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Leptin and insulin up-regulate miR-4443 to @
suppress NCOA1 and TRAF4, and decrease

the invasiveness of human colon cancer

cells
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Abstract

Background: Obesity is a risk factor for colorectal cancer (CRC). Normal and tumor cells respond to metabolic
hormones, such as leptin and insulin. Thus, obesity-associated resistance to these hormones likely leads to changes
in gene expression and behavior of tumor cells. However, the mechanisms affected by leptin and insulin signaling
in CRC cells remain mostly unknown.

Methods: We hypothesized that microRNAs (miRNAs) are involved in the regulation of tumorigenesis-related gene
expression in CRC cells by leptin and insulin. To test this hypothesis, miRNA levels in the CRC-derived cell lines HCT-
116, HT-29 and DLD-1 were profiled, following leptin and insulin treatment. Candidate miRNAs were validated by
RT-gPCR. Predicted miRNA targets with known roles in cancer, were validated by immunoblots and reporter assays
in HCT-116 cells. Transfection of HCT-116 cells with candidate miRNA mimic was used to test in vitro effects on
proliferation and invasion.

Results: Of ~800 miRNAs profiled, miR-4443 was consistently up-regulated by leptin and insulin in HCT-116 and
HT-29, but not in DLD-1, which lacked normal leptin receptor expression. Dose response experiments showed that
leptin at 100 ng/ml consistently up-regulated miR-4443 in HCT-116 cells, concomitantly with a significant decrease
in cell invasion ability. Transfection with miR-4443 mimic decreased invasion and proliferation of HCT-116 cells.
Moreover, leptin and miR-4443 transfection significantly down-regulated endogenous NCOA1 and TRAF4, both
predicted targets of miR-4443 with known roles in cancer metastasis. miR-4443 was found to directly regulate
TRAF4 and NCOAT1, as validated by a reporter assay. The up-regulation of miR-4443 by leptin or insulin was
attenuated by the inhibition of MEK1/2.

Conclusions: Our findings suggest that miR-4443 acts in a tumor-suppressive manner by down-regulating TRAF4
and NCOAT1 downstream of MEK-C/EBP-mediated leptin and insulin signaling, and that insulin and/or leptin
resistance (e.g. in obesity) may suppress this pathway and increase the risk of metastatic CRC.
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Background

Obesity and cancer are leading health problems in devel-
oped countries. Cancer is the consequence of inherited
and somatic mutations that is also influenced by the
physiological micro- and macro-environment (e.g. obes-
ity). A positive association has been found between
obesity and the risk for the development of various can-
cers, among them colorectal cancer (CRC) [1, 2]. Several
mechanisms have been proposed to explain this associ-
ation: chronic inflammation, excess production of leptin
[3] (concomitantly with an onset of systemic resistance
to leptin signaling [4]) and decreased adiponectin secre-
tion in obese subjects, which may deregulate cellular
growth and angiogenesis, and therefore promote cancer
development and progression [5-8].

Although the contributions of many genes are begin-
ning to emerge as important links between obesity and
cancer, much research is still needed to better under-
stand the complexity of gene regulation. The expression
of genes is regulated, in part, by microRNAs (miRNAs),
endogenous small non-coding RNAs (ncRNAs), which
play regulatory roles in normal cell function and in
diseases, especially cancers, by predominantly binding to
cis-elements in the 3’ untranslated region of specific
mRNAs and regulating their translation or stability
[9-13]. Recent studies have begun to elucidate the
role of miRNAs in various biological processes, including
adipocyte differentiation, metabolic integration, insulin re-
sistance and appetite regulation [14—17]. The deregulation
of many miRNAs in metabolic tissues of obese animals
and humans has also been described [15, 16, 18].

The involvement of miRNAs in cancer, and specifically
CRC, is well known (reviews, [19-22]). Interestingly, a
number of miRNAs that are associated with obesity have
also been implicated in carcinogenesis, and deregulated
expression of miRNAs may represent a molecular link
between obesity and cancer [23]. Here, we show that a
specific miRNA, miR-4443, responds to leptin and insu-
lin treatment in CRC-derived cells and that its impaired
regulation may contribute to deregulation of down-
stream signaling, increased cancer metastasis and worse
prognosis in a state of leptin resistance.

Methods

We hypothesized that microRNAs (miRNAs) are in-
volved in the regulation of tumorigenesis-related gene
expression in CRC cells by leptin and insulin. To test
this hypothesis, miRNA levels in the CRC-derived cell
lines HCT-116, HT-29 and DLD-1 were profiled, fol-
lowing leptin and insulin treatment. Candidate miR-
NAs were validated by RT-qPCR. Predicted miRNA
targets with known roles in cancer, were validated by
immunoblots and reporter assays in HCT-116 cells.
Transfection of HCT-116 cells with candidate miRNA
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mimic was used to test in vitro effects on prolifera-
tion and invasion.

