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ABSTRACT: The design of heterogeneous catalysts is challenged
by the complexity of materials and processes that govern reactivity
and by the fact that the number of good catalysts is very small in
comparison to the number of possible materials. Here, we show
how the subgroup-discovery (SGD) artificial-intelligence approach
can be applied to an experimental plus theoretical data set to
identify constraints on key physicochemical parameters, the so-
called SG rules, which exclusively describe materials and reaction
conditions with outstanding catalytic performance. By using high-
throughput experimentation, 120 SiO2-supported catalysts con-
taining ruthenium, tungsten, and phosphorus were synthesized and
tested in the catalytic oxidation of propylene. As candidate
descriptive parameters, the temperature and 10 parameters related
to the composition and chemical nature of the catalyst materials, derived from calculated free-atom properties, were offered. The
temperature, the phosphorus content, and the composition-weighted electronegativity are identified as key parameters describing
high yields toward the value-added oxygenate products acrolein and acrylic acid. The SG rules not only reflect the underlying
processes particularly associated with high performance but also guide the design of more complex catalysts containing up to five
elements in their composition.
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■ INTRODUCTION

Heterogeneous catalysis is governed by an intricate interplay of
multiple processes1 such as the surface reaction networks and
the typically unknown dynamic restructuring of the catalyst
material under the reaction conditions. Thus, the design of
new materials is challenging. While theoretical approaches
attempt to address the complexity of heterogeneous catalysis,2

the explicit atomistic modeling of the full catalytic progression
by first-principles methods is impractical. Another approach for
identifying novel catalysts consists of the use of high-
throughput experimentation (HTE) to test large numbers of
materials.3 However, utilizing the information obtained by the
experiments to decide on the next promising materials to
investigate is not straightforward.4 As the number of possible
materials is practically infinite and the number of good
catalysts is very small, the direct approach is unlikely to identify
the needed catalyst material.
First, when large libraries of materials are tested, the detailed

characterization of each material is typically not feasible. Thus,
only a small amount of information on the structure and
physicochemical properties of each compound might be
available. This hinders an in-depth understanding of the
underlying processes governing reactivity, which could be used

for rational catalyst design. Second, distinct catalytic
mechanisms might operate, depending on the materials and
reaction conditions, and only very few situations result in good
catalytic performance. This leads to an unbalanced distribution
between high- and low-performance scenarios and brings into
question the usefulness of global models to help deciding on
the next materials to be tested. These models are trained to
describe all materials and reaction conditions simultaneously
by minimizing the expected average prediction error over all
samples. While this approach may provide an accurate
prediction on average, it does not necessarily allow for a
focused modeling of the most interesting materials and
mechanisms. Alternative approaches for catalyst design are
therefore required.
Several recent studies have described artificial-intelligence

approaches based on physicochemical parameters for the
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analysis and discovery of catalytic systems.5 Here, we apply the
subgroup-discovery (SGD) artificial-intelligence local ap-
proach6 to a hybrid data set obtained from HTE and theory
to identify key physicochemical descriptive parameters and
constraints on their values, i.e., rules, which are particularly
associated with high performance. The reactivity measured by
HTE is used as a target in the SGD analysis. The temperature-
and composition-dependent physicochemical properties eval-
uated with density functional theory (DFT) calculations are
used as candidate descriptive parameters.
The SGD approach has been applied in computational

catalysis7 and materials science.6e,8 It starts with the generation
of a pool of propositions (π), statements about the data that
apply only to a portion of the data set. For the case of
continuous candidate descriptive parameters, the propositions
are inequalities constraining their values. Then, SGD identifies
selectors (σ), i.e., statements formed by a number of
propositions and the “AND” connector (denoted “∧”), that
result in the selection of subgroups of materials and conditions
with the most outstanding distributions of the target values
with respect to the whole data set (Figure 1A). The
propositions entering these selectors can be seen as rules
describing the exceptional SG behavior. The parameters
entering these propositions are in turn the key, most relevant
descriptive parameters, out of all the offered parameters,
associated with the desired reactivity. Because the SG search is
performed by maximizing a quality function that measures how
outstanding specific subselections of data points are, this
approach identifies a local behavior. Thus, the identified rules
reflect the specific underlying processes resulting in out-
standing performance.

