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A B S T R A C T

The incidence of head and neck squamous cell carcinoma (HNSCC) is increasing worldwide, with over three
quarters of cases now diagnosed in low and middle-income countries (LMICs) with resource-constraints. Loco-
regional recurrence remains the predominant pattern of failure mandating adequate local therapy for acceptable
loco-regional control and survival. There is high-quality evidence that intensification of treatment by either by
adding concurrent chemotherapy or by altering radiotherapy (RT) fractionation improves outcomes in the
curative-intent management of loco-regionally advanced HNSCC. Even conservative estimates indicate that>
50% of patients in LMIC are unlikely to get access to timely RT, which will only get compounded with the
coronavirus disease (COVID)-19 pandemic. The radiation oncology community has been systematically testing
altered fractionation schedules in several solid cancers (breast, lung, and head-neck), given the cost-effective-
ness, convenience, and compliance to short-course RT regimens. Radiobiological modelling suggests that stan-
dard fractionation of 6–7 weeks in HNSCC can be compressed safely into a 4-week schedule to counter ac-
celerated repopulation by increasing the dose per fraction and delivering 5 fractions per week which is currently
being tested in the ongoing multicentric trial of hypo- vs normo-fractionated accelerated RT (HYPNO study).
Herein, we discuss the radiobiological basis of curative-intent hypofractionated-accelerated RT schedule deli-
vering 55 Gy in 20 fractions over 4 weeks in HNSCC followed by critical appraisal of the published literature on
such regimens with concurrent systemic therapy and its inherent resource-sparing potential applicable across
large parts of the world particularly in the context of the ongoing COVID-19 pandemic.

Introduction

Head and neck squamous cell carcinoma (HNSCC) constitutes
nearly 7% of the global cancer burden with an estimated worldwide
incidence of over 600,000 new cases annually [1,2]. Over three quar-
ters of such cases are now seen in low and middle-income countries
(LMICs), where they commonly present with loco-regionally advanced
stage disease [2]. The rising incidence of HNSCC is largely driven by
lifestyle related factors such as tobacco and alcohol consumption [2,3],
although human papilloma virus (HPV)-associated oropharyngeal
cancer has emerged as a distinct entity and is being increasingly re-
ported from high-income countries [2,4]. Loco-regional recurrence re-
mains the predominant pattern of failure mandating adequate local
therapy in the form of surgery and/or radiotherapy (RT) for acceptable
loco-regional control and survival. Recent emphasis on organ-pre-
servation has spurred more widespread the use of definitive non-sur-
gical approaches [5,6], particularly for cancers of the larynx and
pharynx. Traditionally, this was accomplished by radical RT using

conventional fractionation typically defined as delivery of 1.8–2 Gy per
fraction, one fraction per day, 5 fractions per week to a total dose of
66–70 Gy in 33–35 fractions over 6–7 weeks [7,8].

Treatment intensification in HNSCC

There is now consistent and robust high-quality evidence that in-
tensification of treatment either by combining with chemotherapy
[9,10] or altering the fractionation schedule [11,12] improves out-
comes in the curative-intent radiotherapeutic management of loco-re-
gionally advanced HNSCC. Schedules of altered fractionation were
generally designed to increase dose-intensity by delivering a higher
total dose in the same overall treatment time (hyperfractionated RT),
the same total dose in lesser (5–6 weeks) time (accelerated RT without
total dose reduction), or a lesser total dose in even shorter (3–4 weeks)
time (accelerated RT with total dose reduction). Accelerated RT where
typically doses above the conventional 10 Gy per week are delivered
has been shown to be associated with an improved benefit-risk ratio
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relative to standard normofractionated RT (2 Gy/fraction) in HNSCC,
provided a careful balance between total dose, dose per fraction and
overall treatment time is chosen [7,13]. The Danish Head and Neck
Cancer Group (DAHANCA) and the International Atomic Energy
Agency (IAEA) reported significant improvements in loco-regional
control using normofractionated-accelerated RT delivering 2 Gy/frac-
tion, 6 fractions per week for total dose of 66–70 Gy in 33–35 fractions
over 5.5 weeks compared to conventionally fractionated RT, delivering
similar total dose (66–70 Gy) in 5 fractions per week over 6.5–7 weeks
in large pivotal phase III randomized controlled trials [14,15]. Radio-
biological modelling suggests that this can be further compressed in 4-
week schedule to counter accelerated repopulation by increasing the
dose per fraction and delivering 5 fractions per week. Such a hypo-
fractionated accelerated RT schedule delivering 55 Gy in 20 fractions
over 4 weeks is currently being tested in the ongoing IAEA multicentric
trial of hypo- vs normo-fractionated accelerated RT in non-nasophar-
yngeal HNSCC (HYPNO study), registered at clinical trials.gov
(NCT0765503). Herein, we discuss the radiobiological basis of curative-
intent hypofractionated-accelerated RT schedules in HNSCC followed
by critical appraisal of the published literature on such regimens
combined with systemic therapy and its inherent resource-sparing po-
tential applicable across large parts of the world, particularly in the
context of the ongoing coronavirus disease 19 (COVID-19) pandemic.