Cells and cell culture

CRC-derived cell lines DLD-1, HT29 and HCT116 were
provided by Professors Ronit Pinkas-Kramarski, Rimona
Margalit and Yoel Kloog from Tel Aviv University in
September 2013, and kept frozen in liquid nitrogen until
use. Cell line authentication was performed at the
Biomedical Core Facility of the Rappaport faculty of
Medicine, Technion. Cells were cultured based on
ATCC recommendations and treated with the 20, 100,
or 200 ng/ml (as indicated) of leptin (Sigma L4146) or
insulin (Sigma 12643). Culture media and fetal bovine
serum were obtained from Biological Industries (Israel).
PD-98059 (Adipogene), dissolved in 100 % DMSO, was
added to culture medium (final concentration 10 uM
PD-98059 and 0.04 % DMSO), 45 min before the
addition of leptin or insulin.

Proliferation and invasion assays

Cell proliferation was determined 48 h after transfection
and 3 days after leptin or insulin treatment, using the
CyQUANT Direct Cell Proliferation Assay (Life Tech-
nologies) in a 96-well plate format in a Tecan Infinite
M200 Pro spectrophotometer. Invasion of HCT-116
cells was measured after 48 h using Matrigel (BD) in
inserts with 8 um pores (Greiner), placed in 24-well cell
culture plates (Biological Industries). Cells were col-
lected from both upper and lower chambers by trypsini-
zation and evaluated using CyQUANT. Invasion was
calculated by dividing the measurement of the cells in
the lower chamber (that had passed through Matrigel)
by the total measurement of cells from both upper and
lower chambers, and this value was normalized to mi-
gration values (obtained without Matrigel) calculated
similarly. The resulting values were then normalized to
the appropriate control values.

miRNA target prediction

A list of predicted miR-4443 targets was obtained using
the TargetScan algorithm [9, 24] (Release 6.2), accessible
online [25].

Immunoblots

BioRad equipment and reagents were used. Primary anti-
bodies were from Abcam: human NCOA1/KAT13/SRC1
(AB2859) [26], human TRAF4 (AB190986, at 0.4 pg/ml
in PBS), human B-actin (AB6276) [27], and human leptin
receptor (AB104403 at 0.3 pg/ml in PBS). Secondary
HRP-conjugated antibodies were also from AbCam.
Bands were visualized on film using SuperSignal™ West
Pico Chemiluminescent Substrate (Thermo Scientific).
Image] software (NIH) [28] was used for image analysis.
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RNA isolation

Isolation of total RNA (including miRNAs) was carried
out using the Qiagen miRNeasy Kit according to manu-
facturer’s instructions.

miRNA profiling

Expression profiling of miRNAs was performed on an
nCounter probe array platform (Nanostring). Hierarchical
clustering of results was performed using MeV, part of the
TM4 software suite [29, 30].

RT-qPCR

Reverse transcription, primer design and quantitative PCR
were performed using SYBR Green chemistry and DNA
primers. Primer extension was used for miRNA quantifi-
cation as previously described [31, 32]. This RT-qPCR
method is highly accurate and reproducible [31, 32], and
was chosen over hydrolysis probe chemistry due to lower
cost and higher convenience. Primer sequences are pro-
vided in Additional file 1: Table S1. All primers were
tested for efficiency (by serial dilutions) and specificity (by
melting peak analysis). RT was performed on a ABI-9600
with reagents from New England Biolabs. qPCR was per-
formed in technical quadruplicates on an Applied Biosys-
tems ABI-7900HT Sequence Detection System equipped
with a 384-well block. The biological sample sizes were as
indicated in the figure legends. Data were analyzed using
SDS 2.3 software (Applied Biosystems) and Microsoft
Excel. Relative quantification and the ACq method were
used. For quantification of mRNAs, B-actin was used as a
normalizer. For quantification of miRNAs, normalization
was performed relative to the average values from a panel
of at least 5 miRNAs that previously showed no significant
change following treatment.

Transfection

HCT-116 cells were transfected with Dharmacon miRI-
DIAN mimic of miR-4443 and the negative control
oligo, as well as reporter vectors, using DharmaFECT 4
transfection reagent, in 6-well, 24-well or 96-well plates
depending on intended assay, according to the manufac-
turer’s instructions. For 3" UTR reporter assays, Geneco-
poeia SecretePair dual reporter constructs for TRAF4,
NCOA1 and a no-UTR control vector, co-transfected
with miRNA mimics, were used.