We apply the SGD-HTE and theory approach to the
selective oxidation of propylene on SiO2-supported catalysts
based on ruthenium, tungsten, and phosphorus. By using the
product yield measured by HTE as a target, we circumvent the
need for the explicit modeling of the full catalytic progression.
Additionally, because the candidate descriptive material
parameters can be calculated by first-principles methods,
extensive material characterization by experiment is not
required and the resulting SG rules can be used to identify
promising catalyst candidates which have not yet been
synthesized by experiment.

■ SELECTIVE OXIDATION REACTION AND
HIGH-THROUGHPUT EXPERIMENTATION

The selective partial oxidation of light alkanes to value-added
olefins or oxygenates is an efficient route for feedstock
upgrading.10 However, the intricate surface reaction net-
works11 typically lead to product mixtures containing up to
20 different molecules, including undesirable byproducts such
as CO and CO2. In order to selectively produce the olefins or
the oxygenates, mixed-metal oxide or phosphate heterogeneous
catalysts based on molybdenum and vanadium redox-active
species have been used, such as MoVTeNbOx and the state of
the art industrial catalyst for n-butane selective oxidation,
vanadyl pyrophosphate. Several recent investigations have
explored the physicochemical properties and the catalytic
activity of mixed-metal phosphates in a systematic way.12

Platinum-group-metal-based catalysts commonly result in
hydrocarbon combustion products. However, ruthenium-based
materials also catalyze the partial oxidation of methane to
CO.13 Moreover, the isolation of ruthenium species was
proposed as a strategy to increase the catalyst selectivity in

Figure 1. (A) SGD approach for identifying key descriptive parameters and rules associated with materials and reaction conditions with
outstanding catalytic performance. The rules are given by the propositions and consist of constraints on the values of key descriptive parameters.
“∧” denotes the “AND” connector. (B) Elements entering the composition of the SiO2-supported materials. (C) Competing reactions in propylene
oxidation leading not only to the desired oxygenates but also to the combustion byproducts. The values shown in parentheses in (C) are the
reaction enthalpies, in kJ/mol.9
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oxidation reactions.14 Analogously, it was shown that the
isolation of vanadium species in a tungsten phosphate matrix
increases the catalyst selectivity toward oxygenates in the n-
butane oxidation reaction.15 In this study, we investigate
materials based on ruthenium combined with tungsten and
phosphorus (Figure 1B) as an alternative class of catalysts for
selective oxidation. The combination of Ru with tungsten and
phosphorus, in a tungsten phosphate like matrix, could favor
selectivity toward the desired olefins and oxygenates, following
a catalyst design strategy based on the dilution of highly active
metal sites. With the aim of studying these systems, HTE
measurements were performed using 120 different three-
component catalyst compositions containing ruthenium, tung-
sten, and phosphorus in different proportions. At each catalyst
composition, several reaction temperatures between 200 and
400 °C were examined. The detailed preparation, character-
ization, and reactivity analysis of these catalysts in the selective
oxidation of n-butane, propane, and propylene is discussed in a
separate contribution.16 In this paper, we only provide details
of the propylene selective oxidation reaction (Figure 1C).
All of the reactions were carried out in tubular, fixed-bed

reactors with the following reaction feed: Ar, H2O, N2, O2, and
propylene (C3H6) with molar rates of 4.015, 4.015, 104.40,
20.08, and 1.57 mmol/h, respectively. The same mass of
catalyst was used in all reactions, so that the contact time, in
terms of volumetric flow per mass of catalyst, was kept fixed
across experiments. These three-component catalysts were
prepared on a SiO2 pseudoliquid support and might present a
disordered, possibly amorphous, structure. The atomic
structures of all the tested catalysts are not known in detail.
However, similar catalytic performance was found for
crystalline and disordered phases at the same composition.16

