
Cancer stem cells and early stage basal-like breast cancer

Pang-Kuo Lo, Benjamin Wolfson, and Qun Zhou
Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 
Baltimore, MD 21201, United States

Abstract

Ductal carcinoma in situ (DCIS) is a category of early stage, non-invasive breast tumor defined by 

the intraductal proliferation of malignant breast epithelial cells. DCIS is a heterogeneous disease 

composed of multiple molecular subtypes including luminal, HER2 and basal-like types, which 

are characterized by immunohistochemical analyses and gene expression profiling. Following 

surgical and radiation therapies, patients with luminal-type, estrogen receptor-positive DCIS breast 

tumors can benefit from adjuvant endocrine-based treatment. However, there are no available 

targeted therapies for patients with basal-like DCIS (BL-DCIS) tumors due to their frequent lack 

of endocrine receptors and HER2 amplification, rendering them potentially susceptible to 

recurrence. Moreover, multiple lines of evidence suggest that DCIS is a non-obligate precursor of 

invasive breast carcinoma. This raises the possibility that targeting precursor BL-DCIS is a 

promising strategy to prevent BL-DCIS patients from the development of invasive basal-like breast 

cancer. An accumulating body of evidence demonstrates the existence of cancer stem-like cells 

(CSCs) in BL-DCIS, which potentially determine the features of BL-DCIS and their ability to 

progress into invasive cancer. This review encompasses the current knowledge in regard to the 

characteristics of BL-DCIS, identification of CSCs, and their biological properties in BL-DCIS. 

We summarize recently discovered relevant molecular signaling alterations that promote the 

generation of CSCs in BL-DCIS and the progression of BL-DCIS to invasive breast cancer, as well 

as the influence of the tissue microenvironment on CSCs and the invasive transition. Finally, we 

discuss the translational implications of these findings for the prognosis and prevention of BL-

DCIS relapse and progression.
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INTRODUCTION

Breast cancer has been recognized as a complex, heterogeneous disease, encompassing 

multiple cell populations with different risk factors, histological features, clinical behaviors 

and responses to therapy[1-3]. While breast cancer diagnosis was initially based on tumor 

size, histological classification systems were later developed to categorize breast tumors into 

subgroups. Primary breast carcinomas are first classified as either in situ or invasive tumors. 

Ductal carcinoma in situ (DCIS) of the breast is an early stage, non-invasive breast tumor 

commonly diagnosed by mammography screening. DCIS accounts for 15%-20% of all 

newly diagnosed breast cancer cases, and is characterized by the intraductal proliferation of 

malignant epithelial cells without invasion through the basement membrane into the 

surrounding tissue[4]. In contrast, invasive breast carcinoma is able to invade through the 

basement membrane into the surrounding stroma. Invasive breast carcinomas have been 

extensively studied and found to be composed of numerous heterogeneous histological 

subtypes[5]. Similar to invasive breast carcinoma, divergent histological types of DCIS 

lesions have been recognized, and various classification systems have been developed to 

characterize DCIS tumors[6]. Approximately 15%-30% of DCIS patients relapse within 10 

years after surgical lumpectomy[7], and it is of urgent clinical need to have an effective 

classification system to identify DCIS with a high-risk of tumor recurrence. Owing to 

subjective interpretation of lesion morphology by pathologists, inconsistency in DCIS 

classification cannot be avoided[8]. Histological classification of heterogeneous DCIS 

lesions is not sufficient to identify molecularly heterogeneous DCIS subgroups, and 

additional classification approaches are necessary for the pathological characterization of 

DCIS and identification of more effective therapeutic options.

Gene expression profiling has emerged as a useful system for breast cancer 

classification[9-11], and has been used to define five intrinsic molecular subtypes of invasive 

breast carcinoma: Luminal A, luminal B, HER2-enriched, normal- and basal-like[9,10]. 

Following this discovery, additional subgroups of breast cancer were identified, including 

the interferon-enriched[12], molecular apocrine[13] and claudin-low subgroups[14]. Given that 

these subtypes possess different molecular alterations, they display distinct clinical 

outcomes and therapeutic responses. The basal-like subtype is highly aggressive and 

therefore of particular clinical relevance. Basal-like breast cancers are more likely to occur 

in younger, African American women, and are associated with breast cancer susceptibility 

(BRCA) gene mutations. They are characterized by high tumor grade, proliferation rate, 

frequency of recurrence, and the presence of p53 mutations. Patients with basal-like breast 

cancers frequently have poor prognosis, and are difficult to treat due to the lack of effective 

targeted therapies[10,11,15]. Breast tumors categorized as basal-like display gene expression 

signatures similar to normal basal/myoepithelial breast cells (myofibroblast-like breast 

epithelial cells located between breast ductal epithelial cells and the basement membrane), 

including high-molecular weight basal cytokeratins (CK5/6, CK14 and CK17)[16].

