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ABSTRACT Rivers have a significant role in global carbon and nitrogen cycles, serving
as a nexus for nutrient transport between terrestrial and marine ecosystems. Although
rivers have a small global surface area, they contribute substantially to worldwide
greenhouse gas emissions through microbially mediated processes within the river
hyporheic zone. Despite this importance, research linking microbial and viral commun-
ities to specific biogeochemical reactions is still nascent in these sediment environ-
ments. To survey the metabolic potential and gene expression underpinning carbon
and nitrogen biogeochemical cycling in river sediments, we collected an integrated
data set of 33 metagenomes, metaproteomes, and paired metabolomes. We recon-
structed over 500 microbial metagenome-assembled genomes (MAGs), which we dere-
plicated into 55 unique, nearly complete medium- and high-quality MAGs spanning 12
bacterial and archaeal phyla. We also reconstructed 2,482 viral genomic contigs, which
were dereplicated into 111 viral MAGs (vMAGs) of .10 kb in size. As a result of inte-
grating gene expression data with geochemical and metabolite data, we created a con-
ceptual model that uncovered new roles for microorganisms in organic matter decom-
position, carbon sequestration, nitrogen mineralization, nitrification, and denitrification.
We show how these metabolic pathways, integrated through shared resource pools of
ammonium, carbon dioxide, and inorganic nitrogen, could ultimately contribute to car-
bon dioxide and nitrous oxide fluxes from hyporheic sediments. Further, by linking viral
MAGs to these active microbial hosts, we provide some of the first insights into viral
modulation of river sediment carbon and nitrogen cycling.

IMPORTANCE Here we created HUM-V (hyporheic uncultured microbial and viral), an
annotated microbial and viral MAG catalog that captures strain and functional diver-
sity encoded in these Columbia River sediment samples. Demonstrating its utility,
this genomic inventory encompasses multiple representatives of dominant microbial
and archaeal phyla reported in other river sediments and provides novel viral MAGs
that can putatively infect these. Furthermore, we used HUM-V to recruit gene
expression data to decipher the functional activities of these MAGs and reconstruct
their active roles in Columbia River sediment biogeochemical cycling. Ultimately, we
show the power of MAG-resolved multi-omics to uncover interactions and chemical
handoffs in river sediments that shape an intertwined carbon and nitrogen meta-
bolic network. The accessible microbial and viral MAGs in HUM-V will serve as a
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community resource to further advance more untargeted, activity-based measure-
ments in these, and related, freshwater terrestrial-aquatic ecosystems.

KEYWORDS hyporheic zone, Binatia, microbiome, metagenomics, mineralization,
greenhouse gas, viruses, auxiliary metabolic genes, Thermoproteota

The hyporheic zone (HZ) is a transitional space between river compartments where
the mixing of nutrients and organic carbon from river and groundwater stimulate

microbial activity (1–3). Characterized as the permanently saturated interface between
the river surface channel and underlying sediments, the HZ is considered a biogeo-
chemical hot spot for microbial biogeochemistry (1–3), ultimately contributing to the
majority of river greenhouse gas (GHG) fluxes. For instance, it is estimated that rivers
contribute up to 85% of inland water carbon dioxide and 30% of nitrous oxide emis-
sions (4–6). Microorganisms in the HZ also catalyze the transformation of pollutants
and natural solutes, all while microbial biomass itself supports benthic food webs (7).
Together, these findings highlight that microbial metabolism in HZ sediments has a
substantial influence on overall river biogeochemistry and health.

Despite the importance of HZ microorganisms, research linking microbial identity
to specific biogeochemical reactions in the carbon and nitrogen cycles is still nascent
in sediments. In conjunction with geochemistry, microbial functional genes or gene
products (e.g., nirS and nrfA) have been quantified to denote microbial contributions
to specific biogeochemical pathways (e.g., nitrate reduction) (8). However, these stud-
ies often do not identify the microorganisms catalyzing the process and focus on only
a few enzymatic reactions. Thus, a comprehensive assessment of the interconnected
microbial metabolisms that fuel carbon and nitrogen cycling in river sediments is
underexplored.

