without bait capture of targeted

regions.

We focused on 3920 SNPs that all had a frequency of the

rarest allele >0.1. This includes 98 SNPs anchored in genes

of the monoterpene biosynthesis pathway. Using a set of in-

dependent technical replicates (identical DNA but independent

library preparation, sequencing, reads mapping, and SNP call-

ing), these SNPs were shown to be highly reproducible ge-

netic variants (Methods in the Supporting Information and Ta-

ble S1). All the analysis presented here rely on this set of

SNPs.

Genetic differentiation among sites, measured by average

genome differentiation at the 3920 SNPs, is very low (Fst be-

tween sites: 0.021 ± 0.003), and is even lower between eco-

types (Fst between ecotypes: 0.004 ± 0.0002; Figure 1B,C). This

confirms, at a genome-wide scale, previous interpretations based

on analyses of allozyme loci (Thompson 2020). A striking spa-

tial structure in the distribution of ecotypes is maintained over

a small geographic scale despite very low genetic differentiation
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Table 1. Association of ecotypes and chemotypes with environment after accounting for genetic drift.

Models Fitted
a

All Chemotypes Ecotypes G aT U L C T

Dev(Null) 853.30 103.66 62.36 52.64 69.01 85.00 102.64 104.36
Dev(Genetic Drift) 737.16 95.71 35.78 46.16 54.24 65.95 76.39 98.07
Dev(Genetic Drift + Environment) 569.84 79.91 34.19 28.07 28.72 56.19 51.30 83.31
R2 genetic drift 0.14 0.08 0.43 0.12 0.21 0.22 0.26 0.06
R2 genetic drift + environment 0.33 0.23 0.45 0.47 0.58 0.34 0.50 0.20

aModels fitted: “Genetic Drift” model uses five PCs of SNPs variation and the “Genetic Drift + Environment” model uses five PCs of SNPs and three PCs of

environmental variation to predict the distribution of all chemotypes jointly (multinomial logistic regression). Individual ecotype or chemotype: G, aT, U, L,

C, and T. Dev() refers to the deviance of each model.

R2 are pseudo R2 quantifying the percent of variation explained by genetic drift and by genetic drift and environment combined. These are calculated as

1 – Dev(Genetic Drift)/Dev(Null), and as 1 – Dev(Genetic Drift + Environment)/Dev(Null), where Dev() is the deviance of each model.

among populations of the two ecotypes. Within sites, deviation

from random mating, as measured by Fis, is negligeable (mean

Fis = 0.01 ± 0.005).

We quantified the relative contribution of local genetic drift

and environmental variation to variation in phenotypes across

populations using PCA of the SNP variation as predictors of dif-

ferentiation between populations (local genetic drift) and PCs of

abiotic variation as predictors of environmental variation. A first

model (Genetic Drift) is fitted using only SNPs PCs as predic-

tor of phenotypes composition. A model featuring both SNPs

and environment PCs (Genetic Drift + Environment) is then fit-

ted and the extra fit provided by this model is our measure of

the importance of the environment (beyond any effects of lo-

cal drift). Examining how these two sets of predictors explain

variation across populations on ecotype distribution showed a

large effect of environmental variation (Table 1). Repeating the

same analysis for individual chemotypes revealed that a sizeable

proportion (10–20%) of the distribution of individual chemo-

types across populations is explained by environmental variation,

with a comparatively smaller effect of genetic drift (Table 1).

Individual chemotypes within an ecotype are not interchange-

able and differentially track environmental variation (Figure 2;

Table 1).

ECOTYPE VARIATION ASSOCIATES TIGHTLY WITH

GENETIC VARIATION AT THREE CANDIDATE LOCI

Using a logistic regression framework accounting for the under-

lying weak population structure (Figure 1B,C), and a conserva-

tive Bonferroni correction to account for multiple testing (re-

questing P < 0.05/3920 at individual SNPs), we show that eco-

type identity (phenolic vs. nonphenolic) strongly associates with

variation at three genetic loci.