Radiobiological modelling

A systematic overview analysing 14 paired comparisons of altered
fractionation RT (test arm) versus conventionally fractionated RT
(control arm) from several phase III trials with a combined sample size
of 6229 patients was conducted (unpublished data). Within each trial, a
linear-quadratic (LQ) model with correction for overall treatment time
was fitted to the observed tumor control data and the parameters were
synthesized across trials using standard meta-analysis methodology.
The best-fit estimates of the model parameters with 95% confidence
interval (CI) provided an α/β ratio of 6.4 Gy (95%CI: 2.7–10.2 Gy) and
Dproliferation = 0.65 Gy/day (95%CI: 0.55–0.76) to counter ac-
celerated repopulation after 4-weeks. These estimates are roughly in
agreement with previously data, but have narrower CI, particularly for
the time factor, with added theoretical advantage of being derived only
from randomized trials. Fractionation sensitivity of HNSCC is quantified
by the parameter α/β (in Gy) and the estimate derived from this sys-
tematic overview is somewhat lesser than the often quoted ‘textbook’
value of α/β = 10 Gy [16]. This suggests that hypofractionated sche-
dules could be associated with a slightly higher efficacy than estimated
using conventional values. Radiobiological modelling and exploratory
calculations suggest that a hypofractionated-accelerated schedule deli-
vering 55 Gy in 20 fractions over 4 weeks (2.75 Gy per fraction, 5
fractions per week) could radiobiologically represent an attractive al-
ternative to other altered fractionation regimens in HNSCC.

Comparison of fractionation schedules

The current standard fractionation schedule in HNSCC comprising
70 Gy in 35 fractions over 7 weeks (2 Gy/fraction, 5 fractions per week)
is compared for tumor control (α/β = 10 Gy) and late effects (α/
β = 3 Gy) in terms of equivalent doses in 2 Gy-fractions (EQD2) with
three altered fractionation RT schedules used for treating HNSCC
(Figure 1). The DAHANCA schedule of 66 Gy in 33 fractions over
5.5 weeks (2 Gy per fractions, 6 fractions per week); the Continuous
Hyperfractionated Accelerated Radiation Therapy (CHART) [17] sche-
dule of 54 Gy in 36 fractions over 12 days (1.5 Gy per fraction, 3
fractions per day 4–6 h apart, 7 fractions per week); and the hypo-
fractionated-accelerated schedule of 55 Gy in 20 fractions over 4 weeks
(2.75 Gy per fraction, 5 fractions per week) are included for compar-
ison. Both CHART and DAHANCA are corrected for incomplete re-
covery between fractions delivered in the same day, assuming 6-hour

inter-fraction interval and half-life for repair (T1/2) of 4.4 h. Accelera-
tion is assumed to kick in before 26 days after the first fraction of RT. As
shown in the bar-chart (Fig. 1), both DAHANCA and hypofractionated-
accelerated RT regimens are very nearly equivalent with respect to
biological effect on tumor and more efficient than 70 Gy using standard
fractionation. Details of bio-effect modelling for the control arm (nor-
mofractionated-accelerated RT) as well as the test arm (hypo-
fractionated-accelerated RT) of HYPNO study for tumor control (α/
β = 10 Gy) and late normal tissue effects (α/β = 3 Gy) are provided in
an online supplementary file (S1). If the actual α/β for HNSCC is
6.4 Gy, i.e. the best estimate from the systematic overview and meta-
analysis, then the hypofractionated-accelerated schedule of HYPNO
trial would be marginally hotter with expectedly lesser late-effects than
DAHANCA and be near as well tolerated as the CHART regimen.