The majority of diagnosed basal-like breast cancer cases are triple-negative breast cancers 

(TNBC), which lack expression of hormone receptors [estrogen receptor (ER) and 

progesterone receptor (PR)] and overexpression/amplification of HER2[9,10,15]. Although 

there is significant overlap between basal-like breast cancers and TNBC, they are not 
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identical. Approximately 70%-80% of basal-like breast cancers have been identified as 

triple-negative, basal-like breast cancer (TN-BLBC)[15,17,18]. The remaining non-triple-

negative basal-like breast cancers share similar gene expression profiles with TN-BLBC, but 

might have gained additional genetic and/or epigenetic aberrations due to increased genomic 

instability[17,18]. Using gene expression profiling analysis, Lehmann et al[19] identified six 

distinct molecular subtypes of TNBC: Two basal-like (BL1 and BL2), immunomodulatory 

(IM), mesenchymal (M), mesenchymal stem-like and luminal androgen receptor (LAR). 

Among these TNBC molecular subtypes, BL1, BL2, IM and M are predominantly basal-

like[20]. This sub-classification of TNBC is clinically relevant due to the differential clinical 

outcome and chemotherapeutic response of each TNBC subtype[20,21]. Two lines of 

evidence indicate that distinct molecular subtypes of TNBC manifest differential responses 

to immunoediting, the process by which tumor cells escape the anti-tumor effect of 

immunosurveillance[22,23]. Similar to Lehmann’s sub-classification of TNBC, Burstein et 
al[22] utilized RNA and DNA profiling analysis to define TNBC subtypes as: (1) LAR; (2) 

mesenchymal (MES); (3) basal-like immunosuppressed (BLIS); and (4) basal-like immune-

activated (BLIA). BLIS tumors have the worst prognosis and BLIA tumors manifest the 

best[22], in part due to the ability of the immune system to target them. Similarly, Jézéquel et 
al[23] sub-classified TNBC into three different subtypes via gene-expression profiles, 

including the C1 subtype (LAR, 22%), the C2 subtype (basal-like with a low immune 

response and high M2-like macrophages, 45%) and the C3 subtype (basal-enriched with a 

high immune response and low M2-like macrophages, 33%). They also found that basal-

enriched C3 with a high immune response had a better prognosis than basal-like C2 with a 

low immune response[23]. While the molecular mechanisms leading to immune tolerance are 

not fully understood, two lines of study indicate that inactivation of tumor suppressor p53 

and activation of CUL4A E3 ubiquitin ligase are involved in failure of tumor 

immunosurveillance[24,25].

TN/BLBC are more sensitive to preoperative or neoadjuvant chemotherapy than luminal 

breast cancers. Current therapeutic options for TN/BLBC include cytotoxic (e.g., combined 

treatment with anthracyclines or taxanes) and targeted (e.g., PARP1 and EGFR inhibition) 

therapies[20,21,26]. Although cytotoxic therapeutics achieves good tumor regression rates in 

the neo-adjuvant setting, patients experience frequent recurrence in five years after 

treatment[26,27]. Targeted therapies have also encountered discrepancies in trial results and 

issues with resistance[26,27]. TN/BL drug resistance potentially involves several mechanisms 

including intrinsic therapy resistance by a minor cell population in tumors, therapy-induced 

senescence and polyploidy in tumor cells, acquired therapeutic resistance via upregulation of 

drug efflux transporters, and acquired resistance via genetic reversion[28]. It is well accepted 

that tumor-initiating cells [generally called cancer stem cells (CSCs), discussed in the 

following paragraph] have high intrinsic drug-resistance, and may lead to relapse[28]. In 

regard to cell-cycle-related mechanisms, Puig et al[29] reported that cisplatin treatment 

induced senescent giant polyploid cells via DNA endoreduplication. These giant, multi-

nucleated cells were able to generate small-sized, diploid cells that started to proliferate and 

were increasingly cisplatin-resistant[29]. These findings suggest that the multistep drug-

resistant progression in which cells undergo DNA endoreduplication, polyploidization, 

depolyploidization and then generation of clonogenic escape cells, can account for tumor 
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relapse after initial efficient chemotherapy[29]. Another common mechanism of drug 

resistance in cancer is the upregulation of ATP-binding cassette (ABC) transporter family 

proteins, which increases the efflux of chemotherapeutic drugs[28]. Besides these 

mechanisms, genetic alterations to restore the function of DNA repair proteins (e.g., 
BRCA1, BRCA2, FANCA, etc.) have been identified as a novel drug-resistant mechanism in 

DNA-repair-deficient cancers, which are initially sensitive to DNA-damaging agents (e.g., 
cisplatin) and to PARP inhibitors[28]. In addition to these general resistance mechanisms, 

dysregulation of signal pathway regulators in basal-like breast cancers have recently been 

identified to be responsible for resistance to neoadjuvant chemotherapy and PARP inhibitor 

treatment. For example, basal-like breast cancers have low expression of dual specificity 

protein phosphatase 4 (DUSP4), which negatively regulates the Ras-ERK pathway, due to 

hypermethylation of the DUSP4 promoter. This results in activation of the Ras-ERK 

pathway and resistance to neoadjuvant chemotherapy[30]. Furthermore, overexpression of 

p38 mitogen-activated protein kinase in basal-like breast cancers enabled cancer cells to be 

resistant to the treatment of PARP inhibitors[31]. These results show the promise of increased 

molecular and functional characterization of TNBC subtypes. While the development of 

therapeutics to effectively treat TNBC still faces tremendous challenges, molecular targeting 

of TNBC based on molecular subtypes is a promising therapeutic strategy.