An SNP in one single gene—homologous to a linalool

synthase—explains 78% of the observed ecotypic variation

between individuals. SNPs located within two additional genes

(homologous to two gamma-terpinene synthases) are also

strongly associated with ecotypes (both P < 10−8), but with

more modest apparent effects (Figure 3A; Table 2). The three

SNPs displaying the strongest associations (Table 2A) exhibit

some statistical pairwise association (r2 between genotypes rang-

ing from 0.1 to 0.42). All pairwise genotype disequilibria involv-

ing these three SNPs are statistically significant (by a Fisher’s

exact test, all P-values <0.00002), suggesting physical linkage

between the three genes; although we do not have a whole

genome assembly to estimate the actual physical distance be-

tween these genes. The presence of mild to strong statistical as-

sociations between the top three SNPs precludes us from pars-

ing the associations we detect into reliable SNPs-specific pheno-

typic effects and estimating how many causal variants (at least

one and up to three) may be responsible for these SNP-ecotypes

associations. Alternatively, the maintenance of strong genotypes

disequilibrium we observe could also reflect epistatic selec-

tion acting to maintain associations between these three SNPs

genotypes.

A model combining these three loci genotypes accounts for

virtually all ecotype variations as illustrated by the near per-

fect co-segregation between the three loci genotypes and ecotype

identity (Figure 3A). This is consistent with the heritable and oli-

gogenic control of the polymorphism (Vernet et al. 1986). For two

of these loci, no individuals are homozygous genotypes for the

rarest allele detected, but these loci do not exhibit abnormal Fis

values (Table S2). Independent sequencing and genotyping of 23

individuals confirms that this is not an artifact of poor genotyping

at these SNPs (Methods in the Supporting Information and Table

S1). The three SNPs displaying the strongest statistical associa-

tion with ecotype variation are also among the SNPs exhibiting

the highest genetic differentiation among sites (Figure 1A), con-

sistent with the interpretation of local environmental selection on

ecotypes.
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Figure 2. Phenotype-environment reaction norms. Each dot represents the observed population frequency of phenotypes (either eco-

types in panels A and B or chemotypes in panels C-F) as a function of the environment measured in a given site (measured through

either PC1 or PC2 of a PCA on environment variables). Lines indicate predictions from logistic regression. Color of line indicates ecotypes’

identity (in panels A and B): phenolic (orange), nonphenolic (cornflower blue), and chemotypes (in panels C-F): G (magenta), aT (blue),

U (green), L (gray), C (red), and T (yellow). Note that in panels A and B, observed frequencies (and fits) of phenolic and nonphenolic are

mirror image as these are mutually exclusive phenotypes.
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Figure 3. Genotype to phenotype maps: Ecotypes and chemotypes. (A) Genotype to ecotype map (based on n = 237 individuals). The

three-loci genotypes are built using sequentially the three SNPs with the strongest associations (Table 2, Panel A). Count refers to the

number of individuals in each category. 0, 1, and 2 denote the three possible genotypes at each SNP (0 and 2 are genotypes homozygous

for the reference and alternative allele; 1 is the heterozygous genotype). (B) Genotype to chemotype map (based on n = 179 individuals).

Six-loci genotypes are built using the six SNPs with the strongest associations (using sequentially the SNPs reported in Table 2, Panel B).

Counts refers to the number of individuals in each six-loci genotype category. Colors indicate chemotype identity.

CHEMOTYPE VARIATION IS MORE DIFFUSE AND

HARBORS CONSIDERABLE GENOTYPIC

REDUNDANCY

The chemotypes show very low overall genetic differentiation

(mean Fst among chemotypes = 0.007 ± 0.0003; Figure 1C).

We tested for associations between genetic variants (SNPs) and

individual chemotype identity. When using the logistic regression

described above along with the same conservative threshold for

significance (P < 0.05/3920), we detected the same three vari-

ants already associated with ecotype differences, as well as ad-

ditional SNPs located in three independent genes that strongly

associate with individual chemotypes. The SNPs that display the

strongest associations with individual chemotype identity are lo-

cated within six genes all identified as homologs for previously

reported enzymes of the monoterpene biosynthetic pathway (Ta-

ble 2). Collectively, 45% of the variation in chemotype identity
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Table 2. Summary of top SNP-ecotype and SNP-chemotype associations.

