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Abstract

Background

Gene-environment interactions mediate through the placenta and shape the fetal brain
development. Between the environmental determinants of the fetal brain, maternal psycho-
social stress in pregnancy has been shown to negatively influence the infant temperament
development. This in turn may have adverse consequences on the infant neurodevelop-
ment extending throughout the entire life-span. However little is known about the underlying
biological mechanisms of the effects of maternal psychosocial stress in pregnancy on infant
temperament. Environmental stressors such as maternal psychosocial stress in pregnancy
activate the stress response cascade that in turn drives the increase in the cellular energy
demand of vital organs with high metabolic rates such as, in pregnancy, the placenta. Key
players of the stress response cascade are the mitochondria.

Results

Here, we tested the expression of all 13 protein-coding genes encoded by the mitochondria
in 108 placenta samples from the Stress in Pregnancy birth cohort, a study that aims at
determining the influence of in utero exposure to maternal psychosocial stress in pregnancy
on infant temperament. We showed that the expression of the protein-coding mitochondrial-
encoded gene MT-ND2 was positively associated with indices of maternal psychosocial
stress in pregnancy including Prenatal Perceived Stress (8 = 0.259; p-regression = 0.004;
r’-regression = 0.120), State Anxiety (B = 0.218; p-regression = 0.003; r*-regression =
0.153), Trait Anxiety (B = 0.262; p-regression = 0.003; r*-regression = 0.129) and Preg-
nancy Anxiety Total (B = 0.208; p-regression = 0.010; r*-regression = 0.103). In the mean-
time MT-ND2 was negatively associated with the infant temperament indices of Activity
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Level (B = -0.257; p-regression = 0.008; r>-regression = 0.165) and Smile and Laughter (8 =
-0.286; p-regression = 0.036; r*-regression = 0.082). Additionally, MT-ND6 was associated
with the maternal psychosocial stress in pregnancy index of Prenatal Perceived Stress (8 =
-0.231; p-regression = 0.004; r2-regression =0.120), while MT-CO2 was associated with
the maternal psychosocial stress in pregnancy indices of State Anxiety (B = 0.206; p-regres-
sion = 0.003; r*-regression = 0.153) and Trait Anxiety (8 = 0.205; p-regression = 0.003; r*-
regression = 0.129).

Conclusions

Our data support the role of mitochondria in responding to maternal psychosocial stress in
pregnancy, as assessed in placenta, while also suggesting an important role for the mito-
chondria in the infant temperament development.

Introduction

Gene-environment interactions are considered more powerful in determining the phenotype
as they occur at earlier stages of development triggering both the increase in incidence and the
earlier onset of many developmental disorders, including infant temperament disorders [1, 2,
3]. The period of intrauterine development is probably the most critical that can influence
infant temperament and neurodevelopment affecting the offspring throughout the entire life
[4,5,6,7,8].

Maternal psychosocial stress in pregnancy (MPSP) is considered a powerful environmental
determinant of the infant temperament [9, 10, 11], however little is known on the mechanistic
basis of this phenomenon.

MPSP, like any other stress stimulus, is responsible for activating the cascade of events lead-
ing to increase in the cellular energy demand and altered calcium (Ca*") homeostasis [12, 13].
In the brain, psychosocial stress increases energy demand by a mechanism referred to as "cere-
bral insulin suppression". This mechanism limits glucose flux into peripheral tissue to enhance
cerebral glucose supply thus affecting the metabolism of many other organs as, particularly,
those with high metabolic rates [14, 15, 16, 17].

Mitochondria play a key role in the stress response [13, 18]. Mitochondria act by both pro-
viding the cellular energy needed for the stress response by means of the oxidative phosphory-
lation (OXPHOS) machinery [12] and by actively controlling Ca”* homeostasis, in cooperation
with the endoplasmic reticulum [19, 20], thermogenesis, reactive oxygen species generation
and apoptosis among others. [21]. Mitochondria are thus among the first responders to stress-
ors [22]. Consequently, modifications of the mitochondrial activity are considered as key
events in both acute and chronic homeostatic imbalance [23]. At the same time many neurode-
velopmental disorders have been linked to modifications of the mitochondrial activity [21].

Mitochondria are often referred to as the “powerhouse of the cell”, as they produce over
80% of the energy needed to carry out housekeeping and specialized cellular functions [24].
The role of mitochondria is thus more important in vital organs with high metabolic rates and
peculiar homeostatic requirements like the brain and muscles and, in pregnancy, the placenta
[25, 26].

The placenta is a very dynamic organ with high metabolic rate and tightly regulated homeo-
static requirements, where a continuum of phenotypic and morphological changes takes place
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over the course of gestation [27]. Placental oxygen consumption is second only to that of the
fetal brain [28]. By 22 weeks of gestation, the mean placental weight is one third of that of the
fetus while the mid-gestation fetus consumes only 25% of the oxygen required by the placenta
[29]. The placenta has also been shown, like for the brain, to mainly use glucose to support its
high pace metabolism [30, 31]. The placenta acts like the effector of the intrauterine environ-
ment to drive embryonic development [32, 33].