A conceptual model has been proposed that describes the developmental process of breast 

cancer as the progression of atypical hyperplasia into carcinoma in situ and finally to 

invasive carcinoma[32]. To better understand the relationship between DCIS and invasive 

breast carcinoma in breast cancer progression and to molecularly classify DCIS lesions, 

immunohistochemical and gene expression profiling analyses were used to define DCIS 

subtypes. The molecular subtypes of invasive breast cancer are also present at the DCIS 

stage, although their frequencies are varied between these two distinct breast cancer 

stages[33-35]. Furthermore, genetic studies of DCIS and invasive breast carcinoma have 

demonstrated that they have remarkable similarity in their genetic profiles when matched by 

histological grade and hormone receptor status[3,36-38]. These findings strongly support the 

theory that DCIS is a non-obligate precursor of invasive breast cancer. The distinct tumor 

subtypes may be generated from different cells of origin, by distinct tumor progression 

pathways, or a combination of both events. The ability of DCIS to progress to invasive 

disease is a complex biological phenomenon and depends on multiple factors, including 

genetic/epigenetic aberrations, genomic instability and the stromal microenvironment[3,32].

As poorly differentiated invasive ductal carcinomas (IDC), basal-like breast tumors 

presumably have a DCIS precursor with similar cytologic and immunophenotypic features. 

Several studies reported that the use of both gene expression profiling and 

immunohistochemical analysis of basal-specific protein markers identified DCIS tumors 

with molecular features of basal-like invasive breast cancer[33,39-43]. These basal-like DCIS 

(BL-DCIS) tumors are presumed to be precursors for basal-like IDC (BL-IDC)[39,44]. 

Identification of BL-DCIS sheds light on the possibility of preventing progression to 

malignant basal-like breast cancer through the therapeutic targeting of precursor DCIS 

lesions. This review summarizes the recent investigation of BL-DCIS characteristics and the 

potential precursor relationship between BL-DCIS and invasive basal-like breast carcinoma.
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CSCs have been identified in many types of cancer including breast cancer, and have 

significantly changed the strategy of cancer therapy. CSCs are a small tumor cell 

subpopulation that can be identified by several methods including fluorescence-activated cell 

sorting (FACS) analysis of stem/progenitor-cell-specific surface protein markers, aldehyde 

dehydrogenase (ALDH) activity assays, and FACS analysis of the “side population” 

indicated by Hoechst dye exclusion. CSCs have the unique ability to self-renew and to 

differentiate into heterogeneous tumor cell lineages in vitro and in vivo[45-48]. CSCs possess 

higher tumorigenic ability than non-CSCs, which can be measured by in vivo xenograft 

tumor formation assays involving the injection of enriched CSC fractions to 

immunodeficient mice[45-48]. Similar to normal stem cells, CSCs manifest stem-cell-specific 

gene expression signatures and can undergo symmetric as well as asymmetric cell 

division[45-48]. CSCs also exhibit high levels of drug resistance. Under the stress of 

chemotherapy they can become quiescent and resistant to drugs that target proliferating 

cells[49,50]. In addition, CSCs generally express high levels of multi-drug resistant ABC 

transporters and pump out anti-cancer drugs at high rates[51]. The stem-like characteristics of 

CSCs are due to dysregulation of stemness signaling pathways, such as the Notch, 

hedgehog, Wnt, TGF-β and pluripotent transcription factor (e.g., SOX2, OCT4, KLF4, etc.) 
pathways[52,53]. Moreover, CSCs possess similar characteristics to cells that have undergone 

epithelial-to-mesenchymal transition (EMT), allowing CSCs to survive in circulation and 

contribute to the metastasis of invasive cancers[54,55]. Due to these traits, CSCs are believed 

to be necessary for tumor heterogeneity, relapse, metastasis, and drug resistance. Breast 

CSCs were first identified in primary breast carcinomas using the markers CD44+/

CD24−[56]. This minor tumor cell subset can self-renew to form tumorspheres in in vitro 
suspension culture conditions, and exhibit stem-cell gene expression patterns[56]. Isolated 

CD44+/CD24− cells have a higher capacity to initiate in vivo xenograft mammary tumors 

compared with other cell subsets and can differentiate into heterogeneous breast tumor cell 

lineages[56]. Furthermore, breast CSCs display a drug-resistant phenotype, and are able to 

better tolerate anti-cancer drug treatment than non-CSCs[57,58]. Enrichment of CSCs in 

breast cancer correlates with tumor aggressiveness, likely due to the characteristics 

described above. Among the molecularly-classified breast cancer subtypes, basal-like breast 

carcinomas tend to possess the highest proportion of CSCs compared with other subtypes, 

consistent with their heterogeneity and aggressiveness[59,60]. CSCs in basal-like breast 

cancer have emerged as a key target for cancer therapy.

