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X-ray grating interferometry offers a novel framework for the study of weakly absorbing samples. Three kinds of information, that
is, the attenuation, differential phase contrast (DPC), and dark-field images, can be obtained after a single scanning, providing
additional and complementary information to the conventional attenuation image. Phase shifts of X-rays are measured by the DPC
method; hence, DPC-CT reconstructs refraction indexes rather than attenuation coefficients. In this work, we propose an explicit
filtering based low-dose differential phase reconstruction algorithm, which enables reconstruction from reduced scanning without
artifacts. The algorithm adopts a differential algebraic reconstruction technique (DART) with the explicit filtering based sparse
regularization rather than the commonly used total variation (TV) method. Both the numerical simulation and the biological
sample experiment demonstrate the feasibility of the proposed algorithm.

1. Introduction

X-ray grating interferometry [1–4] with conventional X-ray
tubes develops rapidly in recent years and is becoming
the most promising technology among various phase con-
trast imaging methods for clinical applications. Three kinds
of information, that is, the attenuation, differential phase
contrast (DPC), and dark-field images, can be obtained
through one single scanning, and the latter two images
provide additional and complementary information to the
conventional attenuation image. The DPC method measures
phase shifts of X-rays by obtaining the line integral of the
directional derivatives of refractive index decrements (𝛿)
[5], that is, the refraction angle of the beam. The refraction
index reconstructed afterwards is 1000 times larger than the
absorption index.

The phase-stepping approach of the grating interfer-
ometry, which requires a number of images to retrieve
information, significantly increases the examine time and
the dose delivered to the patient [6]. The problem becomes

even more severe for DPC-CT because of the requirement
of multiangle scanning. Therefore, reducing the number of
projections, the exposure time, and the delivered dose is of
great value. And that is why the low dose DPC reconstruction
algorithm is proposed.

As mentioned above, the reconstruction problem for
DPC-CT is to obtain the refraction index from the refraction
angle data.The analytical method, the filtered backprojection
(FBP) algorithm with the Hilbert transform, was first applied
[7, 8]. Afterwards, several iterative algorithms, such as the
maximum likelihood (ML) algorithm [9] and the differential
algebraic reconstruction technique (DART) [10], were pro-
posed. However, these algorithms rely on the completeness
of data and the large number of projections.

The recently proposed compressed sensing (CS) theory
[11] makes image reconstruction from incomplete data pos-
sible. Essentially, it illustrates that if the image is sparse
in a domain which has small coherence with the sam-
pling domain, according to the Shannon/Nyquist sampling
theorem, fewer projections can almost accurately recover
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the images. A typical image reconstruction method exploits
TV as the sparse regularization [12] (fromCSmeasurements).
Applications in both the absorption imaging [12] and the
DPC imaging [10] have been implemented. Instead of the
implicit regularization coming from the penalty, another
sparse regularization method based on explicit filtering is
proposed, which exploits spatially adaptive filters sensitive
to image features and details [13]. However, no similar
algorithms for DPC imaging have been suggested so far,
which is just the problem to be solved in this paper.

In this work, we propose an explicit filtering based low-
dose differential phase reconstruction algorithm. The algo-
rithmcombines theDART iterative algorithmand the explicit
filtering based CS method. It has the potential to exactly
reconstruct the refractive index distribution using few-view
projections, thus reducing the exposure time and the deliv-
ered dose, making DPC-CT closer to clinical applications.
The feasibility of the low dose reconstruction algorithm is
verified by both the numerical simulation and the biological
sample experiments.

2. Methods

2.1. Grating-Based Imaging. Figure 1 illustrates the schematic
diagram of a typical grating interferometry. Two kinds of
apparatuses are shown, the Talbot effect based interferometry
with coherent source, that is, Figure 1(a), and the Talbot-Lau
effect based interferometry with incoherent source, that is,
Figure 1(b).The first grating G1 creates its self-image through
Talbot-Lau effect or classical optics in the position of G2
where Moire fringes occur. The source grating G0 splits
the source into an array of line sources, enabling the use
of the large-focal-spot X-ray tube, that is, the incoherent
source. The phase-stepping approach is adopted for image
acquisition, capturing a series of raw images at every step of
one of the gratings along the transverse direction, obtaining
the intensity oscillation curve, Figure 1(c). The changes of
the background oscillation curves determine three kinds of
information, namely, the attenuation image, the DPC image,
and the dark-field image.