Reporter assay
Luciferase activity was measured in a 96-well plate for-
mat in a Tecan Infinite M200 Pro spectrophotometer.

In silico promoter analysis

Promoter/enhancer region cis-element prediction was
carried out employing the Cister algorithm [33] available
online [34]. A 10 kb segment of the human genomic
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sequence upstream of the miR-4443 locus (3:48186564—
48196564) was used, having ascertained that the seg-
ment contained no other known genes in the “plus”
orientation.

Statistics
For statistical tests, Student’s ¢-test was used. For corre-
lations, linear regression was used.

Results

Leptin and insulin up-regulate miR-4443 in CRC-derived cell
lines; the effect of leptin on miR-4443 is LEPR-dependent
To check the effects of leptin and insulin exposure on
the expression levels of a wide cross-section of miRNAs,
we profiled miRNA levels in the CRC-derived cell lines
HCT-116, HT-29 and DLD-1 that had been treated with
leptin or insulin (at 200 ng/ml) for 24 h, using the Nano-
string nCounter probe array platform (clustered heat
map for leptin-induced changes, Additional file 2: Figure
S1; all expression data, Additional file 3: Table S2). A
positive correlation between the effects of insulin and
leptin on miRNA expression profiles was observed in
HCT-116 and HT-29 cells, but not in DLD-1 (Fig. 1la—c).
Additionally, the effects of insulin on miRNA expression
profiles correlated in all three cell lines (Fig. 1d, e) but
the effects of leptin only correlated between HCT-116
and HT-29, but not between them and DLD-1 (Fig. 1f,
g). Of ~800 miRNAs profiled, miR-4443 stood out in its
robust and similar response to leptin and insulin. Thus,
miR-4443 was up-regulated by insulin in all three lines,
and by leptin in HCT-116 and HT-29, but not in DLD-1
(miR-4443 marked in black, in Fig. 1d—g). These results
suggest that HCT-116 and HT-29 express the functional
leptin receptor (LEPR), which is necessary for leptin’s
downstream effects on the miRNA profile, while DLD-1
may lack the receptor or express an inactive form of
LEPR. RT-qPCR using primers targeting the domain
common to all variants of LEPR vyielded a specific prod-
uct at the expected length for HCT-116 and HT-29 —
derived DNA, but that of DLD-1 was shorter (Fig. 1h).
Additionally, no PCR product was observed for DLD-1,
when primers specifically targeting LEPR variant 1 (the
long and active form) were employed (Fig. 1h). This lack
of a full-length LEPR transcript was confirmed in 2 sep-
arate stocks of DLD-1 cells, from different sources (data
not shown). Immunoblots for LEPR produced two bands
in DLD-1, the upper one rather strong, and both differ-
ing in size from the single band in the other cell lines
(Fig. 1i), suggesting the accumulation of altered or in-
active LEPR variants in DLD-1. We chose HCT-116 for
further study as this cell line was morphologically and
phenotypically stable in culture and was confirmed to
express LEPR.
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Fig. 1 Leptin has effects similar to those of insulin on MiRNA expression profiles in CRC-derived cell lines, and these effects are LEPR-dependent.
a Scatter plot comparing the effects of leptin and insulin (both at 200 ng/ml), on the expression (relative to non-treated controls) of individual
miRNAs as quantified by Nanostring profiling, in HCT-116 cells. b Scatter plot as in (@), in HT-29 cells. ¢ Scatter plot as in (a), in DLD-1 cells. d Scatter plot
comparing the effects of 200 ng/ml insulin on the expression (relative to non-treated controls) of individual miRNAs as quantified by Nanostring
profiling, in HT-29 and HCT-116 cells. Circle representing miR-4443 marked in black. e Scatter plot as in (d), in HCT-116 and DLD-1 cells.
Circle representing miR-4443 marked in black. f Scatter plot comparing the effects of 200 ng/ml leptin on the expression (relative to non-treated
controls) of individual miRNAs as quantified by Nanostring profiling, in HT-29 and HCT-116 cells. Circle representing miR-4443 marked in black.
g Scatter plot as in (f), in HT-116 and DLD-1 cells. Circle representing miR-4443 marked in black. h Electrophoresis of PCR products obtained
with LEPR primers targeting a conserved region (common to all known variants), as well as specific to the longer and active variant of LEPR, and cDNA
from DLD-1, HCT-116, and HT-29 cells. i Immunoblot for human LEPR in HCT-116, HT-29 and DLD-1 cells. 3-actin was used as loading control