These discoveries have prompted cancer researchers to investigate the existence of CSCs and 

their characteristics in BL-DCIS[61,62]. Studies employing in vitro cell line and in vivo 
xenograft tumor models have significantly propelled the understanding of CSC 

characteristics and their role in BL-DCIS. They also give new insights into the aberrant 

molecular mechanisms involved in regulating CSC formation in BL-DCIS and the BL-

DCIS-to-IDC transition. This article will review recent advances in these topics and their 

translational implications to the prognosis and prevention of BL-DCIS progression to 

invasive basal-like breast cancer.
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EXISTENCE AND FEATURES OF BASAL-LIKE-DCIS

Due to the lack of effective targeted therapies, invasive basal-like breast cancers have poor 

prognosis. This has prompted cancer researchers to investigate the existence of precursor 

DCIS lesions that can potentially develop into BL-IDC. If precursor DCIS lesions with the 

potential to develop into BL-IDC are identified, patients with these lesions can be treated 

earlier with more aggressive therapies to prevent tumor progression and recurrence. 

Precursor DCIS lesions are presumed to have cytologic and immunophenotypic features 

similar to BL-IDC. By characterizing protein markers such as ER, PR, HER2, basal 

cytokeratins (e.g., CK5/6, CK14, and CK17), EGFR, c-kit and p63, about 6%-8% of DCIS 

cases were identified to be TN/BLBC[39-41,43]. In addition to immunohistochemical 

surrogates, Hannemann et al[33] performed microarray-based gene expression profiling to 

analyze and classify 40 in situ and 40 invasive breast cancer cases. Their two-dimensional 

hierarchical clustering analysis of microarray data showed that the luminal, HER2 and basal-

like subtypes originally described in invasive breast cancer could also be identified in DCIS. 

A population-based cohort has shown that patients with BL-DCIS have a higher risk for 

local recurrence and development into invasive cancer compared with other molecular 

subtypes[63], demonstrating the need for further molecular characterization. The BL-DCIS 

subtype is associated with unfavorable prognostic variables such as high-grade nuclei, 

mutant p53 overexpression and elevated Ki-67 index[42]. In addition, through RNA deep 

sequencing analysis, Abba et al[64] subdivided high-grade DCIS into two subtypes, DCIS-

C1 and DCIS-C2. The more aggressive DCIS-C1 (highly proliferative, basal-like, or 

ERBB2+) had a molecular signature characteristic of activated regulatory T (Treg) cells 

(CD4+/CD25+/FOXP3+) and CTLA4+/CD86+ complexes, indicative of a tumor-associated 

immunosuppressive phenotype[64]. This is the first evidence identifying mechanisms of 

immune evasion in BL-DCIS. Recently BL-DCIS tumors have also been associated with cell 

cycle-related biomarkers[65,66]. Over 80% of BL-DCIS cases were p16-positive, whereas 

over 90% of DCIS cases with the luminal A phenotype were p16-negative[66]. In addition to 

p16 expression, co-expression signatures of p16+/Ki67+/COX2+ and p16+/Ki67+/COX2− 

were also found to be associated with the basal phenotype in DCIS and IDC[66]. These cell-

cycle related profiles could be exploited to guide more aggressive treatment strategies in 

patients with high-grade DCIS. According to studies by Tamimi et al[42], the frequency 

(7.7%) of BL-DCIS in diagnosed DCIS cases is slightly lower than that (10.7%) of BL-IDC 

in diagnosed invasive breast cancer cases. One plausible explanation for the slightly higher 

frequency of basal-like expression in high-grade invasive vs in situ tumors is either that BL-

DCIS lesions rapidly progress, leading to the lower identifiable frequency, or that the basal-

like phenotype is acquired during invasive progression. Studies investigating the precursor 

potential of comedo-DCIS tumors (comedo-DCIS), a type of high-risk in situ breast lesions, 

identified a novel p63/CK5/Her2/neu-expressing cell subpopulation with ER-/PgR-/

EGFR-[67]. Given that p63 alone and p63/Her2/neu co-expression are both associated with 

microinvasion and the recurrence of clinical comedo-DCIS, the p63/Her2/neu-expressing 

precursor intermediate is considered a cellular basis for the emergence of p63+/Her2/neu− or 

p63+/Her2/neu+ basal-like breast cancer, and thus may serve as a biomarker for identifying 

the BL-DCIS subgroup[67].
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CSCS AND BASAL-LIKE-DCIS

Evidence of CSCs existing in DCIS

It has been proposed that CSCs are responsible for generating tumor heterogeneity and the 

malignant progression of cancer. To validate this hypothesis within breast cancer and 

investigate the mechanisms of the DCIS to IDC transition, researchers are seeking to 

identify the existence of CSCs in DCIS and characterize their cell properties. To study the 

heterogeneous tumorgenicity of cancer cells, Damonte et al[68] generated mammary 

intraepithelial neoplasia (MIN) outgrowth lines. Derived from premalignant atypical lesions 

from PyV-mT transgenic mice, the MIN outgrowth lines are able to grow orthotopically in 

cleared mammary fat pads, and form a mammary tumor structure similar to human DCIS.

The 6 MIN lines generated demonstrated a varied ability to progress to invasive carcinoma 

with pulmonary metastatic potential via serial transplantation[68], establishing the paradigm 

that pre-CSCs in DCIS are capable of self-renewal, multilineage differentiation, and serve as 

the origin of invasive cancer. Notably, their studies indicate that sequential genetic hits for 

malignant transformation are not required for this DCIS model to progress to invasive and 

metastatic mammary carcinoma, and the programmed potential for latency and metastasis 

might be predetermined in these pre-CSCs[68]. Moreover, Espina et al[69] studied ex vivo 
organoid culture of fresh human DCIS lesions without enzymatic digestion or sorting, and 

found that DCIS contains malignant precursor cells that were able to form spheroids and a 

duct-like 3D structure in ex vivo organoid culture and to exhibit tumorigenicity in NOD/

SCID mice[69].