Concomitantly, different studies have shown that the fetal brain development is deeply
intertwined with that of the placenta [27, 34, 35, 36] that support serotoninergic neuron differ-
entiation by providing serotonin to the developing brain up to the fourteenth week of gestation
[37, 38, 39]. Serotonin plays a major role in a variety of cognitive functions [38, 39] and partici-
pate in the developmental determination of psychological traits including an increased impul-
sivity, lower levels of response to inhibition and sensation seeking in toddlers [40].

The placenta also shares the genetic and epigenetic profile of the developing fetus as it origi-
nates from the extraembryonic cell layer of the blastocyst [41]. This status affords a unique
opportunity of exploring the association of the mitochondria gene expression profile with fetal
growth and development by using placental tissue.

In this study we showed that MPSP modifies the mitochondrial gene expression profile in
the placenta. We also showed that modifications of placental mitochondria gene expression
profiles correlate with the infant temperament development. We conducted our investigation
using placenta samples collected by the Stress in Pregnancy (SIP) Study, a birth cohort gener-
ated in the New York City metropolitan area that aims at investigating the influence of MPSP
on infant temperament.

Material and Methods
Study Population

The SIP Study enrolls subjects at Icahn School of Medicine at Mount Sinai, New York Hospital
of Queens and Queens College. The SIP Study examines the influence of in utero exposure to
MPSP on infant temperament.

MPSP is determined through self-administered questionnaires [42, 43, 44, 45] at the ond
and 3™ trimesters. MPSP questionnaires are aimed at assessing: objective and subjective levels
of stressful experiences, feelings and thoughts during pregnancy, perceived stress, prenatal and
perinatal post-traumatic stress symptoms, depressive symptoms and stressful life events.

Questionnaires include: 1) the Perceived Stress Scale (PSS-14) [46], a well-validated 14-item
scale instrument that asks about the mother’s feelings and thoughts during the last month
(during pregnancy); 2) the Pregnancy Related Anxieties Questionnaire (PRAQ)-Revised [44,
47] which measures five common pregnancy fears subscales (giving birth, bearing a physically
or mentally handicapped child, changes and disillusion in partner relationship, changes and
concerns about one's mental well-being and the mother-child relationship); 3) the Perinatal
PTSD Questionnaire (PPQ) [42, 43] that, with 14 items, measures the severity of maternal
PTSD symptoms during prenatal and perinatal periods; and 4) the State-Trait Anxiety Inven-
tory for Adults (STAI) [45] that, with 40 items, measures the temporary condition of “State
Anxiety” and long-standing quality of “Trait Anxiety”.

Parental psychopathology is assessed using three detection strategies: 1) direct observation
by professionals using the Structured Clinical Interview for DSM-IV Axis I Disorders
(SCID-I), used to determine DSM-IV Axis I disorders (major mental disorders) [48]; 2) clinical
chart analysis; and 3) self-report by using the Family History Screening [49].

Infant temperament at 6 months of age is assessed by the Infant Behavior Questionnaire
Revised (IBQ-R) administered to mothers [50, 51]. IBQ-R items were rationally derived from
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six constructs (Activity Level, Smile and Laughter, Fear, Distress to Limitations, Duration of
Orientation, and Soothability) assessed by aggregating individual items across a range of con-
texts [52]. The 191 items on the IBQ-R ask parents to rate the frequency of specific tempera-
ment-related behaviors observed over the past week. In completing the IBQ-R, parents are
asked to read each description of the infant’s behavior, indicating how often the infant engaged
in various behaviors during the last week using a 7-point, Likert-type scale for frequency from
never to always.

IBQ-R is validated for ages between 3 and 12 months. However it is generally accepted that
reliably assessing infant temperament at younger ages is harder than at older ages. Moreover,
the timing of the birth (gestational age at birth) could influence the maturity of the infant at
earlier ages than older ages. Thus the SIP Study determined that 6 months of age is probably
the earliest age for obtaining a reliable assessment.

Importantly, both the MPSP and infant temperament indices return continuous measure-
ments, thus affording the chance of using linear, more informative, models for the analysis of
the association of the expression profiles of the protein-coding mitochondrial-encoded genes
with both MPSP and infant temperament outcomes.

For our study, summary scores (indices) elaborated from the MPSP and infant temperament
questionnaires were used to test their association with the mitochondrial gene expression.

SIP also collects placental tissue at delivery from consented subjects. For this study, placenta
samples from 108 subjects enrolled that successfully carried their pregnancies to term were used
for the gene expression analysis. All subjects were consented as per the protocol approved by the
Institutional Review Boards at Icahn School of Medicine at Mount Sinai, New York Hospital of
Queens and Queens College. Informed written consent was obtained from the participants.

Placental Tissue Collection and RNA Isolation

Placentas were sampled by excising one full-thickness cylindrically shaped biopsy from each of
the 4 placenta quadrants midway from the cord insertion and the placental rim, within 2 h
from the delivery. Biopsies were initially processed by removing the maternal decidua and fetal
membranes and abundantly washing the tissue in cold (4°C) sterile phosphate buffered saline
(PBS). Biopsies were then blotted dry, snap-frozen in liquid nitrogen and store at -80°C.

