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With the reduction in sequencing price and acceleration of sequencing speed, it
is particularly important to directly link the genotype and phenotype of bacteria.
Here, we firstly predicted the minimum inhibitory concentrations of ten antimicrobial
agents for Staphylococcus aureus using 466 isolates by directly extracting k-mer from
whole genome sequencing data combined with three machine learning algorithms:
random forest, support vector machine, and XGBoost. Considering one two-fold
dilution, the essential agreement and the category agreement could reach >85%
and >90% for most antimicrobial agents. For clindamycin, cefoxitin and trimethoprim-
sulfamethoxazole, the essential agreement and the category agreement could reach
>91% and >93%, providing important information for clinical treatment. The successful
prediction of cefoxitin resistance showed that the model could identify methicillin-
resistant S. aureus. The results suggest that small datasets available in large hospitals
could bypass the existing basic research and known antimicrobial resistance genes and
accurately predict the bacterial phenotype.

Keywords: Staphylococcus aureus, k-mer algorithm, antimicrobial resistance (AMR), machine learning, WGS

INTRODUCTION

Traditional microbial identification and antimicrobial susceptibility rely on microbial culture
technology, which is a time-consuming process. Owing to the optimization of the cultivation
technology for more than a hundred years, the cultivation time has been shortened to within 24–
48 h, depending on the specific strain. However, traditional culture techniques cannot meet the
ever-increasing demands for rapid diagnosis. Although mass spectrometry technology has now
been widely used, and it is possible to quickly identify pathogenic bacteria after obtaining purely
cultured isolates, antimicrobial susceptibility results are still not widely available.

In recent years, gene sequencing technology has developed rapidly. The price of whole genome
sequencing has fallen below 26.3 dollars a isolate recently, and the time spent on data yield can
be archived within 18 h. Metagenomics technology can identify the types of pathogens in samples,
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including those which cannot be identified by traditional
methods, within 8 h; thus expanding the boundaries of clinical
microbiology and filling the gap between the genotype and
phenotype of bacteria (Chen et al., 2020a,b).

After obtaining genome data, a relatively rough prediction
of resistance can be achieved by studying the antimicrobial
resistance genes in the genome. Nowadays, many studies have
focused on antimicrobial resistance prediction; some studies only
predicted whether isolates were resistant or susceptible, and
did not predict the specific minimum inhibitory concentration
(MIC) values (Brinda et al., 2020; Macesic et al., 2020; Avershina
et al., 2021), while others predicted resistance and susceptibility
based on the presence or absence of known resistance genes
or single nucleotide polymorphisms. However, the updation
of pre-existing basic research is quite slow (Satta et al., 2018;
Khaledi et al., 2020; Kim et al., 2020; Avershina et al., 2021). The
k-mer algorithm can count the size of genomic repeats and the
degree of genomic heterozygosity. Currently, training set data
used by k-mer based research is relatively large, while longer
k-mers are better at exhibiting specificity of genomic features.
This poses serious challenges to data acquisition, storage, and
processing, thereby limiting the promotion and application of
this technology. According to Moore’s Law (Moore, 1965), the
speed of technological process double about every 2 years,
revealing the speed of technological progress. It is foreseeable that
these limitations will be overcome quickly in the future, and that
follow-up developments will come rapidly, increasing the speed
of the genome identification and analysis.

Methicillin-resistant Staphylococcus aureus (MRSA) is one of
the most serious multi-antimicrobial-resistant threats (Tacconelli
et al., 2018) and is the leading cause of many systemic infections
(Lowy, 1998). In this study, we created a novel Staphylococcus
aureus resistance prediction model that could accurately predict
MICs of antimicrobial agents using a relatively small number of
training isolates based on antimicrobial-resistant phenotypes and
k-mer calculation, combined with machine learning algorithms.