Evidence for the presence of CSCs in BL-DCIS

The two lines of evidence mentioned above raised the possible existence of tumorigenic 

CSCs in BL-DCIS, which may determine the phenotypes of BL-DCIS and the capability of 

BL-DCIS to progress into invasive cancer. To confirm this, our research group characterized 

the BL-DCIS cell model MCF10DCIS.COM, which is derived from the non-cancerous 

breast epithelial cell line MCF10A. This BL-DCIS-mimic cell model has a unique bipotent 

progenitor ability, and is able to generate both myoepithelial and luminal-type cells in vivo, 

giving rise to BL-DCIS with high similarities to human DCIS lesions[70-76]. In addition to 

the formation of DCIS-like tumor structures in vivo, these tumor lesions are able to 

spontaneously progress to invasive breast cancer[74,76]. In our studies of MCF10DCIS.COM, 

we identified a CSC population with enriched ALDH1+ and the molecular signature CD44+/

CD49f+/CD24−[62]. Compared with the non-stem-like cell subset, these stem-like cells 

possessed enhanced migration, invasion and self-renewal capacity, and accelerated xenograft 

tumor growth in nude mice[62]. Pandey et al[61] have also identified CSCs in the 

MCF10DCIS.COM cell line using similar cell surface markers (CD44+/ESA+/CD24−). In 

line with our result, CSCs isolated using this profile showed significantly higher DCIS 

tumor-initiating ability compared with non-stem-like cells[61]. The existence of CSCs in BL-

DCIS raises the possibility that this CSC population serves as a malignant precursor 

necessary for the progression of BL-DCIS to BL-IDC.
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DEREGULATED FACTORS INVOLVED IN THE GENERATION OF CSCS AND 

THE BL-DCIS-TO-BL-IDC TRANSITION

A challenging question in the breast cancer research field is how precursor DCIS lesions 

progress to invasive breast carcinomas. Attempts to address this critical question are 

hampered by the complexity of heterogeneous DCIS lesions. To overcome this barrier, the 

aforementioned MCF10DCIS.COM cell line has been extensively exploited as a unique 

model to study DCIS and explore molecular mechanisms involved in regulating the 

progression of DCIS to IDC. As MCF10DCIS.COM belongs to the BL-DCIS subtype, we 

review recent findings of deregulated factors implicated in the generation of basal CSCs in 

this cell model, and in enhancing malignancies as well as invasive progression of this BL-

DCIS model in vivo. Further characterization of dysregulated signaling pathways involved in 

CSCs would advance insights into how BL-DCIS tumors progress to invasive cancer and 

propel the development of effective therapeutics to prevent this malignant progression.

The role of miR-140

MicroRNAs (miRNAs) are short non-coding RNA molecules with a length of approximately 

22 nucleotides that bind to the 3′-untranslated region of messenger RNAs and regulate 

mRNA stability and/or translation. miRNAs have been extensively investigated in cancer 

and other diseases, and regulate a variety of physiological and pathological processes at the 

posttranscriptional level. Although numerous miRNAs have been found to be involved in 

regulating CSCs in breast cancer[77], the miRNAs participating in basal CSC regulation and 

the tumorigenic development of BL-DCIS remain largely unknown. Through miRNA 

profiling of paired DCIS tumors, we identified downregulation of miR-140 as a hallmark of 

BL-DCIS lesions[78]. Our studies have shown that miR-140 is a tumor-suppressive miRNA 

which targets the stem-cell related factor SOX9 for degradation in in normal breast epithelial 

cells[78]. The degree of miR-140 downregulation positively correlates with the increased 

expression of SOX9 and the grade of DCIS lesions, implicating the critical role of the 

miR-140/SOX9 axis in the progression of DCIS[78]. Our studies also revealed that miR-140 

was downregulated in cancer stem-like CD44+/CD24− cells isolated from 

MCF10DCIS.COM cells compared with normal breast stem cells isolated from MCF10A 

cells[78]. Moreover, restoration of miR-140 expression in MCF10DCIS.COM cells 

suppressed CSC self-renewal, invasion and in vivo tumorigenicity[78]. This suggests that the 

miR-140/SOX9 regulatory circuit is pivotal for the self-renewal and invasive capacity of 

basal CSC and their tumor formation in vivo, and is a potential therapeutic target.

The role of the nuclear receptor coactivator amplified in breast cancer 1

Ory et al[79] found that expression of nuclear receptor coactivator amplified in breast cancer 

1 (AIB1) was aberrantly upregulated in DCIS lesions compared with normal breast.