RNA extraction was carried out by first grinding frozen tissue in liquid nitrogen-cooled
mortar. Pulverized tissue was then processed for RNA extraction with RNeasy Plus Minikit
(Qiagen—Valencia, CA, USA) and quantified with Nanodrop spectrophotometer (Thermo
Electron North America—WI, USA). Aliquots of 1 ug of the total RNA extracted were con-
verted into cDNA by using the iScript cDNA Synthesis Kit (BioRad—Hercules, CA, USA) for
expression analysis following the manufacturer’s instructions. The rest of the sample was
stored at -80°C. The iScript cDNA Synthesis Kit uses a random hexamer primer system to reli-
ably amplify all transcripts in the extracted RNA.

Mitochondrial Gene Expression Analysis

We tested the expression of the 13 protein-coding mitochondrial-encoded genes listed in S1
Table. Primer sets for the gene expression experiment were designed and validated by: 1)
BLASTing (www.blast.ncbi.nlm.nih.gov) the primers sequences against the whole human
genome which allowed to determine that our primers did not match any RNA sequence listed
by the “refseq” (www.ncbi.nlm.nih.gov/refseq/), “GenBank” (www.ncbi.nlm.nih.gov/genbank/
) or UCSC (genome.ucsc.edu/cgi-bin/hgGateway) databases other that the specific mitochon-
drial genes; 2) testing by electrophoresis in agarose gel that the amplicons generated by the
cDNA amplification did not show smears and that their length was within the expected size

PLOS ONE | DOI:10.1371/journal.pone.0138929 September 29, 2015 4/20


http://www.blast.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov/refseq/
http://www.ncbi.nlm.nih.gov/genbank/

@’PLOS ‘ ONE

Maternal Stress, Mitochondrial Gene Expression and Infant Temperament

thus supporting the absence of spurious amplifications of different targets; and 3) verifying the
consistency of the melting curves generate per each gene by the light-cycler across the 108 sam-
ples tested (see S1 Table for the complete list of primers and amplicons’ length). Primers were
designed such to all properly work at the annealing temperature of 63°C in so allowing for
thorough randomization of both samples and genes in each real-time PCR plate.

Gene expression was measured by standard real-time PCR in Roche 480 light cycler (Roche
Diagnostics—Indianapolis, IN, USA). Cycling conditions for all genes were: 95.0°C for 1 min,
followed by 35 cycles of 95.0°C for 30 sec, 63.0°C for 15 sec and 72.0°C for 30 sec. All reactions
were run in triplicate and repeated if the standard deviation between the triplicate values was
found >1 cycle. Expression values were normalized by first calculating the medians for the
expression values of the 13 genes tested per each subject. The median of the subject medians was
then calculated and the correction value was determined by subtracting the subject median to
median of subject medians. The subject-specific correction value was then applied to each gene.

The expression of the housekeeping gene ACTB was used to validate the mitochondrial
expression data by verifying that the variations observed in the mitochondrial-encoded gene
expression was not due to technical artifacts. The lack of mitochondrial housekeeping genes
together with the completely different nature of the transcription process carried out by the
nuclear DNA and the mitochondrial DNA in fact warranted the use of a nuclear validated
housekeeping gene to verify that the expression variation observed across the mitochondrial-
encoded genes was not due to real-time PCR inter-plate variability.

Statistical Analysis

Statistical modeling was conducted by using stepwise multinomial linear and logistic regression
models for, respectively, continuous and nominal outcomes. Normalized gene expression val-
ues were used as predictors while controlling for maternal ethnicity, age, marital status, educa-
tion and welfare, delivery method, gestational age and infant gender. Standardized B values for
the expression of mitochondrial-encoded genes significantly associated to the outcomes tested
within logistic regression were obtained by applying the “Standardized Coefficients in Logistic
Regression” method [53].

The component analysis was carried out by using hierarchical clustering and principal com-
ponent analysis (PCA). Hierarchical clustering analysis on gene expression values was con-
ducted by Ward Linkage to determine specific gene expression clusters. Dimensional stress
analysis of the dataset to validate the clustering analysis was conducted by using multidimen-
sional scaling (MDS). PCA was used to calculate summary scores for each of the expression
cluster. PCA was also used to calculate summary scores among MPSP and infant temperament
indices as well as infant birth measures.

The following non-parametric tests were used at different stages in the analysis:

1) Spearman's rho for bivariate correlation; 2) Wilcoxon rank-sum to compare mitochon-
drial gene expression between tertiles of significant MPSP and infant temperament indices;
and 3) Kruskal-Wallis to determine the p-trend for mitochondrial gene expression across ter-
tiles of significant MPSP and infant temperament indices.

We used PASW statistical software (version 20) (SPSS Inc.-Chicago, IL, USA) to carry out
the statistical analysis.