This indicates that the composition is more crucial for the
catalytic performance than the degree of crystallinity.
In HTE, a large materials space is accessible for catalyst

design by changing the relative amount of each component
and the specific elements on the catalyst composition.
Approaches to guide the efficient exploration of such a
materials space, indicating the most promising compositions to
be tested next, are thus desirable. The most interesting
compositions are those that display both considerable activity,
i.e., those providing significant propylene conversion, and
selectivity, i.e., those that specifically form the desired
oxygenates (acrolein and acrylic acid, Figure 1C) from
propylene. This is motivated by using the yield of oxygenates
Yoxygenates as target in our SGD analysis, defined as

Y Y Y

F

F

F

F

oxygenates acrolein acrylic acid

acrolein,out

propylene,in

acrylic acid,out

propylene,in

= +

=
̇
̇ +

̇
̇ (1)

In eq 1, ḞA,in and ḞA,out denote the molar rate, in mmol/h, of
species A in the reactor feed and outlet, respectively. Our goal
is to identify key parameters and rules describing materials and
reaction conditions that give high yields of oxygenates.

■ SUBGROUP DISCOVERY APPROACH
The two main crucial aspects in SGD are the offered candidate
descriptive parameters and the quality function. In this work,
we use the reaction temperature (T) and the phosphorus
molar content (xp) as experimental candidate parameters. In
addition, we include a set of free-atom properties as candidate

descriptive parameters to characterize the catalyst material in
terms of the proportion and chemical nature of the elements
entering the composition. The following elemental properties
are used:

• the radii of maximum electron density of s, p, d, and
valence orbitals (rs, rp, rd, and rval, respectively)

• the Kohn−Sham single-particle eigenvalues of the
highest occupied and lowest unoccupied states (εH and
εL, respectively)

• the electron affinity (EA)
• the ionization potential (IP)

• the electronegativity (EN), defined as EN EA IP
2

= + .

These properties were calculated for the isolated atoms
using DFT-PBEsol17 and the FHI-aims18 code (further
calculation details and values for the elemental properties
used in the work are available in the Supporting Information).
rval is defined as the radius of the highest occupied state. For a
given catalyst composition, the per-element free-atom proper-
ties are converted into system-specific properties by taking the
composition-weighted average

xa

M

a i i,∑φ φ= (2)

where φa is an arbitrary elemental property, xi is the molar
content of element i in the material, and i runs over all M
elements in the composition. For the three-component
materials, M = 3. We note that oxygen is also present in all
materials, but its proportion is not known from the catalyst
formulation nor measured for all materials. Therefore, the
oxygen content is not included in the material’s character-
ization. Properties that can be readily calculated for the free
atom are advantageous to structure-based properties because
they do not have to be re-evaluated for each new material.
Furthermore, it should be noted that the composition-
weighted average is defined for an arbitrary number of
components (or elements). Therefore, the key descriptive
parameters identified by the SGD of three-component
materials can be used to design materials containing different
elements or more than three components (vide inf ra). This
would not be the case if only composition parameters (e.g., xP,
xRu, and xW) were used, since these quantities are not defined
for materials containing elements different from Ru, P, and W
or more than three components. In total, 11 descriptive
parameters are used in our SGD analysis: T, xP, rs̅, rp̅, rd̅, rval , Hε
, Lε , EA , IP, and EN.
As the SGD quality function, we use

Q
s
s

D(P, SG)
(SG)
(P)