Leptin up-regulates miR-4443 and decreases invasion in leptin also caused a significant (p < 0.05) decrease in cell
HCT-116 cells invasion through a MatriGel-coated membrane (Fig. 2c).
The Nanostring profiling results of miRNA levels ob- We therefore used this dosage of leptin for further ex-
tained from HCT-116 cells treated with leptin or insulin  periments. We also established that 20 ng/nl insulin was
at 200 ng/ml were validated by RT-qPCR (Fig. 2a). miR-  sufficient to cause the up-regulation of miR-4443 (data
4443, which showed robust up-regulation by leptin in  not shown).

both the Nanostring profiling and the qRT-PCR valid-

ation, was chosen as a candidate for further study. In a  Overexpression of miR-4443 decreases the invasion and
dose-response experiment, leptin treatment at 100 ng/  proliferation of HCT-116 cells

ml was found to up-regulate miR-4443 reproducibly as  Transfection of HCT-116 with a miR-4443 mimic tended
well as significantly (p <0.05) (Fig. 2b). This dose of to decrease cell invasion as compared to transfection with
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a control oligo (Fig. 2d); this trend was reproducible but
fell short of statistical significance due to large variation
between individual experiments. Overexpression of miR-
4443 also significantly decreased the proliferation of
HCT-116 cells (Fig. 2e), implying that miR-4443 may act
as a tumor suppressor via its downstream targets.

Leptin and insulin exposure and miR-4443 overexpression
down-regulate NCOA1 and TRAF4 in HCT-116 cells

To identify possible cancer-relevant targets of miR-4443,
the TargetScan algorithm [9, 24] was used. Among the
top-scored predicted targets of miR-4443, NCOA1 and
TRAF4 have known roles in cell migration and cancer

metastasis [35-39], and were chosen for validation.
Exposure to leptin (at 100 ng/ml for 24 h), as well as
overexpression of miR-4443 in HCT-116 cells (24 h
post-transfection) resulted in significant (p < 0.05) down-
regulation of endogenous NCOA1 and TRAF4 on the
mRNA and protein levels (Fig. 3a—d). Insulin treatment
(at 20 ng/ml) led to a similar down-regulation of
NCOA1 and TRAF4 mRNA (Fig. 3a).

NCOAT1, TRAF4 are direct targets of miR-4443

To check if miR-4443 directly targets the 3'UTR region
of NCOA1 and TRAF4 mRNAs, HCT-116 cells were
co-transfected with miR-4443 mimic (or control oligos)
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Fig. 3 Leptin and insulin exposure and overexpression of miR-4443
down-regulate the miR-4443 targets, NCOAT and TRAF4, in HCT-116
cells. a RT-gPCR for human NCOAT and TRAF4 in HCT-116 cells
cultured for 48 h with or without 100 ng/ml leptin or 20 ng/ml
insulin. *:p < 0.05; t-test; bars: SD from triplicates. b Immunoblot
for human NCOAT and TRAF4 in HCT-116 cells as in (a). B-actin
was used as loading control. ¢ RT-gPCR for human NCOAT and
TRAF4 in HCT-116 cells transfected with miR-4443 mimicking oligo, or
mock-transfected cells. *;p < 0.05; t-test; bars: SD, n=5. d Immunoblot
for human NCOAT and TRAF4 in HCT-116 cells transfected with
miR-4443 mimicking oligo, or mock-transfected cells. B-actin was
used as loading control. e Secrete-Pair Luciferase/SEAP ratios in
media of HCT-116 cells 48 h post co-transfection with constructs
containing the 3’ UTR of TRAF4, NCOAT1, or no UTR, with miR-
4443 - mimicking or control oligo (miR-Neg). *;p < 0.05; **P < 0.01;
t-test; bars: SE,n=6

and a secreted dual-reporter encoding vector, with or
without the relevant 3'UTR (SecretePair from Geneco-
poeia). The Gaussia Luciferase signal was significantly
suppressed by the co-transfected miR-4443 mimic, com-
pared with the negative control oligo, in both NCOA1
and TRAF4 3'UTR-containing constructs. but not in a
control plasmid lacking the 3'UTRs (Fig. 3g), supporting
the predicted direct regulation of these mRNAs by
miR-4443.