MATERIALS AND METHODS

Isolates
We prospectively investigated the pathogen spectrum of
bloodstream infections, hospital-acquired pneumonia, and intra-
abdominal infections. We collected 466 S. aureus [249 MRSA
and 217 methicillin-susceptible Staphylococcus aureus (MSSA)],
belonging to 23 different sequence types (STs), from 14 states
across China between 2005 and 2020.

Whole Genome Sequencing
The S. aureus isolates were sequenced using the Illumina NextSeq
500, NovaSeq, Hiseq Xten, and Illumina HiSeq platforms.
Multilocus sequence typing (MLST) was performed according to
the PubMLST scheme.1 We obtained clean DNA sequences after
using the fastp program2 (Lee et al., 2018) to optimize raw FASTQ

1https://pubmlst.org/saureus/
2https://github.com/OpenGene/fastp

data quality and clean the raw data obtained after whole genome
sequencing. Staphylococcal cassette chromosome mec (SCCmec)
was assigned using SCCmecFinder-1.2 (De Oliveira et al., 2020)3

(Supplementary Table 1).

Antibiotic Susceptibility Testing
Antibiotic susceptibility testing was performed on all the
S. aureus isolates. The following antimicrobial agents
were evaluated in this study: clindamycin (CLI), cefoxitin
(FOX), oxacillin (OXA), levofloxacin (LVX), trimethoprim-
sulfamethoxazole (SXT), vancomycin (VAN), linezolid (LNZ),
erythromycin (ERY), daptomycin (DAP), and gentamicin (GEN).
The MIC of commonly used antimicrobials was determined
using the agar dilution method according to the protocol and
the susceptibility spot of the Clinical and Laboratory Standards
Institute guidelines (M100-S31,2021) and susceptible (S),
intermediate (I) and resistant (R) categories were adjudicated.

Data Set Preparation
For all isolates, the KMC application (Deorowicz et al., 2015)4

was used to extract features from cleaned DNA sequences. We
used pandas (version 1.0.5) to combine and resize the obtained
k-mer data, which were then combined into the matrix, with
the rows indicating strain names and columns indicating k-mer
counts. This matrix was used as the input data for machine
learning (k = 11). The larger the value of k, the better the
features obtained from the genomic information. In this study,
k = 11 was used because of the limitations of computing memory.
We used LabelBinarizer (scikit-learn, version 0.23.1) to convert
the MIC labels to one-hot codes, which facilitated subsequent
training of the model.

A total of 466 isolates with their antimicrobial susceptibility
data were randomly divided into training sets (372 isolates)
and testing sets (94 isolates). For GEN, ERY, and DAP, the
data set was extracted separately because of the lack of
antimicrobial susceptibility data. Among the 466 isolates, 69
isolates had GEN antimicrobial susceptibility data, 431 isolates
had DAP antimicrobial susceptibility data, 454 isolates had ERY
antimicrobial susceptibility data, and 20% were selected as the
testing set. In order to ensure that all MICs of all antimicrobial
agents could be trained as a category in the training set, we used
the StratifiedShuffleSplit software (scikit-learn, version 0.23.1)
to obtain stratified randomized folds. The folds were made by
preserving the percentage of samples for each MIC grade. MIC
grades that had only one isolate were incorporated into a lower
grade for optimal classification.

Machine Learning Analysis
The support vector machine (SVM) and random forest, used
for training in Python 3.6, were based on scikit-learn (version
0.23.1) (Pedregosa et al., 2011). XGBoost is a machine learning
algorithm based on the gradient boosting framework. We used
the XGBoost (Chen and Guestrin, 2016) sklearn interface for
training. We trained random forests with 600 trees. For SVM, we

3https://cge.cbs.dtu.dk/services/SCCmecFinder-1.2/
4https://github.com/lh3/kmer-cnt

Frontiers in Microbiology | www.frontiersin.org 2 March 2022 | Volume 13 | Article 841289

https://pubmlst.org/saureus/
https://github.com/OpenGene/fastp
https://cge.cbs.dtu.dk/services/SCCmecFinder-1.2/
https://github.com/lh3/kmer-cnt
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-841289 February 25, 2022 Time: 13:7 # 3

Wang et al. Prediction of Antimicrobial Resistance

tried three kernel functions: linear, poly, and rbf. For XGBoost,
we tried binary: logistic learning task parameters. For all training,
we selected the best result of the 10-fold cross-validation as the
final result. All source code is available at https://github.com/
ShuyiWang-pku/sau_micprediction.