Panel A: Top three SNPs-ecotype associations
Contig/SNP position on
contig

Gene function (by
homology)

a
R2b

P-value

Contig71000/648 Linalool synthase 0.78 6.42 × 10–54

Contig12377/126 Gamma-terpinene
synthase

0.45 9.89 × 10–31

KR920616.1/174 Gamma-terpinene
synthase

0.18 4.02 × 10–13

Panel B: Top six SNPs-chemotype associations. Numbers in each chemotype column refer to the P-value for a test of
SNP-chemotype identity associations.

Individual chemotype

Gene/SNP position on
gene

Putative gene
function C T G aT U L

Contig71000/648 Linalool synthase 2.68 × 10–9 3.06 × 10–24 8.59 × 10–5 4.95 × 10–6 5.13 × 10–8 7.9 × 10–23

Contig12377/126 Gamma-terpinene
synthase

0.000264 1.59 × 10–19 0.205 0.246 0.125 1.52 × 10–30

KR920616.1/174 Gamma-terpinene
synthase

0.0017 8.04 × 10–8 5.37 × 10–10 2.62 × 10–10 6.44 × 10–14 1.6 × 10–5

JX946358.1/1452 Sabinene hydrate
synthase

0.0195 0.00845 0.181 0.25 1.8 × 10–12 0.151

KC461937.1/1279 Alpha terpineol
synthase

0.454 0.542 0.045 1.22 × 10–7 0.00998 0.869

KM272332.1/359 Limonene-3-
hydroxylase

2.36 × 10–27 5.01 × 10–13 0.0382 0.968 0.269 0.00065

a
Most probable gene function inferred via sequence homology at the nucleotide level for contigs: Contig71000 has strong homology (96.4% and 97.1%

nucleotide identity) to Thymus vulgaris terpene synthase sequences (tps3 96.39% GenBank accession JX997982.1, tps4 97.08% accession JX997983.1); Con-

tig12377 has strong homology to a Thymus vulgaris γ-terpene synthase 2 (tps2) mRNA, complete cds (2699 nucleotides with 99.53% sequence identity to

JX997981.1, 99.46% to MH686200.1).
b
R2: individual (pseudo) R2 associated with the effect of a variant (obtained from the deviance of a model including five PCs of SNPs variation + a candidate

SNP relative to a null model only including five PCs of SNPs variation).

can be explained by SNP variation in these six loci (Figure 3B).

The six SNPs that have the strongest association with chemo-

types were also among the SNPs that showed most differentia-

tion among sites (Figure 1C), suggesting that although gene flow

among populations is high, heterogeneous selection imposed by

the local abiotic environment contributes to spatial segregation of

chemotypes within ecotypes.

MEASURING SEGREGATING GENETIC REDUNDANCY

We propose a measure of segregating redundancy inspired by re-

cent work on genetic redundancy (Láruson et al. 2020), which

primarily focused on continuous and potentially highly polygenic

phenotypes. Here, we quantify segregating redundancy for dis-

crete phenotypes. The discrete phenotypes can be either alterna-

tive ecotypes (phenolic and nonphenolic) or individual chemo-

types (G, aT, U, L, C, and T). Given that selection operates on

phenotypes, a segregating genetic redundancy measure should

capture how many segregating entities (alleles at a single locus

or in our case multilocus genotypes) underly phenotypic varia-

tion.

We measure segregating redundancy as the effective num-

ber of genotypes underlying each discrete phenotype, akin to

an effective number of alleles at a locus. The effective num-

ber of genotypes is estimated using frequencies of alternative

genotypes that can produce a given phenotype weighted by

how much a genotype is determining the phenotype (meth-

ods). We use the observed phenotype-specific weighting of each

genotype when calculating the effective number of genotypes

(Table 3).

Very few distinct genotypes account for ecotype variation

(Figure 3A). Accordingly, segregating genetic redundancy is

low with 3.53 and 1.64 genotypes effectively determining the

nonphenolic and phenolic ecotype, respectively (Table 3). Low
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Table 3. Segregating redundancy (SR) of ecotypes and chemo-

types.

Ecotypes SR SE(SR)

Phenolic 1.64 0.13
Nonphenolic 3.53 0.25
Chemotypes
G 3.31 0.66
aT 2.89 0.86
U 2.26 0.51
L 6.57 1.12
C 8.18 1.38
T 4.36 0.56

Note: Segregating redundancies (SRs) of ecotypes and chemotypes are com-

puted using the frequencies of the three and six-loci genotypes (built using

the SNPs reported in Table 2, Panels A and B) and the genotypes to pheno-

types relationships pictured in Figure 3A,B. SEs are based on 500 bootstraps

at the individual level.

segregating redundancy means in turn that strong phenotypic

selection translates into strong selection on individual geno-

types. This explains how differentiation of ecotypes among pop-

ulations in different abiotic environments can be maintained

despite considerable gene flow across the spatial scale we

study.