To analyze the changes quantitatively, the oscillation
curve for each pixel is expressed by the Fourier expansion
series:

𝐼 (𝑚, 𝑛, 𝑥𝑔) = ∑

𝑖
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where 𝑎𝑖 is the amplitude coefficient, 𝜙𝑖 is the corresponding
phase coefficient, and 𝑝2 is the period of G2. Then, the
attenuation, dark-field, and DPC images are given by 𝑇 =
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, respectively,

where the superscripts (𝑠) and (𝑟) denote the values with the
sample in place and as a reference without, respectively, and
𝑉 = 𝑎1/𝑎0 is the visibility of the oscillation curve.

2.2. Differential Phase-Contrast Reconstruction Algorithm.
TheDPC imagemeasured by the grating interferometer is the
refraction angle, which is related to the phase shiftΦ(𝑟) of the
sample:

DP = Δ𝜃 ≈
𝜆

2𝜋

𝜕Φ (𝑟)

𝜕𝑟
. (2)

In other words, the grating interferometer obtains the
line integral of the directional derivatives of refraction index
decrements. Therefore, the reconstruction problem of DPC-
CT can be expressed by

𝑦𝜃 = ∫
𝜕𝛿 (𝑖, 𝑗)

𝜕𝑙
𝑑𝑙, (3)

where 𝑦𝜃 is the refraction angle projection, 𝛿 is the refraction
index decrement of the samples, 𝑙 is the path of X-ray beam
in the medium and 𝑙

 is the perpendicular direction to 𝑙.
By contrast, the projection of the conventional X-ray

transmission comes from the linear integration of attenua-
tion coefficient; hence, the reconstruction problem can be
expressed by

𝑦𝐼 = ∫𝜇 (𝑥, 𝑦) 𝑑𝑙, (4)

where 𝑦𝐼 is the intensity projection and 𝜇 is the linear atten-
uation coefficient.

Such difference in mathematical expressions of the pro-
jections requires different reconstruction algorithms.

Inspired by the widely used algebraic reconstruction
technique (ART) [14], Wang et al. proposed a differential
algebraic reconstruction technique (DART) by discretizing
the projection process of the differential phase contrast
imaging into a linear partial derivative matrix [10]:

𝑦𝜃 = ∫
𝜕𝛿 (𝑖, 𝑗)

𝜕𝑙
𝑑𝑙 ≈ ∑

𝜕𝛿 (𝑖, 𝑗)

𝜕𝑙
= ⟨𝑏𝑖, 𝑥⟩ , (5)

where 𝑏𝑖 denotes the net interpolation coefficient correspond-
ing to each pixel.

Therefore, the forward projection process of differential
phase contrast imaging can be expressed by

Δ𝜃 = 𝐵𝑥, (6)

where 𝐵 is named as the linearly partial-derivative matrix.
Equation (3) can be used to reconstruct the refractive index
by algorithms similar to ART directly shown as (4):

𝑥
𝑘+1

= 𝑥
𝑘
+

𝑦𝜃 − 𝐵𝑥
𝑘

‖𝐵‖
𝐵
𝑇
, (7)

where 𝑥
𝑘 is the image vector 𝑥 in the 𝑘th iteration; 𝐵𝑥

𝑘 pre-
sents the forward projection process.

However, the DART algorithm relies on the completeness
of data [10]. It is incompetent at the ill-posed reconstruction
problems, such as the cases of few-view or limited-angle
projections.
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Figure 1: The grating interferometry. (a) Talbot effect based interferometry with coherent source; (b) Talbot-Lau effect based interferometry
with incoherent source; the sample intensity oscillation curve (the dash line curve) and the background intensity oscillation curve (the solid
line curve) measured with 10 steps during the phase stepping approach with the grating interferometer in Tsinghua University, China.

2.3. Explicit Filtering Based Low-Dose Differential Phase-
Contrast Reconstruction Algorithm. In this part, we propose
an explicit filtering based low-dose differential phase-con-
trast reconstruction algorithm based on the above DART
algorithm for DPC reconstruction.