Results
Mitochondrial Gene Expression in the SIP Study Birth Cohort

The population demographics and the characteristics of the variables analyzed are presented in
Tables 1 and 2. The population in this study is a subset of the SIP Study birth cohort, a general
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Table 1. Population demographics and variables statistics: nominal.

Variable
Mother

Ethnicity
Latina
Black
Other(”

Mearital Status
Married/Common Law
Single/Divorced/Separated/Widowed

Education
Primary School
High School
Some College
BA/Graduate Degree

Welfare Status
No
Yes

(™: Caucasian (white): N = 5 —% = 4.6.

doi:10.1371/journal.pone.0138929.t001

N. % Variable N. %
Obsessive Compulsive Disorder

No 86 79.6
54 50.0 Yes 09 08.3
85 32.4 Not Available 13 12.1
19 17.6 Overweight

No 57 52.8
29 26.9 Yes 51 47.2
79 731 Obesity

No 79 73.1
36 33.3 Yes 29 26.9
18 16.7 Delivery Method
36 33.3 Vaginal & 67.6
18 16.7 C-Section 35 324

Offspring

16 14.8 Gender
92 85.2 Male 60 55.6

Female 48 44 .4

description of which has been provided in the material and methods section. Briefly, the SIP
Study aims at determining the influence of in utero exposure to MPSP on infant temperament.

Data on MPSP indices and other variables were available across the whole cohort of 108
participants while data on the infant temperament indices were available on only 67 subjects.
Not all newborns from the enrolled participants in fact reached age 6 months by the time the
study was conducted and infant temperament data were not yet available on all infants.

We quantified the expression of all 13 protein-coding mitochondrial-encoded genes in 108
placenta samples from the SIP Study birth cohort and analyzed their association with MPSP
and infant temperament indices. We also investigated additional outcomes, such as maternal
psychopathology, maternal weight and infant birth measures, with known association with
both high MPSP and pathologic infant temperament phenotypes.

By using multinomial linear and logistic regressions, significant associations with the gene
expression were determined for: 1) the MPSP indices of Prenatal Perceived Stress, State Anxi-
ety, Trait Anxiety and Pregnancy Anxiety Total; 2) the infant temperament indices of Activity
Level and Smile and Laughter; 3) both maternal overweight and obesity; 4) all infant birth mea-
sures including birth weight, birth length and head circumference; and 5) the maternal psycho-
pathology diagnosis of maternal obsessive compulsive disorder.

Significant associations between the mitochondrial gene expression and the MPSP and
infant temperament indices listed above were found for genes MT-ND2, MT-ND6 and
MT-CO2 (Table 3). MT-ND2, an OXPHOS Complex I gene was found positively associated
with all significant MPSP indices and negatively with the infant temperament indices. Another
OXPHOS Complex I gene, MT-ND6, was found negatively associated with the MPSP index of
Prenatal Perceived Stress. MT-CO2, an OXPHOS Complex IV gene, was found positively asso-
ciated with the MPSP indices of State and Trait Anxiety and with maternal overweight.

The expression of other 5 protein-coding mitochondrial-encoded genes, MT-ND1, MT-ND5,
MT-CO3, MT-ATP6, MT-ATP8, was found associated with the maternal psychopathology
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Table 2. Population demographics and variables statistics: continuous.

Variable
Mother
Maternal Age (Years)
MPSP Indices
Prenatal Perceived Stress
State Anxiety
Trait Anxiety
Pregnancy Anxiety Total
Offspring

Infant Birth Measures and Temperament Indices

Gestational Age at Birth (Days)

Birth Weight (g)

Birth Length (cm)

Head Circumference (cm)
Activity Level

Smile and Laughter

Mitochondrial Gene Expression (Ct Value)

MT-ND1
MT-ND2
MT-CO1
MT-CO2
MT-ATP8
MT-ATP6
MT-CO3
MT-ND3
MT-ND4L
MT-ND4
MT-ND5
MT-ND6
MT-CYB

doi:10.1371/journal.pone.0138929.1002

N. Mean St. Dev. Min Max
108 27.36 5.83 17 44

108 37.05 7.33 23 56

108 38.51 12.15 20 72

108 38.73 11.08 20 64

108 6.06 2.33 3.00 12.83
108 274.26 17.16 167 291

108 3,217.09 630.32 560 4,450
108 49.80 3.69 29 57

108 33.61 2.67 20.5 41.0
67 4.26 1.30 1.86 7.00
67 5.48 1.48 1.14 7.00
108 15.05 2.00 14.79 29.84
108 17.64 2.27 14.35 30.24
108 17.16 2.93 14.04 32.52
108 16.52 2.13 13.03 29.95
108 16.16 2.25 12.91 27.09
108 17.50 2.78 13.94 27.56
108 17.68 2.48 14.21 28.10
108 17.23 1.83 14.33 22.26
108 19.38 3.37 14.10 30.03
108 18.62 3.43 14.90 28.37
108 18.72 2.76 14.50 24.06
108 17.06 2.16 13.70 21.25
108 17.54 2.36 14.61 24.08

diagnosis of maternal obsessive compulsive disorder, maternal weight and with infant birth
measures (Table 3).