(P, SG)cJS=
(3)

where the coverage s
s
(SG)
(P)

is the ratio between the number of

data points in the subgroup, s(SG), and the total number of
data points in the whole data set, s(P), and DcJS(P,SG) is the
cumulative Jensen−Shannon divergence between the distribu-
tion of the target values in the SG and the distribution of the
target values in the whole data set.19 The coverage term
controls the subgroup size and prevents very small SGs with
little statistical significance from being selected. The second
term, DcJS, is the cumulative-distribution-function formula-
tion19 of the Jensen−Shannon divergence, which is a properly
symmetrized version of the information-theoretical Kullback−
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Leibler divergence. DcJS measures the dissimilarity between two
distributions: it assumes close to zero values for similar
distributions and increases, for instance, as the distributions
have different standard deviations or different means. Thus, the
second term in eq 3 favors the identification of SGs presenting
target values as “unusual” as possible in comparison to the
majority of the observations. It also favors distributions that are
contained in narrower value ranges in comparison to the whole
data set. When most of the data points at hand contain low-
performing materials and conditions, the use of DcJS in the
quality function allows focusing on the exceptionally high
performing materials.
The SGD approach contrasts with conventional artificial-

intelligence methods such as decision trees, which are based on
the optimization of a function that measures the global
performance of the model across the whole data set (e.g., mean
absolute error or root mean squared error). While global
approaches may provide a good description on average, they
do not focus on the outstanding data points. We also note that
SGD identifies the key, most relevant descriptive parameters
out of many candidate descriptive parameters. Conversely,
conventional regression approaches (e.g., multivariate regres-
sion) exploit all of the parameters simultaneously. As a
consequence, the most important parameters are not
necessarily determined by such an analysis. This is problematic
when obtaining the candidate descriptive parameters for new

materials (extrapolation) involves significant experimental or
computational effort. Further SGD details, including a detailed
description of the approach and of the Jensen−Shannon
divergence are available in Supporting Information. SGD was
compared to the decision-tree approach in previous works by
some of us.7

■ SUBGROUP OF THREE-COMPONENT CATALYSTS
WITH EXCEPTIONAL PERFORMANCE

The propylene conversion vs oxygenates selectivity profiles and
the distribution of yield of oxygenates in the data set (Figure
2A,B, respectively) show that the vast majority of observations
correspond to low performance. Indeed, 50% of the measured
materials and conditions result in a less than 2% oxygenate
yield and only 41 measurements, out of 1220, are associated
with yields of oxygenates above 20%. The average oxygenate
yield over the whole data set is equal to 4.83%, and the
maximum Yoxygenates value is 26.85%.
By applying the SGD, we identified several SGs providing

near-optimal quality-function values (Figure S3). Among the
SGs displaying quality-function values within 40% of the
optimal value, we selected, for further analysis and discussion,
the SG that presents the highest value of cumulative Jensen−
Shannon divergence (0.693). This SG contains only 15 data
points, i.e., approximately 1.2% of the data set, which all have
high yields of oxygenates (Figure 2A,B, in black). The average

Figure 2. SGD analysis of propylene selective oxidation using three-component materials with ruthenium, tungsten, and phosphorus: (A) overview
of reactivity measured by HTE; (B) distribution of oxygenate yield over the data set of 1220 measurements; (C) identified rules describing the SG;
(D−F) SG rules (indicated by the black dashed lines and arrows) on the identified key descriptive parameters temperature (T), phosphorus molar
content (xP), and composition-averaged electronegativity (EN), respectively. The data points corresponding to the identified SG are displayed in

black. The propylene conversion and the selectivity toward oxygenates are defined by X
F F