Generally, the compressed sensing DPC-CT reconstruc-
tion method can be summarized as

𝑥 = arg min
𝑥

{
𝑦𝜃 − 𝐵𝑥


2
+ 𝜆𝜑 (𝑥)} . (8)

Here, the fitness function ‖𝑦𝜃−𝐵𝑥‖
2 , which tries tomatch

the estimation to the data, is accomplished by the DART
algorithm above, where the operation ‖ ⋅ ‖ represents the
𝑙-2 norm. The regularization function 𝜑(𝑥) expresses some
priori known property of the unknown object, which usu-
ally defines a sparse representation of 𝑥 after a specific
transformation. The regularization parameter 𝜆 balances the
fitness function with the regularization function. Different

regularization methods are used to find the solution of the
mathematic model under different constraints of minimizing
the complexity of reconstructed signals in different repre-
sentations. The typical TV-type regularization method uses
the total variations as the sparse transformation, which is
a parametric regression technique. Another solution is to
replace the parametric regression by spatially adaptive filters,
which is sensitive to image features and details. In this paper,
the BM3D filter is adopted, that is, DART BM3D algorithm.

The BM3D algorithm is based on an enhanced sparse
representation in transform domain [15]. The enhancement
of the sparsity is achieved by grouping similar 2D fragments
of the image into 3D data arrays. And then the collaborative
filtering with the hard thresholding is carried out, which
enhances the similarity between the blocks while at the same
time preserves even the finest details with their essential
unique features shared by the jointly filtered 2D fragments.
The implementation of BM3D filter is shown as Figure 2.
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Figure 2: The flow chart of BM3D filter.

BM3D filter matches the similar block regions in the
image (block matching, BM) using the similarity defined as

𝑑 (𝑍1 − 𝑍2) =

𝑍1 − 𝑍2

2

2

𝑁2mat
, (9)

where Ζ is the numerical metric of the image,𝑁mat is the side
length of block, and 𝑑(𝑍1 −𝑍2) is the difference between two
blocks.

Blocks with small differences can be grouped as a set 𝑆.
For blocks in the same group, a hard threshold is used to
assign zeros for small value pixels to generate a weight for
blocks:

𝑤
𝑆

𝑍
=

{

{

{

1

𝜎2𝑁2har
𝑁har ̸= 0

1 𝑁har = 0,

(10)

where𝑁har is the number of nonzero pixels.Then, the filtered
image can be obtained as a similarity-weighted average:
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∑
𝑍∈𝑆
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∑
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𝜒 (𝑥)
, 𝜒 (𝑥) = {

1 𝑍 (𝑥) ̸= 0

0 𝑍 (𝑥) = 0.

(11)

The process of our reconstruction algorithm is shown in
Figure 3 and the steps are described as follows.

(A) Initialization. Creating the linearly partial-derivative
matrix 𝐵 for few-view scanning based on the geome-
try parameters. An initial guess of the reconstruction
image 𝑥0 = 0 is given and 𝑛 = 1.

(B) DART reconstruction:

𝑥
𝑘+1

= DART (𝑥𝑘) , (12)

where DART represents the reconstruction method
in (4).

(C) BM3D filter:

𝑥𝑘+1 = BM3D (𝑥
𝑘+1

) , (13)
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Figure 3: The flow chart of the explicit filtering based low-dose
differential phase-contrast reconstruction algorithm.

where BM3D represents the method shown as in
Figure 2.

(D) Add excitation noise into 𝑥𝑘+1 and go back to step (B).

Gaussian noise is added in the unobserved portions, that
is, themissing angles caused by the few-view or limited-angle
scanning, in frequency domain, which works as a random
generator of the missing components in the spectrum:

𝑥𝑘+1 = FFT−1 (FFT (𝑥𝑘+1) + Gaussian (0, 𝜎)) , (14)

where FFT represents the Fourier transform operation and
FFT−1 is the inverse Fourier transform operation, 𝜎 is the
standard deviation of theGaussian noise which is determined
empirically by the noise of the projections caused by the
quantum noise and electronics noise.

3. Experiments and Results

The proposed explicit filtering based low-dose differential
phase-contrast reconstruction algorithm was validated by
both the numerical simulation and biological experiments.

3.1. Numerical Simulation. The Shepp-Logan phantom with
the resolution of 256 × 256 was used in the study. The phan-
tom is shown as in Figure 4(a) and the reconstructed results
are shown as in Figures 4(b)–4(g). All images are shown
in the same display window [0, 1].