In contrast, the number of effectively segregating geno-

types of each chemotype is considerably higher than for ecotypes

(Figure 3B; Table 3): the “U” chemotype for instance has the low-

est estimated redundancy (SR = 2.25 ± 0.51), whereas the “C”

chemotype has a segregating redundancy that is more than three

times higher (SR = 8.18 ± 1.38). We emphasize that, for the indi-

vidual chemotype identity, genetic redundancy is underestimated

as the six-loci genotypes we use (Figure 3B) can only account for

45% of observed individual variation in chemotype identity.

EFFECTS OF SELECTION DEPEND ON PHENOTYPE

GENETIC ARCHITECTURE AND REDUNDANCY

As ecotypes, and chemotypes nested within ecotypes, track envi-

ronmental variation, we expect genetic variants underlying this

phenotypic variation to be associated with the environmental

variation. We thus examined the extent to which SNPs were as-

sociated with environmental variation. The SNP-environment co-

variation measures the efficacy of ongoing selection to segregate

alleles spatially despite the homogenizing effect of gene flow. To

do so, we tested whether SNPs frequencies covary with the PC1

and PC2 axes of environmental variation that account for 45%

and 28%, respectively, of the total abiotic environmental variation

we measured (Figure S1). Using a logistic regression framework

that accounts for local genetic differences, we found only a few

SNPs with suggestive SNP-environment associations (Figure 4),

Figure 4. SNP-environment associations. Manhattan plots depict

–log10(P-value) for tests for the SNP-EnvPC1 (A) and SNP-EnvPC2

(B) associations. Orange dots denote the three SNPs in Table 2,

Panel A used to build the genotype to ecotype map (Figure 3A).

For graphical convenience, only P-values <0.75 are depicted (so in

Figure 4B, one of the orange dots is not displayed).

but none of these are statistically significant after correction for

multiple testing across all SNPs.

Among the six major SNPs determining eco- and chemotype

identity (Table 2; Figure 3A,B), the three SNPs that explain eco-

type identity are those with the strongest changes in allele fre-

quency across environment (Figure S2; Table S3). These SNPs

(Contig71000, and especially Contig12377 and KR920616.1; Ta-

ble 2) show associations with the abiotic environmental variation

captured by PC1 axis of environmental variation. This is expected

given that the frequency of the two phenolic chemotypes, car-

vacrol and to a lesser extent thymol, covary with the PC1 axis:

phenolic types are rare in populations located at sites with high

values of environmental PC1 (Figure 2C), which corresponds to

harsh winters (Figure S1).

Our study relies on environmental variation at 21 sites and

lacks statistical power to detect weaker SNP-environment asso-

ciations. It may further be argued that some SNP-chemotype
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associations could be caused by population structure not ac-

counted for by the five SNP PCs. However, these associa-

tions still hold even when accounting for population struc-

ture by using up to 10 SNP PCs (Figure S3). Moreover, if

such associations were a mere artifact of population struc-

ture (Figure S4), we would not expect SNPs that are associ-

ated with particular ecotypes or chemotypes to be located in

genes of the monoterpene pathway, as invariably found in our

study.

In contrast to results for ecotypes, the frequency of SNPs

displaying strong associations with chemotype identity had much

weaker associations with environmental variables. Theory pre-

dicts that the effect of selection on a locus controlling phenotypic

variation for a fitness related trait can be influenced by selection

jointly acting on other loci (Chevin and Hospital 2008; Chevin

2019), and that redundancy has a profound impact on the evo-

lution of polymorphisms (Láruson et al. 2020). The amount of

segregating genotypic redundancy controls how phenotypic se-

lection will leave (or not) detectable footprints at the genome

level. In our study system, ecotypes are determined by few loci

and low segregating genotypic redundancy (Figure 3A), whereas

chemotype determination involves more loci and more variable

segregating genotypic redundancy (Figure 3B). The consequence

of this is that genetic variation at the loci contributing to eco-

typic variation more closely aligns with environmental variation,

and the signal is much weaker at the loci that account for a com-

paratively smaller fraction of chemotype variation. In addition to

affecting how phenotypic selection may leave a detectable foot-

print at the genomic level, genotypic redundancy may also pro-

vide robustness to swamping by migrating alleles. This may con-

tribute to maintain the high number and spatial distribution of

chemotypes despite the high gene flow observed in our study

region.