AIB1 activates NOTCH, HER2 and HER3 signaling pathways in MCF10DCIS.COM cells, 

and is required for the malignant phenotype of MCF10DCIS.COM in 3D culture and in vivo 
tumor formation and progression[79]. Critically, AIB1 inhibition led to a significant 

reduction in the CD44+/CD24− CSC population and also resulted in decreased myoepithelial 

progenitor cells in DCIS lesions in vitro and in vivo[79]. These data indicate that activation 
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of AIB1 is an aberrant mechanism that initiates and maintains DCIS in vivo by facilitating 

the development as well as maintenance of basal CSCs. It is likely that aberrantly activated 

AIB1 assists other deregulated factors to promote the transition of BL-DCIS to BL-IDC.

The role of the p63-membrane-type 1-matrix metalloproteinase axis

A critical step in the progression from DCIS to the invasive lesion is the crossing of the 

basement membrane and invasion into the stroma. This is achieved through degradation of 

extracellular matrix (ECM) proteins in the basement membrane by membrane-anchored 

matrix metalloproteinases (MMPs), including membrane-type 1 (MT1)-MMP[80]. MT1-

MMP has been shown to be involved in invasive tumor growth and metastasis in several 

experimental cancer models[81-84]. Lodillinsky et al[85] analyzed expression of MT1-MMP 

in a large cohort of DCIS, IDC and microinvasive breast tumors, and found that MT1-MMP 

was significantly upregulated in the DCIS to IDC transition, and correlated with higher 

grade and hormone receptor-negative tumors. Functional analysis showed that silencing of 

MT1-MMP in MCF10DCIS.COM cells impaired the ability of this DCIS tumor model to 

progress into infiltrating lesions in vivo[85]. Additionally, Lodillinsky et al[85] identified p63 

as an upstream positive regulator that increases MT1-MMP expression in DCIS, and is 

required for activating the basement membrane-invasive program of DCIS. Their findings 

suggest that aberrant activation of the p63/MT1-MMP axis in DCIS may contribute to the 

progression of DCIS to high-grade basal-like breast cancers. Although their studies did not 

address the role of the p63/MT1-MMP axis in MCF10DCIS.COM CSCs, p63 is a well-

known basal-associated molecular marker, and has been recently found to be elevated in 

CSCs of HER2-type breast cancer and essential for their self-renewal as well as 

tumorigenicity[86]. Therefore, their results imply that aberrant activation of the p63/MT1-

MMP axis in basal CSCs is a potential mechanism to trigger the progression of BL-DCIS to 

BL-IDC.

The role of Singleminded-2s

Recent work has demonstrated that the basic helix-loop-helix/PER-ARNT-SIM (bHLH/PAS) 

transcription factor Singleminded-2s (SIM2s) is critical for normal mammary gland 

development and promoting tumor cell differentiation[87]. SIM2s is inhibited by C/EBPβ 
and NOTCH, important promoters of EMT and cell differentiation. Loss of SIM2s enhances 

EMT in the mouse mammary gland, normal breast and breast cancer cell lines. Moreover, 

SIM2s is frequently downregulated in human breast cancer. When SIM2s expression was 

restored in human breast cancer cell lines, their proliferation and invasion were suppressed. 

These results suggest that SIM2s is a tumor suppressor gene that is crucial for maintaining 

epithelial integrity through inhibiting the EMT program and promoting cell differentiation. 

To address the role of SIM2s in the transition of DCIS-to-IDC, Scribner et al[87] analyzed 

SIM2s expression in MCF10DCIS.COM and found that it is downregulated in this DCIS 

cell model when compared with non-cancerous MCF10A cells. Moreover, their functional 

studies showed that reestablishment of SIM2s in MCF10DCIS.COM cells significantly 

impaired their growth and invasion both in vitro and in vivo by promoting tumor cell 

differentiation. This is characterized by increased expression of luminal markers, including 

β-casein, E-cadherin, keratin 18, and decreased expression of genes associated with stem 

cell maintenance and a basal/EMT phenotype, including smoothened, p63, Snail-2, keratin 
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14 and vimentin[87]. In contrast, abrogation of SIM2s in MCF10DCIS.COM-derived 

xenograft tumors led to a more invasive phenotype and increased lung metastasis, correlating 

with the elevated expression of Hedgehog signaling and MMP[87]. From our and other 

studies indicating that basal CSCs are the origin of the tumorigenic and invasive 

characteristics of MCF10DCIS.COM cells[61,62,79], it is likely that decreased expression of 

SIM2s promotes the development of basal CSCs in BL-DCIS and further reduction in its 

expression activates invasive features of CSCs to facilitate the invasive progression of BL-

DCIS into invasive breast carcinoma.

The role of lipogenesis

Cancer cells have altered metabolisms in comparison to normal cells[88], and upregulation of 

lipogenic genes and increased lipogenesis are hallmarks of late-stage breast cancer[89]. 