Discussion

As per conservative estimates by IAEA [18], over 50% of patients in
LMICs are unlikely to get access to timely RT, which will get further
compounded by the COVID-19 pandemic. The radiation oncology
community has been at the forefront of systematically testing altered
fractionation schedules not only to improve the therapeutic index, but
also to promote the safe and evidenced-based use of hypofractionation
in several solid cancers (breast, lung, and head-neck), given the fact
short-course RT is associated with cost-effectiveness, patient/care-giver
convenience and better compliance. Short-course RT (40 Gy in 15
fractions over 3 weeks) is now well established as the contemporary
standard of care in the post-operative radiotherapeutic management of
early breast cancer [19]. However, the COVID-19 pandemic has
prompted the breast oncology community to offer even shorter regi-
mens (5-fraction RT) such as 28.5 Gy/5 fractions (5.7 Gy/fraction),
once weekly over 5 weeks (FAST protocol) and 27 Gy/5 fractions
(5.4 Gy/fraction) or 26 Gy/5 fractions (5.2 Gy/fraction), once daily in
one week (FAST-Forward) for early stage node-negative breast cancer
in clinical practice [20]. The European Society for Radiation Oncology
(ESTRO)-American Society for Radiation Oncology (ASTRO) consensus
statement provides pragmatic, graded, and balanced practice re-
commendations for thoracic RT in patients with lung cancer including
judicious and appropriate use of hypofractionated regimens in order to
address the challenges of the COVID-19 pandemic [21]. In head-neck
cancer, hyperfractionated RT [11,12] appears to be the best form of
altered fractionation and is associated with an 8% improvement in
overall survival compared to conventionally fractionated RT. However,
hyperfractionation is more resource-intensive (delivering 2 fractions
per day with no reduction in overall treatment time) that makes it
impractical and undesirable, particularly in the current context of the
COVID-19 pandemic, wherein the underlying principle is to reduce the
number of fractions/visits to the hospital to reduce the risk-exposure to
patients and staff, as well as to allow more efficient utilization of re-
sources [22–24]. The recently published ASTRO-ESTRO consensus
statement [25] on practice recommendations for risk-adapted head and
neck cancer RT during COVID-19 pandemic turns out to be overly
conservative towards altered fractionation schedules. There was strong
agreement (oropharynx) and agreement (glottis and larynx) to stay
with conventional dose-fractionation for definitive and even palliative
head-neck RT in early pandemic scenario. Reassuringly, in the later
pandemic stage, there was strong agreement to switch to more hypo-
fractionated regimens for all sub-sites; unfortunately, without re-
commending any specific schedule. Panellists considered it unsafe to
combine chemotherapy with higher (> 2.5–2.8 Gy) dose per fraction,
despite evidence for its safety. The resource-sparing potential of hy-
pofractionated-accelerated schedule such as 55 Gy in 20 fractions over
4 weeks would make it the most suitable alternative for HNSCC in the
present scenario.