Conclusion and Perspectives
We demonstrate in this study how ecotypic differentiation can be

maintained in the face of considerable gene flow. Ecotype iden-

tity is under oligogenic control and variation at a single gene ex-

plains the majority of ecotype variation. This has consequences

for how selection operates on phenotypic variation to maintain

adaptive differentiation. Loci accounting for most of the herita-

ble variation in a fitness-related trait undergo the strongest se-

lection at the genotype level (Chevin and Hospital 2008; Chevin

2019). Accordingly, allele frequencies of SNPs located in the

three genes for ecotype differentiation also covary with the en-

vironmental variation (env PC1) that is tracked by ecotypes. The

finding of major effect genes, combined with low genotype to

ecotype segregating redundancy, can explain the rapid increase

in the frequency of the phenolic ecotype documented in the same

study region over the last 50 years and hypothesized to be driven

by recent climatic warming (Thompson et al. 2013).

The chemotypes that we studied are also found in many other

species of Thymus and other Lamiaceae genera. The ecological

roles of monoterpenes are manifold and include deterrence of

herbivores (Linhart and Thompson 1999; Gershenzon and Du-

dareva 2007; Ehlers et al. 2020), allelopathy (Gershenzon and

Dudareva 2007; Ehlers et al. 2014), and protection against abi-

otic stress (Possel and Loreto 2013). Thyme is also a “commu-

nity engineer”: leaching of chemicals from leaves modifies the

local soil environment and in turn the neighboring plant commu-

nity, and these effects vary with the identity of the monoterpene

(Ehlers and Thompson 2004; Grøndahl and Ehlers 2008; Ehlers

et al. 2016). Unravelling the genetics of this variation is a first

step toward understanding the origin and maintenance of this key

polymorphism that has ecologically important effects on commu-

nity dynamics.

ACKNOWLEDGMENTS
The authors thank R. Kassen for his comments on the manuscript and T.
Lenormand, M. Schierup, and R. Kassen for helpful discussions about
this work.

AUTHOR CONTRIBUTIONS
TB, BE, and JT conceptualized the idea of the study. TB, BE, PG,

and SS performed investigation. TB, BE, PG, and PV curated the data.
SS designed methodology. TB and PV performed formal analysis. TB,
BE, and JT wrote the original draft. All authors reviewed and edited the
manuscript. TB and BE acquired funding.

DATA ARCHIVING
Data and code used for analysis are available on Dryad. https://doi.

org/10.5061/dryad.fj6q573wm

CONFLICT OF INTEREST
The authors declare no conflict of interest.

LITERATURE CITED
Barrett, R. D. H., Laurent, S., Mallarino, R., Pfeifer, S. P., Xu, C. C. Y., Foll,

M., et al. (2019). Linking a mutation to survival in wild mice. Science,
363: 499–504.

Chevin, L.-M. (2019). Selective sweep at a QTL in a randomly fluctuating
environment. Genetics, 213. 987–1005.

Chevin, L.-M., & Hospital, F. (2008). Selective sweep at a quantitative trait
locus in the presence of background genetic variation. Genetics, 180.
1645–1660.

Chevin, L.-M., Martin, G., & Lenormand, T. (2010). Fisher’s model and the
genomics of adaptation: restricted pleiotropy, heterogenous mutation,
and parallel evolution. Evolution, 64. 3213–3231.

Colosimo, P.F., Peichel, C. L., Nereng, K., Blackman, B.K., Shapiro, M.
D., Schluter, D., et al. (2004). The genetic architecture of paral-
lel armor plate reduction in threespine sticklebacks. Plos Biology,
2. e109.