Fpropylene
propylene,in propylene,out

propylene,in
=

̇ − ̇

̇ and

S
F F

F Foxygenates
acrolein,out acrylic acid,out

propylene,in propylene,out
=

̇ + ̇

̇ − ̇ , respectively.
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yield of oxygenates in this SG is equal to 24.15%: i.e., 5 times
higher than the average on the whole data set. This SG is
described by rules on three descriptive parameters: 280 ≤ T ≤
300 °C, xP > 0.55, and 3.910 EN 4.002 eV≤ < (Figure 2C).
The rule on the temperature highlights that the highest

yields of oxygenates are observed for intermediate temper-
atures within the tested range of 200−400 °C (Figure 2C).
This could be related to the fact that the yield of oxygenates is
favored at intermediate propylene conversions (Figure S4).
Indeed, the temperature is the descriptive parameter that
correlates the most with the propylene conversion, of all the
candidate parameters that were offered (Figure S2). The rule
on the phosphorus content shows that a relatively high
phosphorus content is needed to achieve outstanding perform-
ance (Figure 2D). This could be related to the dilution of
ruthenium sites on a phosphate matrix that occurs at high
phosphorus loadings.15,16 Finally, the rule on the composition-
averaged electronegativity (Figure 2F) effectively limits the
range of Ru contents, as shown in the ternary diagram of
Figure 3B. This reflects the fact that Ru is needed to achieve
propylene conversion (Figure S5A) but that too much of this
element in the composition leads to undesired combustion
products (Figure S5B). The electronegativity of an element
reflects its tendency to attract electronic density in a chemical
bond. Thus, from a physicochemical standpoint, the relevance
of EN could be related to the strength and nature of certain
bonds within the materials or between the materials’ surfaces
and reacting species: for instance, metal−oxygen bonds.20

These bonds are crucial in several processes taking place
during the oxidation reaction, such as such as the O2
dissociation and the oxygen transfers from the catalyst surface
to adsorbed organic species in order to form the C−O bonds
of acrolein and acrylic acid. However, we note that EN is an
effective (mean field) electronegativity and not a specific
electronegativity of a certain element. Thus, EN is also related
to the composition.
We wish to stress that the rules derived by SGD depend on

the combination of constraints on the parameters T, xP, and EN
as a descriptor for outstanding performance. Therefore, by
assigning a too specific, chemical meaning to each parameter

individually, one might overlook the possibly intricate interplay
of the many processes governing catalysis. Moreover, the
interpretation presented above is speculative in the sense that
it is based on the current knowledge about the catalyst
materials and reaction. It is possible, or even likely, that other,
so far not well understood or unknown underlying processes
(e.g., the dynamic restructuring of the catalyst during the
reaction21) play a significant role in determining the out-
standing behavior. The SG rules might capture these processes.
In fact, the SG rules do not necessarily reflect causality. Thus,
the physical relationship between the identified parameters and
the underlying chemistry might be indirect.
Similar SG rules are obtained when the training is performed

with randomly selected 90% of the data points (see cross-
validation study in the Supporting Information) or when the
data points presenting yield of oxygenates lower than 3% are
excluded from training (see details in the Supporting
Information). SG rules constraining the EN parameter to an
intermediate range, for instance, are always observed when
only 90% of the data is used for training. Furthermore, the
ranges of variation of minimum and maximum thresholds are
[3.882, 3.910 eV] and [3.989, 4.031 eV], respectively: i.e.,
similar to the thresholds shown in Figure 2F. These results
indicate that the SG rules are not strongly affected by
variations of the data used for their derivation. We have also
verified that the SG rules derived on the basis of 90% of the
data set (training sets) are able to select the outstanding
materials in the remaining 10% (test sets) (see the Supporting
Information for details).
For comparison, we have also performed the SGD using

only the experimental candidate descriptive parameters T, xP,
and xRu. We identify the SG rules 300 ≤ T ≤ 300 °C, xP > 0.55,
and 0.15 ≤ xRu ≤ 0.25. These SG rules select 13 data points
that correspond to a cumulative Jensen−Shannon divergence
of 0.704. The quality-function value associated with the
selected data points and some of the SG rules are similar to
those discussed in Figure 2. However, the rules derived solely
on the basis of experimental descriptive parameters are specific
to three-component materials composed of phosphorus,
ruthenium, and tungsten. Thus, it is not straightforward to