Interpretation of Results
For the final classification, the results were evaluated according
to the Clinical and Laboratory Standards Institute guidelines
(M100-S31,2021). We assumed that for the categories obtained
by the classifier, the classification results of one two-fold dilution,
also termed as essential agreement (EA), were correct. According
to this standard, the receiver operating characteristic (ROC)
curves, area under curve (AUC) values, EA, category agreement
(CA), sensitivity, specificity, negative predictive value (NPV),
positive predictive value (PPV), very major error (VME), and
major error (ME) were calculated to evaluate our model. ROC
curves and AUC values can judge the predictive performance
of models. Taking label imbalance into account, we calculated
metrics globally by considering each element of the label
indicator matrix as a label. We aggregated outcomes across all
classes, drew the ROC curves and calculated the AUC values
(Fawcett, 2006). CA refers to the accuracy of the prediction
model that only considers the classification of susceptible,
intermediate, and resistant categories of antimicrobial agents.
Sensitivity refers to the number of predicted resistant and
intermediate results divided by the actual number of resistant
and intermediate samples, and specificity refers to the number
of predicted susceptible results divided by the actual number
of susceptible samples. NPV refers to the number of true
negatives (a “susceptible” prediction for which the actual event
had a “susceptible” result), divided by the total number of
isolates predicted to be “susceptible” (sum of true negatives and
false negatives). PPV refers to the number of true positives (a
“resistant” or “intermediate” prediction, for which the actual
result was “resistant” or “intermediate”), divided by the total
number of isolates predicted to be “resistant” or “intermediate.”
VME refers to the number of isolates predicted to be “susceptible”
while the actual result was “intermediate” or “resistant,” divided
by the actual number of “resistant” and “intermediate” results.
ME refers to the number of isolates predicted to be “resistant” or
“intermediate,” while their actual result was “susceptible” divided
by the actual number of “susceptible” results.

RESULTS

Basic Characteristics of the
Staphylococcus aureus Isolates
We analyzed 466 isolates of S. aureus, including 249 MRSA and
217 MSSA, from 14 states in China. The DNA sequence of all
isolates was obtained using whole genome sequencing. Among
the 466 S. aureus isolates, 23 STs were identified, among which
ST59, ST239, and ST398 were higher in number (Figure 1). The
ST of 2 isolates could not be identified; however, this could not be
attributed to the quality of sequencing, as evidenced by the high
quality sequencing data shown in the Supplementary Material.

The sample collection details of all the isolates are presented in
Table 1.

The MICs of the isolates are shown in Table 2, where light
green refers to susceptible isolates defined according to clinical
breakpoints, light orange refers to intermediate isolates, and
colorless refers to resistant isolates. As seen from the results,
VAN, LNZ, and DAP isolates were all susceptible. Therefore,
we analyzed the classification performance of other models
of antimicrobial agents and the factors that may affect the
classification results.