Inhibition of key lipogenic enzymes results in suppression of tumorigenicity both in vitro 
and in vivo by blocking proliferation and inducing apoptosis[90-93]. Although the role of 

increased lipogenesis in late-stage breast cancer has been extensively studied, its role in 

early-stage breast cancer DCIS still remains elusive. Moreover, whether lipogenesis is 

engaged in regulating CSCs of DCIS is an interesting yet unexplored question. To address 

the role of lipogenesis in DCIS CSCs, Pandey et al[61] used the cell surface marker profile 

(CD44+/ESA+/CD24−) to isolate CSCs from the MCF10DCIS.COM cell line for expression 

analysis of lipogenic genes. Their studies showed that expression levels of all lipogenic 

genes tested in the CSC population were significantly higher than the normal stem-like 

counterpart population isolated from non-cancerous MCF10A cells. To further investigate 

the role of sterol regulatory element-binding protein-1 (SREBP1), the master transcriptional 

activator of lipogenic genes, in CSCs, SREBP1 was ectopically overexpressed in MCF10A 

stem-like cells. Overexpression of SREBP1 caused enhanced lipogenesis, cell growth and 

mammosphere formation[61]. When upregulated in MCF10AT, a MCF10A-derived, 

premalignant cell line, SREBP1 promoted DCIS generation in vivo by increasing CSC 

survival[61]. These findings indicate that activation of lipogenesis is a pre-requisite for basal 

CSC generation and DCIS formation, and is important for endowing increased cell survival 

capacity.

THE IMPACTS OF THE TISSUE MICROENVIRONMENT ON CSCS OF BL-

DCIS

DCIS lesions are heterogeneous tumors encapsulated by the myoepithelium and basement 

membrane. When they progress to IDC, tumor cells cross the myoepithelial layer and 

basement membrane and invade into the stroma, comprised of stromal fibroblasts/

preadipocytes, mature adipocytes, immune and endothelial cells. Therefore, these various 

tissue cells and the ECM that composes the tumor microenvironment can regulate CSC self-

renewal and differentiation, DCIS formation, progression into invasive lesions, and 

metastasis[94-98]. Understanding the impact of the tumor microenvironment on basal CSCs 

and BL-DCIS could potentially enable the design of more effective diagnosis and 

intervention strategies to improve the survival of cancer patients. There are two lines of 

recent studies indicating the critical impacts of the tissue microenvironment on the 
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tumorigenesis of BL-DCIS and their transition to BL-IDC, exosomal signaling and ECM 

dependent signaling.

Exosomal signaling from the tumor microenvironment

Exosomal secretion is a newly identified mechanism of paracrine signaling through which 

cells secret exosomes, microvesicles with a diameter usually less than 100 nm, which can 

contain cargo proteins, nucleic acids and nutrients[99]. Secreted exosomes can transduce 

their carried contents into surrounding cells via the cell internalization mechanism mediated 

by the heparan sulfate proteoglycan receptors[99]. The known roles of exosomes in 

tumorigenesis are to restructure the tumor tissue microenvironment, modulate tumor 

immune responses and directly regulate tumor cell behaviors via their delivery of proteins 

and genetic materials. miRNAs have been found to be one kind of nucleic acids carried by 

secreted exosomes[99,100]. Given that miRNAs are regulatory factors that can modulate 

protein expression, exosomal trafficking of miRNAs has been recognized to be a 

microenvironmental signal that can affect signaling networks at the post-transcriptional 

level[100]. From BL-DCIS studies, we found that the miRNA content in exosomes secreted 

from CSCs of DCIS was altered compared to exosomes from normal stem-like breast 

cells[62]. Notably, CSC-secreted exosomes carried less miR-140, an aforementioned tumor-

suppressive miRNA, than those secreted from normal stem-like cells, suggesting that the 

tumorigenic process alters exosomal contents[62].

In addition to the role of exosomal trafficking in signaling among DCIS tumor cells, we 

recently found that exosomes secreted from preadipocytes, the precursors of mature 

adipocytes, could impact the stemness and tumorigenic properties of CSCs in BL-DCIS[101]. 

Preadipocyte-derived exosomes enhanced in vitro cell migration as well as self-renewal of 

BL-DCIS cells and facilitated the xenograft tumor formation of transplanted BL-DCIS cells 

in vivo[101]. The enhanced effect of preadipocyte-secreted exosomes on the tumorigenicity 

of BL-DCIS might be attributable to a number of growth-promoting cytokines identified 

within these exosomes[101]. Taken together, these findings demonstrate that exosomal 

signaling plays an important role in the tumor microenvironment.

ECM-dependent regulatory signaling

High tumor heterogeneity correlates with poor prognosis due to its association with 

malignancies, recurrence, metastasis and anti-cancer drug resistance[102]. Intratumor 

heterogeneity could result from an intrinsic stochasticity in gene expression and from 

genetic and/or heritable epigenetic differences among tumor cells[103]. By studying the 

effect of ECM on an immortalized basal-like breast epithelial cell line, Wang et al[104] 

identified the ECM-dependent TGFBR3 (transforming growth factor β receptor 3)-JUND 