Figure 3. Ternary diagrams for three-component materials with ruthenium, tungsten, and phosphorus tested in propylene selective oxidation using
HTE: (A) measured yield of oxygenates at 300 °C; (B) composition-averaged electronegativity EN for each tested composition. The SG rules are
shown by the dashed lines and arrows in (B), and the portion of the ternary diagram selected by the SG rules is shown in blue.
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use these rules for the design of materials containing other
elements or more than three components. Conversely, the
composition-weighted parameters derived by electronic-
structure calculations are well-defined for materials containing
an arbitrary number of elements, including elements that are
not initially present in the data set. Thus, the rules associated
with the theoretical parameters can be exploited for the design
of more complex materials (vide inf ra).
Overall, our results demonstrate the ability of the HTE and

theory SGD approach to detect interpretable, chemically
meaningful, and complex patterns associated with very few
data points presenting exceptional catalytic performance.

■ EXPLOITING THE SUBGROUP RULES FOR THE
DESIGN OF FOUR- AND FIVE-COMPONENT
CATALYSTS

Using the rules defining the SG of outstanding oxygenate
production for the three-component data, we designed more
complex materials containing additional elements. We start by
considering four-component materials containing ruthenium,
tungsten, phosphorus, and one additional E1 element. For this
analysis, we fix the phosphorus content to 0.60 according to
the rule identified in Figure 2C. To further reduce the number
of possible variables determining the catalyst composition, we
also fix the ruthenium molar content to 0.05. We focus on such

relatively low ruthenium loadings to ensure that the formation
of combustion products is not significant. In this way, the
compositions of the four-component materials are determined
solely by the choice of E1 element and its molar content.
Materials with an E1 molar content of 0.35, which do not
contain tungsten and are thus composed by three elements, are
also referred to as four-component materials in our analysis to
highlight that they contain different chemical elements in
comparison to ruthenium, tungsten, and phosphorus, the
elements present in the materials of the data set used to derive
the rules.
We concentrate on E1 elements that show octahedral

coordination patterns among the reported phosphorus-
containing material structures22 and that have a maximum
atomic radius difference in comparison to tungsten of 0.10 Å
(see details in the Supporting Information). This is to ensure
that only elements that are compatible with tungsten, i.e., that
could possibly replace tungsten in the material structure, are
taken into account. The following E1 elements are considered:
niobium, tantalum, chromium, molybdenum, tin, antimony,
and tellurium. These elements have atomic radii of 1.45, 1.45,
1.40, 1.45, 1.45, 1.45, and 1.40 Å, respectively. The atomic
radius of tungsten is 1.45 Å. We have also included lead in this
analysis, since materials containing this element were also
experimentally tested (see below).

Figure 4. SG rules applied to the design of four- and five-component materials for propylene selective oxidation: (A, C) composition-averaged
electronegativity (EN) for different elements and molar contents in four- and five-component materials, respectively; (B, D) distribution of all
measured yields of oxygenates (214 and 533 data points) for four- and five-component materials, respectively. In (A) and (C), the EN values are
shown in boldface and are marked with asterisks if they satisfy the SG rules on EN identified on the basis of the three-component materials. The
colors in (A) and (C) indicate the highest measured yield of oxygenates for each material. The SG rules identified on the basis of the three-
component materials are indicated by the dashed lines and arrows in (B) and (D). The shaded areas in (B) and (D) indicate the variability of EN
thresholds observed when different subsets of the data, containing only 90% of the data set, are used for training (Table S2). The oxygenate yields
shown in (C) correspond to materials with xW = 0.035 for the cases E2 = Mo, Nb and with xW = 0.050 for the cases E2 = Ta, Sb. The white cells in
(C) indicate materials not measured by HTE.
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We evaluated the composition-averaged electronegativity for
the selected E1 and the molar contents 0.05, 0.175, 0.30, and
0.35 in Figure 4A. In this figure, the EN values for the new
four-component materials are shown in boldface and marked
w i t h a s t e r i s k s i f t h e y s a t i s f y t h e SG r u l e
3.910 EN 4.002 eV≤ < . This catalyst map suggests that the
use of 5.0−17.5 mol % of niobium, chromium, molybdenum,
tin, lead, and antimony, in the catalyst composition in addition
to ruthenium, tungsten, and phosphorus results in catalysts
which are part of the identified SG. Thus, these are likely high
performing materials. For the case of tantalum and tellurium,
17.5 mol % or more of these elements is needed for the
resulting materials to present EN values compatible with the
SG.
The four-component catalyst compositions shown in Figure