Extraction of the Characteristics of the
Isolates and Rapid Identification of the
Staphylococcus aureus Isolates by
k-mer
The workflow of this study is shown in Figure 2. After
collecting and culturing the samples, we performed whole
genome sequencing and antibiotic susceptibility testing for all
isolates to obtain the genomic and antimicrobial susceptibility
data, respectively. For our data, the k-mer algorithm was used
to calculate the k-mer characteristics from the genome of each
strain. The k-mer statistics (k = 11) of all isolates were combined
into a matrix, which was used as the input data for machine
learning. We used the following machine learning algorithms:
SVM, random forest, and XGBoost (Chen and Guestrin, 2016)
to train our data, and selected the best model to test the testing
set, considered as the output results in this study. The testing
time was consistently less than 1 min. The specific classification
results for testing MIC and susceptible (S), intermediate (I), and
resistant (R) categories are shown in Supplementary Tables 2–
21, and the AUC, EA, CA, sensitivity, specificity, NPV, PPV,
VME, and ME results are shown in Figure 3 and Table 3. To
evaluate the reliability of the model, the ROC curves of five
models with the best results in cross-validation were obtained
(Supplementary Figures 1–10), and the average and standard
deviations of the cross-validation results for all metrics are shown
in Supplementary Tables 22, 23.

The STs of the isolates in this study were different. In addition,
we did not consider the evolution of the strain, unlike in a
previous study (Brinda et al., 2020). Nonetheless, it was observed
that the EAs and CAs of all antimicrobial agents were almost
more than 80%. Except for OXA, LVX, and ERY, the EAs of
all antimicrobial agents reached over 85%, while that for CLI
and SXT reached over 92%. Except for OXA, the CAs for all
antimicrobial agents reached over 90% (Figure 3). Furthermore,
except for OXA, the sensitivity of all antimicrobial agents was
over 90%, and the specificity of other antimicrobial agents was all
over 85%. The sensitivity of LVX, SXT, and GEN reached 100%,
and the specificity of CLI and SXT reached 97%. The VMEs of
LVX, SXT, and GEN were as low as 0% in this study (Table 3).

Effect of Data Volume and Structure on
Prediction Results
For ERY and GEN, which had poor classification results, the
specific data showed that the antimicrobial susceptibility data
of these two antimicrobial agents were too biased toward
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FIGURE 1 | Sequence Types (STs) and collection years of the 466 isolates in this study. A total of 23 STs were identified and the STs of 2 isolates were unknown.
Most isolates were collected in 2019 and 2020.

the extreme value and the number of genomes in GEN was
small, with only 69 isolates. When the MIC of GEN was
0.25 µg/mL, the number of isolates was 34, while the number
of other MICs is relatively few, most of them are less than 5
(Table 1). When the MIC of ERY was 0.25 and 512 µg/mL,
the number of isolates was 112 and 237, respectively, which was
approximately 100–200 fold higher than that of some other MIC
grades (Table 1).

TABLE 1 | States and collection years of the 466 isolates in this study.

Years States 2005–2011 2012–2014 2016–2018 2019 2020

Beijing 15 2 10 79 1

Chongqing 1 1 4 20 1

Guangdong 4 3 5 28 5

Hubei 2 - 4 19 -

Hunan 1 1 3 9 7

Jiangsu 1 2 3 22 -

Liaoning 1 1 - - -

Shaanxi 1 1 4 - -

Shandong 1 38 1 20 6

Shanghai 4 1 2 5 6

Shanxi - - 3 - 25

Shenyang - 2 2 - -

Tianjin - - 2 26 -

Zhejiang 2 1 3 49 6

The 466 isolates were widely distributed across 14 states in China.

We speculated that the data structure and data volume limit
the improvement in accuracy. Owing to the difference in the
number of samples, the classifier did not fully learn MIC features
with a small number of isolates, which led to a vague distinction
between the features of different categories and reduced the
accuracy of model classification and recognition.

In most hospitals, data related to isolates is usually unevenly
distributed, as observed in this study (Table 1). In addition to the
fact that some large national institutions can use large hospital
networks to obtain the data and avoid the condition where there
only 1 or 2 isolates in some MIC, the distribution of antimicrobial
susceptibility in most hospitals is not uniform, and the extremes
of distribution phenomena are serious. This study proved that
even if the antimicrobial susceptibility data of isolates are not
evenly distributed, the developed model could be used to perform
a certain rapid antimicrobial susceptibility analysis in various
hospitals with a small amount of uneven data, and is suitable for
most general hospitals that have accumulated a certain number
of isolates with the popularity of sequencing technology. In
addition, with an increase in the number of isolates collected
in the future, the accuracy of MIC and classification may be
further improved.