We further analyzed the association of the placental expression profiles of MT-ND2 and
MT-CO2 with the significant MPSP indices of Table 3 by categorizing the MPSP indices into
tertiles (Fig 1A-1D). Similarly we analyzed the placental expression profiles of MT-ND2 across
tertiles of infant temperament indices (Fig 1E and 1F). MT-ND6 was not included in this analy-
sis as it was found consistently non-significantly distributed across tertiles of MPSP indices.

Significant upregulation of the gene expression was determined between the low (tertile)
and high (tertile) of the MPSP indices of Prenatal Perceived Stress and Trait Anxiety for both
MT-ND2 (p = 0.016 for Prenatal Perceived Stress and p = 0.019 for Trait Anxiety) and
MT-CO2 (p = 0.042 for Prenatal Perceived Stress and p = 0.039 for Trait Anxiety). Overall the
expression of both MT-ND2 and MT-CO2 showed a consistent trend toward an upregulation
across tertiles of MPSP indices (Fig 1A-1D). Trend analysis was also conducted to determine
the significance of the expression upregulation of MT-ND2 and MT-CO2 across tertiles of
MPSP indices. Significant p-values were determined only for MT-ND?2 relatively to the Prenatal
Perceive Stress (p = 0.017) and State Anxiety (p = 0.031). Borderline significant p-values were
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Table 3. Multinomial regression statistics for the correlation between mitochondrial gene expression and each of the analyzed outcomes from

SIP.
Outcome Multinomial Regression Mitochondrial Genes
Area Index Type p-value r? Adj r? Item B
MPSP Prenatal Perceived Stress Linear 0.004 0.120 0.100 MT-ND2 0.259
MT-ND6 -0.231
State anxiety Linear 0.003 0.153 0.123 MT-ND2 0.218
MT-CO2 0.206
Trait anxiety Linear 0.003 0.129 0.109 MT-ND2 0.262
MT-CO2 0.205
Pregnancy Anxiety Total Linear 0.010 0.103 0.082 MT-ND2 0.208
Psychopath Obsessive Compulsive Disorder Logistic 0.022 0.135 - MT-CO3 0.048
Maternal Weight Overweight Logistic 0.001 0.191 - MT-CO2 0.162
MT-ND6 -0.145
Obesity Logistic <0.001 0.320 - MT-ND1 0.131
MT-ATP6 0.103
Birth Measures Birth Weight Linear <0.001 0.546 0.519 MT-CO3 -0.164
Birth Length Linear <0.001 0.597 0.583 MT-ND5 -0.192
Head Circumference Linear <0.001 0.367 0.337 MT-ND5 -0.187
MT-ATPS8 0.183
Infant Activity Level Linear 0.008 0.165 0.134 MT-ND2 -0.257
Temperament Smile and Laughter Linear 0.036 0.082 0.064 MT-ND2 -0.286
Notes:

« Regression p-values are reported as follows: 1) bold & underlined p < 0.01; 2) bold p < 0.05

« For the logistic regressions the Nagelkerke pseudo-r” is reported

» Standardized B values for the logistic regressions have been calculated by using the “Standardized Coefficients in Logistic

Regression” method [53].

doi:10.1371/journal.pone.0138929.1003

determined for MT-ND2 for the other MPSP indices as, respectively, Trait Anxiety (p = 0.068)
and Pregnancy Anxiety Total (p = 0.059).

MT-ND?2 on the other hand showed a consistent trend to dowregulation across tertiles of
infant temperament indices (Fig 1E and 1F). Statistically significant dowregulation of MT-ND2
was determined between the low (tertile) and high (tertile) of the Smile and Laughter index
(Fig 1E and 1F). A significant p-value for downregulation of MT-ND2 expression across infant
temperament tertiles was determined for only Smile and Laughter (p = 0.048).

Component Analyses

As suggested by the role that protein-coding mitochondrial-encoded genes play in the
OXPHOS, the expression profiles of the mitochondrial-encoded genes tested showed, for sev-
eral genes, a relevant degree of colinearity as determined by the high (rho > |0.4|) and signifi-
cant (p < 0.01) bivariate correlation between samples (S2 Table). To address the effect of
colinearity on the significance of our findings we first conducted a clustering analysis that
revealed the existence of 5 expression clusters (Fig 2). The expression clusters were then vali-
dated by dimensional stress analysis conducted by using multidimensional scaling showing
that the expression of the mitochondrial genes can efficiently be fit into a 5 dimension space
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Fig 1. Boxplots of the distribution of the expression of MT-ND2 and MT-CO2 across tertiles of MPSP and infant temperament indices. A-D. MPSP

indices. E-F. Infant temperament indices. In each graph “low”,

”, “average” and “high” represent the tertiles of MPSP and infant temperament indices. The star

symbol and the bracketing lines represent the tertiles for which significant (p < 0.05) differences in gene expression have been detected.