4A were tested in propylene oxidation using HTE under the
same reaction conditions as those used for testing the three-
component materials. The highest yield of oxygenates achieved
for each composition is shown by the colors in Figure 4A. A
comparison of the experimental results with the SG rules on
EN shows that the catalyst design rules derived by SGD
correctly describe the experimental trend. In particular, the
materials based on niobium, chromium, molybdenum, tin,
lead, and antimony achieve the highest oxygenate yields at
relative lower E1 molar fractions in comparison to the tantalum
and tellurium-based materials, in line with the optimal ranges
of EN values indicated by the SG rules.
All measured yields of oxygenates, corresponding to the

materials shown in the catalyst map of Figure 4A tested at

several temperatures, are plotted as a function of EN in Figure
4B. In this figure, the SG rules on EN are shown as vertical
black lines and arrows. The variability of EN thresholds in the
SG rule with respect to the input data set is indicated by the
ranges of EN values in the gray shaded areas. These ranges
correspond to the variations of the thresholds observed when
different subsets of data, containing only 90% of the data set,
are used for training (see Table S2). The catalyst achieving the
highest yield of oxygenates (60.19% at 400 °C) contains a 0.35
molar fraction of tellurium as the E1 element and lies within
the window of EN values suggested by the SG rules.
We have also used the SG rules derived from the three-

component materials to address five-component materials,
which were tested experimentally (Figure 4C,D). For this
purpose, E1 was fixed to be tellurium on the basis of the best
four-component catalysts and molybdenum, niobium, tanta-
lum, and antimony were evaluated as E2. Thus, ruthenium,
tungsten, phosphorus, tellurium, and E2 enter in the
composition of the considered five-component materials. The
agreement between the SG rule and the measured oxygenate
yield is reasonable in spite of the much higher material
complexity with respect to the catalysts used for training. In
particular, the five-component catalyst corresponding to the
highest yield of oxygenates (59.60% at 400 °C) contains
tantalum as the E2 element and the composition-averaged
electronegativity for this material is 3.947 eV. Such an EN
value lies within the threshold defined by the SG rule (Figure
4D).

Figure 5. SGD analysis of propylene selective oxidation on four- and five-component materials: (A) overview of reactivity measured by HTE; (B)
distribution of oxygenate yield over the data set of 746 measurements; (C) identified rules describing the SG; (D−F) SG rules (indicated by the
black dashed lines and arrows) on the identified key descriptive parameter: temperature (T), composition-averaged valence radius (rval ), and
electron affinity (EA), respectively. The data points corresponding to the SG are displayed in black.
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These results demonstrate the potential of the SGD-HTE
and theory approach to identify generalizable rules describing
exceptional performance. Indeed, the identified four- and five-
component catalysts are significantly more complex than those
of the training data set (three-component materials). More-
over, the outstanding four- and five-component catalysts
achieve oxygenate yields (60.19 and 59.60%, respectively) up
to twice as large as those obtained with three-component
materials (highest value of 26.85%). Therefore, the SG rules
hinted at materials that are significantly better performing that
any of the materials used in training.
We note that the four- and five-component materials achieve