Reasons for the Varied Prediction
Results of Cefoxitin and Oxacillin
Methicillin, FOX, and OXA are β-lactam antimicrobials. In
general, MRSA is resistant to OXA and FOX. This is because most
MRSA isolates acquire the staphylococcal cassette chromosome
mec (SCCmec) (Lakhundi and Zhang, 2018). However, in recent

Frontiers in Microbiology | www.frontiersin.org 4 March 2022 | Volume 13 | Article 841289

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-841289 February 25, 2022 Time: 13:7 # 5

Wang et al. Prediction of Antimicrobial Resistance

TABLE 2 | Number of genomes with different minimum inhibitory concentration (MIC) to the 10 antimicrobial agents for the 466 Staphylococcus aureus isolates used in
this study.

MICs (µg/mL) Antimicrobial agents 0.032 0.064 0.125 0.25 0.5 1 2 4 8 16 32 64 128 256 512 Total

Clindamycin 46 163 32 3 5 1 3 1 2 2 208 466

Cefoxitin 46 171 31 54 63 7 94 466

Oxacillin 217 40 39 39 15 13 5 5 93 466

Levofloxacin 51 207 45 26 5 9 33 90 466

Trimethoprim-Sulfamethoxazole 102 257 43 21 8 10 9 2 2 12 466

Vancomycin 61 396 9 466

Linezolid 22 278 166 466

Erythromycin 4 33 112 6 4 9 6 9 12 12 10 237 454

Daptomycin 13 175 221 22 431

Gentamicin 8 34 3 5 1 1 4 2 1 5 3 2 69

In this table, light green refers to susceptible isolates defined according to clinical breakpoints, light orange refers to intermediate isolates, and colorless refers to
resistant isolates.

years, many studies have shown that even when carrying
SCCmec, isolates are susceptible to OXA (termed as OS-
MRSA). Previous studies have speculated that the development
of OS-MRSA results from different SCCmec types, but there
is no definitive conclusion (Boonsiri et al., 2020). Among
the 466 isolates, 79 were resistant to FOX but susceptible to
OXA. Among these 79 isolates, 56 were ST59, accounting for
70.89% of all OS-MRSA isolates (Figure 4). Among the ST59
isolates, OS-MRSA accounted for 46.67% of MRSA isolates (OS-
MRSA/MRSA), which was almost half of all the ST59 MRSA
isolates (Supplementary Table 24).

Our prediction model could directly capture the features of
SCCmec from the FASTQ data and estimate the MICs of FOX,
in which EA could reach 91.49% and CA could reach 93.62%.
This result showed that the model could accurately and quickly
distinguish whether the isolate was MRSA or MSSA. However,
the prediction accuracy of OXA was relatively low, and CA
was lower than that of EA because we considered one two-
fold dilution for the calculation, while the MIC breakpoints
of OXA were 2 and 4 µg/mL (Supplementary Table 24). The
reason for the high accuracy of FOX may be that there is
basically no “OS-MRSA” in FOX; that is, SCCmec can be detected;
however, the isolate is susceptible to FOX. When the k-mer learns
the genes of antimicrobial resistance, it is easy to distinguish
them, but the isolates of ST59, which have SCCmec genes, were
susceptible or resistant to OXA with a 50:50 proportion and
have a close genetic relationship. Therefore, even if the classifier
learns SCCmec genes, there will not be any clear conclusion,
and the isolates may become OS-MRSA in different ways. We
believe that the limited number of OS-MRSA interfered with the
results, and our prediction model did not fully understand the
characteristics of OS-MRSA, which resulted in varied prediction
accuracies of OXA and FOX.