doi:10.1371/journal.pone.0138929.g001

(e.g. 5 clusters) without imposing an excessive degree of stress to the dataset (S1 Fig). Finally
we calculated a summary score for each expression cluster by using principal component anal-
ysis (PCA). The efficacy of this approach was further supported by the low bivariate correlation
found between the 5 summary scores (S3 Table). Similarly we calculated PCA summary scores

9/20
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Fig 2. Mitochondrial Expression Clusters. The graph represents the five expression clusters identified for the expression of the 13 protein-coding
mitochondrial-encoded genes. The expression clusters have been determined by Ward Linkage. The cutoff level used to generate the clusters in the
clustering tree have been chosen accordingly to the multidimensional scaling analysis (see S1 Fig) that showed that the expression data can efficiently be fit
into a 5-dimensional space without imposing an excessive degree of stress to the dataset.

doi:10.1371/journal.pone.0138929.9002

for MPSP and infant temperament indices as well as maternal weight (including overweight
and obesity) and infant birth measures (including birth weight, birth length and head
circumference).

We finally rerun the regression models using the same covariates as above and the PCA
summary scores for each expression cluster in place of the individual gene expression values, as
predictors, and the PCA summary scores as outcomes in place of the individual outcome indi-
ces/values. The results of this test strongly support the validity of our original approach
(Table 4). The PCA summary score for the MPSP indices was found positively associated with
expression clusters 2 and 3 which include, respectively, genes MT-ND2 and MT-CO?2 that were
previously found positively associated with the individual MPSP indices. A negative non-sig-
nificant association was detected between expression cluster 2 and the PCA summary score for
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Table 4. Multinomial regression statistics for the correlation between the PCA summary scores for the five mitochondrial gene expression clus-
ters and the PCA summary scores for MPSP and infant temperament indices, maternal weight class and infant birth measures.

Index

MPSP

Maternal Weight
- Normal vs Overweight
- Normal vs Obese
Birth Measures
Infant Temperament

Notes:

Multinomial Regression Expression Clusters

p-value r? Adj r? Item B
Linear 0.001 0.166 0.136 Cluster 2 0.228
Cluster 3 0.218
Logistic 0.006 0.169 =
Cluster 2 0.107
Cluster 2 0.145
Linear <0.001 0.579 0.559 Cluster 4 -0.198
Linear 0.277 0.311 0.064 Cluster 2 -0.278

« Regression p-values are reported as follows: 1) bold & underlined p < 0.01; 2) bold p < 0.05; 3) regular p > 0.05

« For the logistic regressions the Nagelkerke pseudo-r squared is reported

« Standardized B values for the logistic regressions have been calculated by using the “Standardized Coefficients in Logistic

Regression” method [53].

doi:10.1371/journal.pone.0138929.1004

the infant temperament indices, partially supporting the negative correlation described
between the individual infant temperament indices and the expression of MT-ND2.

Additionally expression cluster 2 was positively associated with the PCA summary score for
maternal weight. Expression cluster 2 includes gene MT-NDI which was the gene with the
most significant (positive) association with maternal obesity. Expression cluster 4 was instead
found negatively associated with the PCA summary score for infant birth measures supporting
the association previously found for MT-ND5, the only gene associated with two birth mea-
sures (birth length and head circumference).

In line with our prior analysis, we tested the placental expression profile of expression clus-
ters 2 and 3 across tertiles of the PCA summary score for the MPSP indices and the placental
expression profile of expression cluster 2 across PCA summary score for the infant tempera-
ment indices (Fig 3). A statistically significant upregulation of the score for the expression clus-
ter 2 was determined between the low (tertile) and the high (tertile) of the PCA summary score
for the MPSP indices. This finding indicates that the genes of this expression cluster (see Fig 2
for reference) follow a similar expression trend. These data are partially supported by a border-
line significant p-value for trend determined for expression cluster 2 across the tertiles of PCA
summary score for the MPSP indices (p = 0.079). Expression cluster 3 showed a similar but less
marked and non-significant expression trend (Fig 3A).

A non-significant downregulation of the score for the expression cluster 2 was observed
across tertiles of PCA summary score for the infant temperament indices (Fig 3B).

Mitochondrial Gene Expression and the Expression of Corticotropin and
Glucocorticoid Receptors in Placenta

In a previous investigation on a subset of 50 among the 108 samples used here [54], we found
limited evidence of the association between the expression of CRHRI1, CRHR2 and NR3Cl,
three key hormonal receptor of the HPA (Hypothalamic-Pituitary-Adrenal) axis, and both
MPSP and infant temperament indices. The corticotropin-releasing hormone (CRH) receptors
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tertiles for which significant (p < 0.05) differences in gene expression have been detected.

doi:10.1371/journal.pone.0138929.9003

CRHRI and CRHR2 and the glucocorticoids’ (GHs) receptor NR3CI regulate the HPA axis, a
fundamental mediator of the stress response and a modulator of the mitochondrial activity
[55].

We tested the interaction between the HPA axis and the mitochondrial gene expression in
determining the tested outcomes by modeling each outcome within linear and logistic regres-
sions. We used as predictors the same covariates as in the previous analyses together with the
PCA summary scores for each mitochondrial expression cluster and the normalized expression
values for CRHR1, CRHR2 and NR3C1. The only association with the outcomes was found for
CRHRI that was positively associated with the MPSP index of State Anxiety together, as previ-
ously determined, with mitochondrial expression cluster 2 (S4 Table).