(jun D proto-oncogene)-KRT5 (keratin 5) regulatory circuit that generates heterogeneous 

gene expression among ECM-attached breast cells. This circuit is composed of two 

anticorrelated gene expression programs that negatively regulate each other. TGFBR3 

signaling downregulates JUND mRNA levels, whereas JUND represses both TGFBR3 and 

JUND mRNA levels[104]. Perturbing this regulatory circuit in breast epithelial cells could 

lead to the formation of aberrant tissue lesions similar to high-grade DCIS[104]. Their studies 

also indicate that the TGFBR3-JUND circuit is the molecular mechanism responsible for the 
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heterogeneous expression of KRT5 in some basal-like premalignant lesions[104]. These 

findings suggest that heterogeneous KRT5 expression patterns present in high-grade basal-

like DCIS lesions are likely due to loss of tissue-level regulation of gene oscillatory 

networks rather than genetic selection. Disrupting the dependence of this regulatory circuit 

on ECM results in detachment of breast epithelial cells from the ECM, in turn leading to cell 

death[104]. However, some cells survive through activation of a juxtacrine tenascin C (TNC) 

deposition mechanism. TNC is a critical survival factor for detached cells that would 

otherwise be subjected to keratinization-induced or anoikis-dependent cell death, and 

participates in stabilizing the heterogeneous JUND-KRT5 expression[102,104]. These results 

are in line with the previous finding that metastasizing breast cancer cells express TNC to 

elicit and/or maintain their metastasis-initiating characteristics[105]. Particularly, it has been 

shown that TNC is able to increase the expression of stem-cell signaling proteins, suggesting 

its role in modulating the CSC population[105]. Their findings demonstrate that this ECM-

dependent regulatory circuit program can maintain normal tissue architecture and function in 

addition to preventing cell outgrowth and migration when it is properly regulated. However, 

when dysregulated (e.g., aberrant ECM signaling), this system enables cells to evade 

keratinization and anoikis, and allows them to metastasize.

THE IMPLICATIONS OF CSCS IN PROGNOSIS AND PREVENTION OF 

EARLY STAGE BASAL-LIKE BREAST CANCER

The identification of CSCs in BL-DCIS opens a window for cancer researchers to explore 

how BL-DCIS initiate and progress into invasive basal-like breast cancer. In addition to 

promoting our understanding of the role of basal CSCs in BL-DCIS, these research advances 

have tremendous translational implications for future prognostic and therapeutic 

applications. The dysregulated molecular factors which result in basal CSC generation could 

potentially be exploited as prognostic biomarkers for BL-DCIS. This would help identify 

and grade the probability of diagnosed DCIS developing into BL-IDC, and determine 

whether DCIS patients should be treated more aggressively. If this prognostic system can be 

established, it will substantially benefit patients with DCIS and lower their chances of basal-

like invasive breast cancer recurrence. The therapeutic agents that can target these 

deregulated factors could be potentially exploited for targeted therapy of DCIS. This 

chemopreventive strategy would save breast cancer patients’ lives, especially since there are 

currently no effective therapies to cure basal-like invasive breast cancer. Promising 

therapeutic agents have already been identified that are effective in targeting CSCs in BL-

DCIS. The dietary compound sulforaphane (SFN) can restore miR-140 expression and 

downregulate the expression of miR-140 targets SOX9 and ALDH1, inhibiting the self-

renewal of basal CSCs and DCIS formation in vivo[62]. Besides SFN, our studies of the 

chemopreventive agent Shikonin (SK), a bioactive compound found in the herbal plant 

shikon, showed that exosomes secreted from SK-treated preadipocytes lost the ability to 

promote BL-DCIS tumorigenicity both in vitro and in vivo. This is a novel chemopreventive 

mechanism for BL-DCIS, targeting the tumor microenvironment in place of the tumor 

itself[101]. Furthermore, a study from Watabe’s research group shows that resveratrol, a 

therapeutic agent capable of blocking the lipogenic gene expression in basal CSCs, is able to 

significantly suppress DCIS formation in animals[61]. These exciting findings provide a 
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strong rationale to propel the development of chemopreventive therapeutics for DCIS 

patients after surgical and radiological treatment.

CONCLUSION

Although the research efforts to combat invasive basal-like breast cancer have provided 

tremendous insights into this breast cancer subtype, we still have not identified effective 

therapeutic agents and strategies to cure this disease. Therefore, identifying and targeting the 

precursor of aggressive breast cancer is a promising direction to prevent the occurrence of 

this disease. BL-DCIS is an early stage breast cancer with a high risk of recurrence, and 

targeting it may prevent cancer recurrence and progression to invasive disease. As 

summarized and discussed in this review, numerous signaling pathways and factors have 

been identified as dysregulated in basal CSCs of BL-DCIS. Moreover, several 

chemopreventive agents have been tested to target these deregulated mechanisms. These 

studies suggest targeting CSCs in BL-DCIS as a potential strategy to inhibit the 

tumorigenicity of BL-DCIS and prevent the progression of BL-DCIS into BL-IDC. However 

it is critical to test the proof-of-principle of these chemopreventive strategies in clinical 

trials. Developing reliable BL-DCIS biomarkers will allow clinicians to design effective 

targeted therapies that can prevent the recurrence and progression of early stage basal-like 

breast cancers.
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Core tip

Basal-like ductal carcinoma in situ (BL-DCIS) often lacks endocrine receptors and has a 

high rate of recurrence due to no available targeted therapies. BL-DCIS is a precursor of 

invasive basal-like breast carcinoma, a malignant cancer prone to metastasis and drug-

resistance. Therefore, targeting BL-DCIS to prevent transition into invasive cancer is of 

significant interest. The recent identification and characterization of cancer stem-like 

cells in BL-DCIS advance the understanding of BL-DCIS and their potential role in 

driving the progression of BL-DCIS to invasive basal-like breast cancer. These findings 

provide critical implications for the development of therapies that prevent the progression 

of BL-DCIS.
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