Effect of Other Resistance Mechanism
on Prediction Results
Previous studies have shown that ST59 is mostly susceptible to
LVX and ST239 is mostly resistant to LVX (Li et al., 2018). Similar
results were obtained in this study. Among the 133 ST59 isolates,

only 11 isolates were intermediate or resistant to LVX, and the
rest were all susceptible to LVX. Of the 54 ST239 isolates, only
two were susceptible to LVX, and the rest were all intermediate
or resistant. In contrast, ST59 and ST239 accounted for the
majority of the total data set, and the two STs were very far
apart at the genome level, and hence the CA of LVX was high.
The low EA of LVX may be due to the small differences within
susceptible isolates and resistant isolates, which our prediction
model did not recognize.

Timeliness of Prediction Using Genome
Data
Antimicrobial resistance prediction was 6 h faster when using
whole genome sequencing combined with k-mer detection and
machine learning algorithms than the duration of routine clinical
testing (Figure 5). The success of predicting MICs with pure
bacterial culture with a limited amount of data, indicates that it
is feasible to obtain susceptibility results directly from genomic
data without requiring prior information.

DISCUSSION

In this study, the resistance characteristics of S. aureus to major
antimicrobial agents were successfully predicted using k-mers
and machine learning techniques. Among them, the CAs of all
antimicrobial agents were generally high, and >90% pairs could
provide important information for clinical treatment. Moreover,
the EAs of most antimicrobial agents were higher than 85%.

Previous studies have predicted antimicrobial resistance
phenotypes using antimicrobial-resistant genes or conserved
genes in gene sequence of isolates (Kim et al., 2020; Macesic
et al., 2020; Nguyen et al., 2020; Avershina et al., 2021), these
methods of inferring antimicrobial resistance phenotypes from
known resistance genes are highly accurate. At the same time,
there are many public databases like PATRIC (Vanoeffelen et al.,
2021), through which researchers can collect genomic data.
The availability of such databases reduces the imbalance of
data caused by regional differences by enabling the tracking of
antimicrobial resistance evolution or prediction of antimicrobial
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FIGURE 2 | Schematic workflow of the actual operation in this study. DNA was isolated from the specimen and sequenced by Illumina to obtain the FASTQ file. We
used KMC to obtain k-mer counts files and converted the format of the k-mer counts files to obtain the matrix, in which rows include isolates’ numbers and columns
include k-mer counts. Finally, we used various machine learning algorithms to learn and obtain the prediction accuracy in the testing set.

FIGURE 3 | The prediction accuracy within the one two-fold dilution, essential agreement (EA), and the category agreement (CA) of all antimicrobial agents.
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TABLE 3 | The AUC (Area Under Curve), sensitivity, specificity, negative predictive value (NPV), positive predictive value (PPV), very major error (VME), and major error
(ME) of the prediction results of all antimicrobial agents evaluated in this study.

Antimicrobial agents AUC (%) Sensitivity (%) Specificity (%) NPV (%) PPV (%) VME (%) ME (%)