Studies using hypofractionated-accelerated RT (55 Gy in 20 frac-
tions over 4 weeks) with concurrent systemic therapy are summarized
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in Table 1 [26–32]. Safety and efficacy outcomes of these short-course
regimens are largely similar to the usually more protracted schedules.
Given the clinical equipoise, there should not be much hesitation in
offering such short-course hypofractionated-accelerated regimens in
clinical practice in the context of the ongoing pandemic. COVID-context
regimens need not necessarily be based on high-quality (level I) evi-
dence from randomized trials, but could be supported by prospective
phase II data, retrospective studies, or even personal/institutional ex-
perience. A few years ago, the Royal College of Radiology (RCR) in the
UK, had omitted hypofractionated-accelerated RT (55 Gy in 20 frac-
tions over 4 weeks) as an option for definitive curative-intent RT of
HNSCC in their updated dose-fractionation guidelines [33]. Notably,
the recent RCR advisory [34] enlists the same hypofractionated-ac-
celerated regimen as one of the evidence-based and preferred ther-
apeutic options in the definitive curative-intent management of HNSCC
during the COVID-19 pandemic. There may be some scope to further
tweak this schedule to derive the most optimal regimen by striking the
right balance between tumor control probability (TCP) and late normal
tissue complication probability (NTCP). Based on mathematical and
optimized radiobiological modelling [35], a regimen delivering 54 Gy
in 18 fractions over 3.5 weeks (3 Gy per fraction, 5 fractions per week)
was recently predicted to substantially increase the TCP, particularly
for late-stage disease (from 35% to 49% for advanced stages) while
decreasing severe late NTCP (from 13% to<2%) compared to stan-
dard-fractionation (70 Gy in 35 fractions over 7 weeks). The authors
further reported that any regimen delivering> 3 Gy per fraction
though associated with marginally increased TCP was predicted to be
suboptimal due to the unacceptably high late NTCP. Several attempts
have been made to model the contribution of chemotherapy given
concomitantly with RT in terms of BED for squamous cancers of various
sites including HNSCC [36–38] that would lead to resultant improve-
ment in TCP. Although this can vary somewhat based on the model
used, it is widely accepted that concurrent chemotherapy adds between
4.5 and 6.8 Gy (EQD2) for squamous cell carcinoma [37,38]. Such
chemo-potentiation has not been included in the radiobiological mod-
elling of equivalent doses in the HYPNO study protocol as concurrent
weekly cisplatin is optional in the study, which is attempting to answer
a pure fractionation question. Identifying the optimal hypo-fractio-
nated-accelerated RT regimen in loco-regionally advanced HNSCC
continues to remain an area of active research. One of the four ex-
perimental arms in an ongoing phase III randomized controlled trial
‘Comparing Alternative Regimens for Escalating treatment of inter-
mediate and high-risk oropharyngeal cancer’ (ComPARE) uses 64 Gy in

25 fractions over 5 weeks with concurrent cisplatin (either 100 mg/m2

three-weekly or 40 mg/m2 weekly) against standard-fractionation RT
(EudraCT No: 2014-003389-26).

Challenges of hypofractionated-accelerated schedules

The use of short-course regimens using a higher dose per fraction
comes with its unique set of challenges. While it is easier to compensate
for missed treatments in the standard schedule by either delivering it on
the weekend or by giving 6 fractions in the week following the missed
fraction, the same cannot be done easily for hypofractionated-ac-
celerated schedules, to keep the delivered dose per week within safe
and acceptable limits. Rapid shrinkage of a tumor, particularly a large
nodal mass, due to the higher dose per fraction may increase the per-
ceived need for adaptive re-planning with resultant unfavourable im-
pact on workflow and resources. There exist due concerns of an in-
creased risk of acute and possibly even late toxicity of such short-course
regimens, particularly when combined with concurrent chemotherapy;
however, many of these concerns are mostly theoretical and largely
unfounded. Nonetheless, it is important to remember that such sche-
dules are just about at the limits of acute normal tissue tolerance,
precluding the use of concurrent high-dose three-weekly cisplatin,
otherwise considered as standard of care in HNSCC. In any case, most
head and neck oncologists would presently prefer avoiding high-dose
three-weekly cisplatin concurrently with RT during the ongoing pan-
demic. However, the addition of concurrent weekly low-dose cisplatin
is much safer, less resource-intensive, and can be left to the discretion of
the treating physician. Nonetheless, addition of any such concurrent
chemotherapy should not compromise the delivery of definitive RT.

Conclusion

Short-course hypofractionated-accelerated RT represents an attrac-
tive and suitable alternative to the more protracted regimens in non-
nasopharyngeal HNSCC and can be offered in clinical practice during
the ongoing pandemic which threatens to disrupt the healthcare re-
sources and capacity globally.

Source of funding

No funding support was involved in the preparation of this manu-
script.

Fig. 1. Estimated equivalent dose in 2-Gy frac-
tions (EQD2) of DAHANCA, CHART, and
Hypofractionated-accelerated (HYPO) schedules
of radiotherapy for tumor control (α/β = 10 Gy,
Dproliferation = 0.65 Gy/day, and start of ac-
celerated repopulation at 28 days) and late
normal tissue toxicity (α/β = 3 Gy and no im-
pact of overall treatment time) compared to
STANDARD (70 Gy in 35 fractions over 7 weeks)
fractionation in head and neck cancer.
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