the highest yields of oxygenates at higher temperatures (400
°C) than the three-component systems (300 °C) (see Figure
S4). One of the SG rules on the reaction temperature derived
on the basis of the three-component materials data set (T ≤
300 °C) is thus not transferable to the four-component set,
since this aspect is not included in the training. The
temperature is, however, a less crucial parameter than the
composition-related parameters within our HTE approach,
since the screening of different temperatures is less resource
consuming than the screening of different materials, or
compositions. For this reason, the four- and five-component
materials were tested using the same range of temperatures
used for the three-component material (200−400 °C).
Finally, we applied the SGD approach to the four- and five-

component HTE data (746 data points, Figure 5A,B) using the
same candidate descriptive parameters used for the previous
SGD analysis of three-component materials. The identified SG
presenting the highest DcJS value (0.355) contains 18 data
points: i.e., ca. 2.4% of the data set (black points in Figure
5A,B). The selected data points correspond to one four-
component material with tellurium as the E1 element as well as
different compositions of five-component materials with E1 =
Te and E2 = Mo, Nb. The rules describing this SG (Figure 5C)
constrain the values of three parameters: T ≥ 360 °C,
r 1.001 Åval ≤ , and EA 1.593 eV< − , (Figure 5D−F, respec-
tively). The comparison of these SG rules with those for the
SG obtained with the three-component materials data set
(Figure 2C) highlights the higher temperatures needed for the
four- and five-component materials to achieve outstanding
performance. Moreover, different composition-dependent
parameters (rval and EA) are required to describe this SG in
comparison to the case of three-component materials (xp and
EN), even though the electronegativity and the electron
affinity are related by EN EA IP

2
= + .

We note that two data points presenting high yield of
oxygenate are not captured by the SG rules in Figure 5. This
could indicate that these two data points are governed by
different underlying processes in comparison to the situations
belonging to the identified SG. However, these two points fall
close to the threshold of the SG rules (Figure 5E,F) and the
precise thresholds present some variability with respect to the
data used for their derivation (see discussion above on EN
thresholds).
The SG rules derived in this study are expected to describe

outstanding materials whose performance is governed by the
same processes governing the reactivity of the exceptional
materials in the input data sets used for training. The analysis
of four- and five-component materials was focused, never-
theless, on low ruthenium contents and on E1 and E2 elements
compatible with tungsten: i.e., with similar atomic radii. Thus,

it is unclear if the SG rules presented in Figure 5C can identify
exceptional materials and conditions for any arbitrary
ruthenium content or for E1 and E2 elements that have
significantly different radii in comparison to tungsten. This is
because different mechanisms may operate on these materials
that could also lead to exceptional performance. Therefore, the
SGD analysis might need to be performed by including new
data points covering such thus far unexplored portions of the
materials space to enlarge the domain in which the SG rules
can detect exceptional catalysts and reaction conditions.

■ CONCLUSIONS
In this paper, we applied the SGD approach to the design of
selective oxidation phosphorus-containing supported catalysts
on the basis of data from HTE and DFT calculations. The
yield of value-added oxygenate product measured by HTE was
used as a target, and parameters obtained from DFT-calculated
free-atom properties were offered as candidate descriptive
parameters. The composition-weighted electronegativity, the
phosphorus content, and the temperature were identified as
key parameters associated with an outstanding production of
acrolein and acrylic acid from propylene in three-component
catalysts containing ruthenium, tungsten, and phosphorus. The
SG rules on these key parameters not only rationalize a local
reactivity pattern particularly associated with exceptional
catalytic performance but also guide the design of more
complex catalysts. In particular, a five-component material
containing ruthenium, tungsten, phosphorus, tellurium, and
tantalum in the composition, which presents an oxygenate
yield more than twice as large as any observation in the data set
used for training, is captured by the SG rules. This local
modeling approach is suitable for the search of exceptional
materials whose structures and functions can hardly be
modeled explicitly by theory.
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