Clindamycin 94.61 91.30 97.92 92.16 97.67 8.70 2.08

Cefoxitin 92.65 94.00 93.18 93.18 94.00 6.00 6.82

Oxacillin 94.47 86.96 80.28 95.00 58.82 13.04 20.59

Levofloxacin 88.99 100.00 88.00 100.00 67.86 0.00 12.00

Trimethoprim-Sulfamethoxazole 92.77 100.00 98.92 100.00 50.00 0.00 1.08

Vancomycin 96.13 - 100.00 100.00 - - 0.00

Linezolid 82.02 - 100.00 100.00 - - 0.00

Erythromycin 94.83 96.49 85.29 93.55 91.67 3.51 14.71

Daptomycin 82.24 - 100.00 100.00 - - 0.00

Gentamicin 85.46 100.00 91.67 100.00 66.67 0.00 8.33

FIGURE 4 | Scatter plot of MICs of cefoxitin (FOX) and oxacillin (OXA) and specific composition of OS-MRSA. On the left, the horizontal axis is the MICs of FOX for
the isolates and the vertical axis is the MICs of OXA for the isolates. The figure depicts FOX MICs versus OXA MICs for Staphylococcus aureus. Green represents
methicillin-susceptible Staphylococcus aureus (MSSA) and blue represents methicillin-resistant Staphylococcus aureus (MRSA) with Staphylococcal cassette
chromosome mec (SCCmec) typing. Totally, 79 isolates were resistant to FOX and susceptible to OXA (OS-MRSA). The specific composition of these 79 isolates is
shown in the table on the right; there were 56 ST59 isolates, accounting for the vast majority of OS-MRSA.

FIGURE 5 | Schematic workflow of this study. Traditional microbial identification and antimicrobial agent susceptibility rely on microbial culture technology, which is
time-consuming and requires 4 days to obtain the antimicrobial susceptibility report. This study used whole genome sequencing and was 6-h faster than routine
clinical testing.
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resistance phenotype through artificial intelligence. The method
reported in this study is an independent prediction method
without information on resistance genes that can predict the
resistance of isolates with unknown resistance mechanisms.
This is the first time that k-mer has been combined with
machine learning to predict the MIC of S. aureus in China.
Most previous studies predicted antimicrobial resistance through
known resistance mechanisms, and the resistance phenotypes
have not been obtained directly from FASTQ files (Gordon et al.,
2014; Mason et al., 2018; Wang et al., 2021). The findings of this
study are consistent with those of previous studies.

Staphylococcus aureus is a common pathogenic gram-positive
coccus, while former research objects have been mainly gram-
negative bacteria (Nguyen et al., 2019; Van Camp et al., 2020) or
Mycobacterium tuberculosis (Satta et al., 2018). MRSA is more
specific, and the resistance mechanism of MRSA corresponds
to its resistant phenotype (Lee et al., 2018). However, the
resistance mechanism of gram-negative bacteria is relatively
complex; for example, Enterobacteriaceae can simultaneously
develop resistance to many types of antimicrobials by producing
different mechanisms, such as modifying enzymes, changing
the action targets of antimicrobials, and reducing membrane
permeability. Gram-negative bacteria often exhibit one resistance
mechanism that causes resistance to multiple antimicrobial
agents (De Oliveira et al., 2020). Therefore, in this study, for
gram-positive bacteria, such as those with resistance mechanisms
relatively consistent with the resistance phenotype, more accurate
results can be obtained with a smaller number of training sets. For
isolates with more complicated resistance mechanisms, such as
gram-negative bacteria, more accurate prediction results need a
larger number of training sets. The present study demonstrated
the clinical value of this method in predicting the resistance
phenotypes of gram-positive bacteria.

While a large number of training set isolates can greatly
improve the accuracy of prediction results, it simultaneously
limits the application scope of this method. For example, greater
power is required for data computing and storage. As the k value
increases, the size of the k-mer file increases by 4k-fold, which
poses a considerable challenge to data processing. In addition, the
large amount of training set data in the previous studies was not
easily accessible, and most hospitals hardly obtained such clean
data. In contrast, the sequencing data for less than 500 isolates
in this study were more accessible. Almost all big hospitals can
collect the same number of isolates in 1–2 years, and a strain
prediction model based on its own regional characteristics can be
rapidly established, thus enhancing its application. All samples
used in this study are from one country, and our methodology
focused on large hospital data, which may not be applicable to
all regions because the genotypes are clustered geographically

(Novembre et al., 2008). Collecting more samples from other
countries or regions would solidify our approach.

In clinical practice, clinicians generally use antibiotics based
on strain susceptibility results. The results from this study
can help improve the accuracy of empirical treatment in the
clinic, especially when there is no way to obtain antimicrobial
susceptibility results quickly. In addition, extracting gene
data characteristics using the k-mer alone can be linked
with metagenomics. Analysis of the MIC directly after
species determination can speed up pathogen diagnosis and
antimicrobial susceptibility testing in the future.
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