Noticeably, we also found a high degree of significant negative bivariate correlation between
the expression of NR3C1 and MT-CO1 (S5 Table).

Discussion

In this study we explored the role of the mitochondrial gene expression in responding to
MPSP, a powerful environmental determinant of fetal brain development [3, 9, 10, 11], affect-
ing infant temperament. By using placenta samples from the SIP Study birth cohort we deter-
mined that the expression of 3 of the 13 protein-coding mitochondrial-encoded genes of the
OXPHOS, MT-ND2, MT-ND6, MT-CO2, is correlated to both MPSP and infant temperament
indices. The expression of other 5 protein-coding mitochondrial-encoded genes was found
associated with maternal and infant outcomes associated with high MPSP and pathologic
infant temperament phenotypes.

MPSP predicts considerable portions of the variance in infant neurodevelopment leading to
lower mental development scores and irritable temperament [9, 56, 57, 58]. This scenario theo-
retically confers an evolutionary advantage to the progeny [59, 60, 61] as the increased levels of
anxiety in the offspring of mothers experiencing high MPSP may in fact be explained by
increased vigilance and alertness to danger [62]. These elevated rates of anxiety, often
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accompanied by increased aggression, may thus direct a process of adaptation leading to a
higher sensibility to adverse environments, higher drive in exploring new environments and
fight possible predators and lower proneness to engage in developing deep relationships with
other individuals [63, 64, 65].

MPSP indices that were found associated with the expression profiles of mitochondrial
genes in this study are representative of objective and subjective levels of stressful experiences,
feelings and thoughts during pregnancy and perceived stress [42, 43, 44, 46, 47, 66]. Infant tem-
perament indices significantly associated with the expression profiles of mitochondrial genes
belong to the temperament developmental factors of Surgency/Extraversion (Activity Level)
and Effortful Control (Smile and Laughter). High scores for indices grouped under these tem-
perament developmental factors are representative of the infant temperament phenotypes of,
respectively, anxiety [67, 68, 69] and aggression [70, 71]. While it is beyond the scope of the
current study, it is worth to additionally report that influences of postnatal psychosocial rearing
environment on infant temperament at 6 months of age, as especially maternal postpartum
depression, have been found not to affect infant temperament indices as determined by the
IBQ-R in the SIP Study birth cohort (data not shown).

Stress stimuli like MPSP set off the physiologic stress response involving mitochondria [12,
13, 18]. Mitochondria code for 13 proteins of the OXPHOS system [24]. Eleven of these 13 pro-
teins represent the building blocks of 3 OXPHOS protein complexes, the NADH dehydroge-
nase (Complex I), the cytochrome c reductase (Complex III) and the cytochrome c oxidase
(Complex IV), that, together with the entirely nuclear-encoded succinate dehydrogenase
(Complex II), form the electron transport chain (ETC). Two additional mitochondrial proteins
regulate the activity of the ATP synthase (Complex V).

In our study the expression of OXPHOS Complex I gene MT-ND2 showed the strongest
association with both MPSP and infant temperament indices. Interestingly MPSP, which is
known to negatively affect infant temperament, in this study was associated with an increase
on the expression of MT-ND?2 that then shows a negative association with the infant tempera-
ment indices. MT-ND6, another member of the OXPHOS Complex I, shows instead a
decreased expression even if limited to the MPSP index of Prenatal Perceived Stress.

OXPHOS Complex I, the initiator of the mitochondrial ETC [24], is a large multiprotein
complex arranged in three modules known as N, Q and P. The P module is made out of a prox-
imal and distal portion [72, 73] organized into a transmembrane proton pump that can work
uncoupled from the ETC [73]. Genes MT-NDI1, MT-ND2, MT-ND3 and MT-ND4L belong to
the proximal portion of the P module while MT-ND4 and MT-ND5 belong to the distal portion
[72]. MT-ND6 instead belongs to the P-Q bridging region of the Q module [72, 74]. Interest-
ingly, in our study we found that MT-NDI, MT-ND2 and MT-ND3 expression profiles group
together in expression cluster 2, while MT-ND4 and MT-ND5 form expression cluster 4 in so
mirroring the P module organization. MT-ND6 separately clusters with other genes to form
expression cluster 1. The parallel between the cluster distribution of Complex I genes and the
topology of the P module substantially adds confidence to the results of the clustering analysis.

Complex I alone contributes for 40% to the generation of the mitochondrial proton-motive
force utilized for ATP synthesis and transport processes and it is a major contributor to reac-
tive oxygen species production in the cell [75]. Complex I deficiency is also the most frequent
defects of mitochondrial energy metabolism [76] which have been linked to a wide range of
neurodevelopmental and neurodegenerative disorders [75].