Figures 4(b) and 4(c) are the reconstructed results with
the FBP and DART (500 iterations) methods, respectively,
with 180 views within 180∘ with 1∘ angular interval, which
verified the effectiveness of the FBP and DART methods in
case of complete data. Figures 4(d) and 4(e) are the recon-
structed results with the FBP and DART, respectively, meth-
ods with 10 views within 180∘ with 18∘ angular interval,
with an angular downsampling factor of 18. The results
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Figure 4: The reconstruction results. (a) The phantom; (b) the result of FBP with 180 views, MSE = 4.51𝑒 − 3; (c) the result of DART with
180 views, 500 iterations, MSE = 2.84𝑒 − 5; (d) the result of FBP with 10 views, MSE = 5.15𝑒 − 2; (e) the result of DART with 10 views, 2000
iterations, MSE = 5.80𝑒−3; (f) the result of DART TVwith 10 views, 2000 iterations, MSE = 1.63𝑒−3; (g) the result of the proposed algorithm
with 10 views, 2000 iterations, MSE = 4.62𝑒 − 6; (h) the profiles of the 128th line of (a), (f), and (g).

demonstrate the dependency on the completeness of the data
of the FBP and DART (2000 iterations) methods.

Figure 4(f) is the reconstructed result with the typical
TV-type compressed sensing method (2000 iterations). The
method is an effective reconstruction method dealing with

incomplete data. Figure 4(g) is the reconstructed results
with proposed explicit filtering based compressed sensing
methods (2000 iterations), which is also skilled in dealing
with incomplete data. The reconstructed results with the
compressed sensing methods are almost artifact-free and
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Figure 5: The reconstruction results. (a) the result of FBP with 180 views; (b) the result of DART with 180 views; (c) the result of FBP with 10
views; (d) the result of DART with 20 views; (e) the result of DART TV with 20 views; (f) the result of the proposed algorithm with 20 views.

they are in high accordancewith the phantom in both appear-
ance and values, while the results of FBP and DART algo-
rithms show severe streaking artifacts due to the downsam-
pling. Furthermore, profiles as shown in Figure 4(h) show
that the proposed method is better than the TV-type method
in preserving details.

3.2. Biological Sample Experiment. The biological sample
results have been used to test the proposed reconstruction
method. The experiments were performed at the TOMCAT
beamline using a two-grating interferometer operated at
25KeV and in the 3rd Talbot distance at the Swiss Light
Source of the Paul Scherrer Institute in Switzerland.The pitch
of the phase grating 𝑝1 was 3.981 𝜇m with a height of ℎ1 =

31.7 𝜇m. The corresponding values for the second grating
(gold absorber grating) were 𝑝2 = 2.00 𝜇m and ℎ2 = 24 𝜇m.
The sample was a guinea pig eyeball packed in a plastic pipe
and was scanned within 180∘ with equivalent angular interval
of 1∘. For each view, an eight-step phase stepping process was
adopted and the refraction angular projectionswere retrieved
by information retrieving algorithm.

The reconstruction results are shown in Figure 5. Figures
5(a) and 5(b) are the results of FBP algorithmandDARTalgo-
rithm with 180 views, respectively. Since the reconstruction

image is more complex than the phantom in the previous
section, an angular down-sampling factor of 9 was adopted.
Figures 5(c) and 5(d) is the results of FBP algorithm and
DART algorithmwith 20 views, respectively.The results show
severe streaking artifacts, especially the FBP result. As shown
in Figures 5(e) and 5(f), the results of the two compressed
sensing methods are nearly artifact-free. Both the results
of the two compressed sensing methods show great image
quality improvement compared with DART and FBP in few-
view reconstruction. And the red ellipses in Figures 5(e) and
5(f) illustrate the better capabilities of preserving details of
the proposed explicit filtering based method than the TV-
type method, which can also be seen from Figure 6, which
shows the profiles of the 188th line in the red circles on the
right.

4. Conclusions

In this paper, an explicit filtering based low-dose differential
phase-contrast reconstruction algorithm is proposed. The
algorithm is an application of the compressed sensing theory
and has the potential to accurately reconstruct the distribu-
tion of the refractive index with few-view projections.
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