The miR-4443 promoter/enhancer region contains the
CCAAT motif, supporting regulation by C/EBPs

Since miR-4443 was up-regulated following both leptin
and insulin treatment, we hypothesized that its promoter
or enhancer regions may contain the CCAAT motif, which
binds transcription factors from the CCAAT-enhancer-
binding proteins (C/EBP) family, that act downstream of
MEK1/2 in leptin and insulin signaling [3, 40-43] and
were previously described as up-regulated by both insulin
and leptin [44, 45]. To investigate this possibility, a 10 kb
region of the human genomic sequence upstream of pre-
miR-4443, which contains no other known genes on the
same (plus) strand, was analyzed using the Cister algo-
rithm [33]. Two high-score (0.99) matches for CCAAT
motifs were found at positions 1903-18 and 1955-70 of
the sequence, in addition to other adjacent cis-elements
predicted to bind SP1 and E2F transcription factors that
combine to form a predicted high probability enhancer re-
gion ~8 kb upstream of the miR-4443-encoding locus
(Additional file 4: Figure S2). Additional binding motifs
present on the opposite (minus) strand at the same locus,
likely affect the expression of the adjacent CDC25A gene.
This in-silico analysis suggests that miR-4443 is regulated
by the MEK1/2 — C/EBP pathway downstream of both the
insulin and leptin receptors, providing a possible explan-
ation for the similar effects of exposure to insulin and
leptin on miR-4443 and its downstream targets.
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The up-regulation of miR-4443 by leptin and insulin is
attenuated by the inhibition of MEK1/2

To assess if MEK1/2 indeed regulate miR-4443 down-
stream of leptin and insulin signaling, HCT-116 cells
were pre-incubated for 45 min with or without a MEK
inhibitor, PD-98059 (10 puM), before being exposed to
leptin (100 ng/ml) or insulin (20 ng/ml) for 24 h. The in-
hibitor attenuated the leptin-induced up-regulation of
miR-4443 (Fig. 4a). A similar trend was observed with
insulin, although the up-regulation was modest (Fig. 4a).
Co-treatment with PD-98059 also abolished the down-
regulation of NCOA1l and TRAF4 mRNA levels by
leptin in these cells (Fig. 4b). These results support the
notion that miR-4443 is regulated by the MEK1/2 — C/
EBP pathway downstream of both the insulin and leptin
receptors, although it is impossible to discount other,
miR-4443-independent signaling pathways that could
affect the levels of NCOA1 and TRAF4 downstream of
these receptors.

Discussion

Using three CRC-derived lines as a cellular model, we
have identified a signaling pathway that integrates insu-
lin and leptin signaling in the activation of MEK1/2 and
leads to up-regulation of miR-4443, which in turn down-
regulates NCOA1 and TRAF4, possibly causing tumor
suppression and decreased cell invasion. Acquired resist-
ance to leptin and/or insulin is likely to interfere with
this signaling and increase the risk of metastatic cancer
(scheme, Fig. 4c); the lack of reaction of DLD-1 cells to
leptin in our study illustrates such dysfunction on the
cellular level. Our results suggest that acquired resist-
ance to leptin and insulin, rather than high levels of
these hormones in the circulation, may have a causal
role underlying the epidemiological correlation between
obesity and cancer risk.

Several studies have shown that the effects of leptin on
the behavior of CRC-derived cells are complex and vary,
based on the specific origin of the cell lines and their
particular phenotypic and molecular repertoire [46—49].
For instance, when exposed to leptin, enhanced motility
and invasion were observed in LS174T and HM7 cell
lines [47] and increased proliferation was reported in
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several lines, including HCT-116 [46, 48], while in an-
other study, no change in proliferation was observed
following leptin treatment [49]. Although differences in
protocols are a common cause for divergence between
studies, this inconsistency could also be caused by gen-
etic differences. The genetic variability between — and
within — cell lines may be caused not only by the genetic
background of their respective origin, but also stem from
the independent selection that cell line batches undergo
in culture (see, for example, [50]). Anticipation of such
differences is the main reason for choosing to perform
the study in three different cell lines (HCT-116, HT-29
and DLD-1). Indeed, our results show that one of the
lines (DLD-1) exhibited abnormal expression of LEPR,
and in agreement with our proposed regulatory pathway,
miR-4443 was not significantly affected by leptin treat-
ment in this line. These differences further underscore
the importance of thorough molecular characterization
in the context of research as well as in diagnostics. The
miRNA expression profile is an increasingly recognized
aspect of such molecular characterization.

In our study, miR-4443 greatly contributed to the
observed correlation between the effects of insulin and
leptin exposure on miRNA expression profiles of CRC-
derived cell lines. However, other miRNAs are likely to
be regulated by the MAPK cascade downstream of both
insulin and leptin, which would explain the broad correl-
ation between their effects.

Conclusion

Our results suggest that miR-4443 mediates a novel mech-
anism by which the metabolic state of the organism may
influence the risk of tumorigenesis. Further studies are
required to ascertain the significance of this signaling
pathway in human patients and in animal models of
obesity and cancer.
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