Complex I is thus likely a key player of the response to stressors such as MPSP. Such
response entails the activation of the OXPHOS to respond to the increased energy demand [12,
13] for actively regulating the Ca®" cellular homeostasis [12, 13, 37]. Ca®" in turns cumulates in
the mitochondria, increases the OXPHOS rate and ATP production and act as a regulator of
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the secretion of many neurotransmitters such as serotonin [37]. Serotonin regulates neurode-
velopmental processes through maternal-fetal interactions that have long-term mental health
implications [37]. Importantly, the placenta supplies serotonin to the developing brain to sup-
port neuronal differentiation [37].

As the P module evolved from passive bacterial kation antiporter [77], our data are in agree-
ment with the literature reporting a partial uncoupling of the P module of Complex I with the
ETC in response to the increased mitochondrial concentration of Ca?* [73, 78]. Stress-driven
Ca" sequestration from the cytoplasm into the mitochondria however results in decreased
serotonin release that may alter fetal development [37]. Accordingly MT-ND2 expression pro-
file was found negatively associated with infant temperament.

The high rates of ATP production in response to the increased energy demand brought
about by MPSP may also explain the expression pattern of Complex IV genes. Complex IV is
the last component of the ETC catalyzing the conversion of oxygen, the final acceptor of the
electrons of the ETC, into water [24]. MT-CO2 positive expression association with the MPSP
indices of State and Trait Anxiety may be linked to a higher OXPHOS activity. The positive
correlation between MT-CO3 expression and maternal obsessive compulsive disorder lend fur-
ther support to this hypothesis. Maternal obsessive compulsive disorder in our dataset is in fact
significantly associated with each of the MPSP indices (S6 Table) in agreement with the exist-
ing literature [79, 80, 81, 82].

The high incidence of overweight (~47%) and obesity (~27%) (Table 1) within the SIP pop-
ulation analyzed here add an additional workload on mitochondria. Alterations of the mito-
chondrial activity have in fact been reported in placentas from women with elevated BMI [83].
Particularly, a large number of studies show that obesity leads to dissipations of the mitochon-
drial membrane potential [84, 85, 86]. The positive correlation between overweight and
MT-CO2 expression and between obesity and MT-NDI1 and MT-ATP6 expression that we
determined in the SIP cohort placentas can therefore be attributable to the attempt by mito-
chondria to respond to the MPSP effect while also battling the effect brought about by obesity.

In our investigation we found several examples of increased vs decreased mitochondrial
gene expression (e.g. MT-ND2 and MT-ND6) in association with the MPSP and infant temper-
ament indices (Table 3). Accordingly we also determined the existence of significant negative
bivariate correlation between the expression profiles of mitochondrial genes (52 Table). How-
ever, mitochondrial genes are transcribed into polycistronic RNAs, one per each mitochondrial
DNA strand. These transcripts are then cleaved and processed for translation into proteins.
Such transcription method would speak for a coordinated regulation of the expression of all
mitochondrial genes returning a homogenous expression profile and high positive correlation
scores between genes. However mechanistic studies have shown that the mitochondrial poly-
cistronic RNAs, before translation, undergo differential cleavage/degradation in order to
respond to specific physiologic needs that accordingly modulate the expression of only some
mitochondrial genes [87]. Additionally several studies reported that the expression of individ-
ual mitochondrial genes undergo to differential regulation [18, 88], supporting the findings of
our study. These data are also in agreement with the role that mitochondrial-encoded genes
play within their OXPHOS complexes. Mitochondrial genes of complexes I, IIl and IV in fact
code for the catalytic components of their respective complexes [72, 89] and their expression
profiles are differentially related to each other and unrelated to the chaperon-like nuclear-
encoded subunits of the same complexes.

While partial and preliminary, our interpretation is further supported by the integrated
analysis with the expression data on CRH and GHs receptors (GRs). As expected, CRH recep-
tors” expression was found associated with MPSP indices in conjunction with mitochondrial
genes of the P module of Complex I. Concurrently a significant correlation was found between
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the GRs and the expression of the complex IV gene MT-CO1, supporting the findings that
showed that GRs participate in the modulation of the mitochondrial activity [55]. Mitochon-
dria in fact carry 4 glucocorticoid response elements within the MT-CO1 gene [90] and the
activated NR3C1 has been shown to bind all four of them [91].

These data support the role that HPA axis plays in modulating the energy production
through hormonal feedback cycles. Our data also suggest that the HPA axis activation may be
a more transient phenomenon that participates in determining long lasting changes that reflect
in the association between the mitochondrial expression and infant temperament indices and
birth measures.

Overall this study highlights the importance of placental mitochondria gene expression in
responding to MPSP while suggesting a possible role of placental mitochondria gene expres-
sion in affecting infant temperament. Additional data are however needed to better describe
the mitochondrial response to stressors like MPSP. The increased sample size of the cohort
would be of great benefit to support the validity of these findings in future investigations while
also allowing for the study of the role of the placental mitochondria gene expression in mediat-
ing/moderating the effects of MPSP on infant temperament. The analysis of the mitochondrial
metabolism by means of enzymatic assays targeting Complex I and IV activity rates would also
provide important information of the mitochondrial functioning.
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