200 EVOLUTION LETTERS APRIL 2022

https://doi.org/10.5061/dryad.fj6q573wm
https://doi.org/10.5061/dryad.fj6q573wm


FROM GENOTYPE TO PHENOTYPE

De Mita, S., Thuillet, A.-C., Gay, L., Ahmadi, N., Manel, S., Ronfort, J., et al.
(2013). Detecting selection along environmental gradients: analysis of
eight methods and their effectiveness for outbreeding and selfing popu-
lations. Molecular Ecology, 22. 1383–1399.

Débarre, F., & Lenormand, T. (2011.). Distance-limited dispersal promotes
coexistence at habitat boundaries: reconsidering the competitive exclu-
sion principle. Ecology Letters, 14. 260–266.

Ehlers, B. K. & Thompson, J. (2004). Do co-occurring plant species adapt to
one another? The response of Bromus erectus to the presence of differ-
ent Thymus vulgaris chemotypes. Oecologia, 141. 511–518.

Ehlers, B. K., Charpentier, A. & Grøndahl, E. (2014). An allelopathic plant fa-
cilitates species richness in the Mediterranean garrigue. Journal of Ecol-
ogy, 102. 176–185

Ehlers, B. K., Berg, M. P., Staudt, M., Holmstrup, M., Glasius, M., Ellers,
J., et al. (2020). Plant secondary compounds in soil and their role in
belowground species interactions. Trends in Ecology & Evolution, 35.
716–730.

Ehlers, B. K., David, P., Damgaard, C. F. & Lenormand, T. (2016). Competi-
tor relatedness, indirect soil effects and plant coexistence. Journal of
Ecology, 104. 1126–1135.

Gayral, P., Melo-Ferreira, J., Glémin, S., Bierne, N., Carneiro, M., Nab-
holz, B., et al. (2013). Reference-free population genomics from next-
generation transcriptome data and the vertebrate-invertebrate gap. Plos
Genetics, 9, e1003457.

Gershenzon, J. & Dudareva, N. (2007). The function of terpene natural prod-
ucts in the natural world. Nature Chemical Biology, 3. 408–414.

Gouyon, P. H., Vernet, P. H, Guillerm, J. L. & Valdeyron, G. (1986). Polymor-
phisms and environment: the adaptive value of the oil polymorphisms
in Thymus vulgaris L. Heredity, 57. 59–66

Grøndahl, E. & Ehlers, B. K. (2008). Local adaptation to biotic effects: re-
ciprocal transplants of species associated with aromatic Thymus pule-

gioides and T. serpyllum. Journal of Ecology, 96. 981–992.
Láruson, A. J., Yeaman, S. & Lotterhos, K. E. (2020). The importance of

genetic redundancy in evolution. Trends in Ecology & Evolution, 35.
809–822.

Li, H. & Durbin, R. 2009. Fast and accurate short read alignment with
Burrows-Wheeler transform. Bioinformatics, 25. 1754–1760.

Lässig, M., Mustonen, V. & Walczak, A. M. (2017). Predicting evolution.
Nature Ecology & Evolution, 1. 77.

Linhart, Y. B. & Thompson, J. D. (1999). Thyme is of the essence: biochem-
ical polymorphism and multi-species deterrence. Evolutionary Ecology
Research 1. 151–171

Mascher, M., Richmond, T. A., Gerhardt, D. J., Himmelbach, A., Clissold,
L., Sampath, D., et al. (2013). Barley whole exome capture: a tool for
genomic research in the genus Hordeum and beyond. Plant Journal, 76.
494–505.

Mollion, M., Ehlers, B. K., Figuet, E., Santoni, S., Lenormand, T., Mau-
rice, S., et al. (2018). Patterns of genome-wide nucleotide diversity
in the gynodioecious plant Thymus vulgaris are compatible with re-
cent sweeps of cytoplasmic genes. Genome Biology and Evolution, 10,
239–248.

Possel, L., & Loreto, F. (2013). The role of volatiles organic compounds
in plant resistance to abiotic stressors: responses and mechanisms.

In Niinemets, U. & Monson, R., (Eds.) Biology, control and mod-
els of tree volatile organic compound emission. Berlin: Springer, pp.
209–235.

Saez, F., & Stahl-Biskup, E. (2002). Essential oil polymorphism in the genus
Thymus. In Stahl-Biskup, E. & Sáez, F., (Eds.) The genus Thymus.
Lond: Taylor Francis, pp. 125–143.

Savolainen, O., Lascoux, M. & Merilä, J. (2013). Ecological genomics of
local adaptation. Nature Reviews Genetics, 14. 807–820.

Sinervo, B. & Lively, C. M. (1996). The rock–paper–scissors game
and the evolution of alternative male strategies. Nature, 380.
240–243.

Sella, G., & Barton, N. H. (2019). Thinking about the evolution of com-
plex traits in the era of genome-wide association studies. Ann. Rev.
Genomics Hum. Genet., 20. 461–493.

Stacklies, W., Redestig, H., Scholz, M., Walther, D. & Selbig, J. (2007).
pcaMethods – a bioconductor package providing PCA methods for in-
complete data. Bioinformatics, 23. 1164–1167.

Stinchcombe, J. R. & Hoekstra, H. E. (2008). Combining population ge-
nomics and quantitative genetics: finding the genes underlying ecologi-
cally important traits. Heredity, 100. 158–170.

Thompson, J. D., Chalchat, J.-C., Michet, A., Linhart, Y. B. &
Ehlers, B. (2003). Qualitative and quantitative variation in monoter-
pene co-occurrence and composition in the essential oil of Thy-

mus vulgaris chemotypes. Journal of Chemical Ecology, 29.
859–880.

Thompson, J. D., Gauthier, P., Amiot, J., Ehlers, B. K., Collin, C., Fos-
sat, J., et al. (2007). Local adaptation in a chemically polymorphic
plant: the relative performance of Thymus vulgaris chemotypes in
a spatially heterogeneous environment. Ecological Monographs, 77.
421–439.

Thompson, J., Charpentier, A., Bouguet, G., Charmasson, F., Roset, S.,
Buatois, B., et al. (2013). Evolution of a genetic polymorphism
with climate change in a Mediterranean landscape. Proceedings
of the National Academy of Sciences of the United States, 110.
2893–2897.

Thompson, J. D. (2020). Plant evolution in the Mediterranean: insights for

conservation. Oxford, U.K.: Oxford Univ. Press.
Vernet, P. H., Gouyon, R. H. & Valdeyron, G. (1986). Genetic control of the

oil content in Thymus vulgaris L.: a case of polymorphism in a biosyn-
thetic chain. Genetica, 69. 227–231.

Van der Auwera, G. A. (2013). From FastQ data to high-confidence variant
calls: the genome analysis toolkit best practices pipeline. Current Pro-
tocols in Bioinformatics, 43. 11.10.1–11.10.33.

Wieters, B., Steige, K. A., He, F., Koch, E. M., Ramos-Onsins, S. E., Gu,
H., et al. (2021). Polygenic adaptation of rosette growth in Arabidopsis

thaliana. Plos Genetics, 17. e1008748.
Xavier, A., Xu, S., Muir, W. M. & Rainey, K. M. (2015). NAM: association

studies in multiple populations. Bioinformatics, 31. 3862–3864.
Yeaman, S. 2015. Local adaptation by alleles of small effect. Am. Nat, 186.

S74–S89.
Zan, Y., Carlborg, Ö. (2019). A polygenic genetic architecture of flowering

time in the worldwide Arabidopsis thaliana population. Molecular biol-
ogy and evolution, 36. 141–154.

EVOLUTION LETTERS APRIL 2022 201



T. BATAILLON ET AL.

Supporting Information
Additional supporting information may be found online in the Supporting Information section at the end of the article.

Fig. S1. A: Projection of individual environmental variables on principal components of environmental variation. B: Correlation between PC1 and the
minimum temperature registered in January. C: Correlation between PC2 and the number of days with temperature exceeding 40 degrees C.
Fig. S2. SNPs frequency clines along environment gradient at 6 SNPs explaining ecotype and chemotype identity. Environmental variation is measured
using the first principal component of environmental variation.
Fig. S3. Robustness of PCs correction for population structure when detecting associations.
Fig. S4. SNPs PCs colored by site of origin of individuals.
Table S1. Repeatability of SNPs genotyping
Table S2. sample size, Fis and Fst at the top 6 candidate loci
Table S3. Effect of environment on change in allele frequency at 6 SNPs with the strongest associations to ecotype and chemotype identity.
Table S4 Model comparison for genotype- ecotype associations using 5 or 10 PCs.
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