More recently, 16S rRNA amplicon sequencing has shed new light on the identity of
bacterial and archaeal members in river sediments. These studies revealed that cosmo-
politan and dominant members in river sediments often belong to six main phyla:
Acidobacteria, Actinobacteriota, Firmicutes, Nitrospirota, Proteobacteria, and Thaumarchaeota
(9, 10). In some instances, cultivation paired with amplicon sequencing has assigned some
of these microorganisms (e.g., Proteobacteria) to specific biogeochemical process (e.g., deni-
trification) (11). Yet, most functional inferences from taxonomic data alone are unreliable
due to the dissociation between microbial taxonomy and metabolic function (12, 13). Thus,
many key biogeochemical pathways in rivers (e.g., plant biomass deconstruction, denitrifi-
cation, nitrogen mineralization) are not holistically interrogated alongside microbial com-
munities (14). Furthermore, amplicon sequencing fails to sample viral communities. While it
is likely that viruses are key drivers of HZ microbial mortality and biogeochemical cycling by
dynamics of predation and auxiliary metabolic genes, the evidence is even more sparse
than for their bacterial and archaeal counterparts (15–18).

Cultivation-independent, community-wide, and genome-resolved approaches are
key to addressing the knowledge gap of how microbial and viral communities influ-
ence river biogeochemical cycling. However, metagenomic studies in river sediments
are limited and have focused primarily on gene content rather than the reconstruction
of genomes (19, 20). To our knowledge, only two river sediment studies have gener-
ated microbial genomes to link taxonomy to functional processes, and these have
focused on the impacts of nitrate-oxidizing and comammox microorganisms on nitrifi-
cation (21, 22). As such, despite these recent advances, the chemical exchange points
that interconnect the carbon and nitrogen cycles cannot be discerned from existing
HZ microbiome studies.

With the overarching goal of providing enhanced resolution to microbial and viral con-
tributions to carbon and nitrogen cycling in the HZ, we created the first of its kind
Hyporheic Uncultured Microbial and Viral (HUM-V) genomic catalog. We then used HUM-V
to recruit metaproteomic data collected from 33 laterally and depth-distributed HZ sedi-
ment samples. We further supported this gene expression data using chemical data from

Decoding River Sediment Carbon and Nitrogen Cycling mSystems

July/August 2022 Volume 7 Issue 4 10.1128/msystems.00516-22 2

https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.00516-22


paired metabolomics and geochemical measurements. Our results (i) profiled expressed
microbial metabolisms that support organic and inorganic carbon and nitrogen cycling in
the HZ, (ii) uncovered roles for viruses that could modulate microbial activity in the HZ,
and (iii) created a roadmap of a microbial metabolic circuitry that potentially contributes to
greenhouse gas fluxes from rivers. We anticipate that this publicly available community
resource will advance future microbial activity-based studies in HZ sediments and is a step
toward the development of biologically aware, hydro-biogeochemical predictive models.

RESULTS AND DISCUSSION
HUM-V greatly expands the genomic sampling of HZ microbial members. We

used previously collected samples from HZ sediment cores from the Hanford Reach of the
Columbia River in eastern Washington State, USA (23), an 80-km stretch of cobble-bed river
that often experiences rapid discharge fluctuations (24). From this system, six samples per
transect were collected, and each core was subsampled into six 10-cm-depth increments
(0 to 60 cm) (Fig. 1a and b). Of these 36 samples, 33 were subsequently processed for
metagenomic sequencing, geochemistry, metaproteomics, and Fourier transform ion cy-
clotron resonance mass spectrometry (FTICR-MS) (Fig. 1c; see Table S1 in the supplemental
material) (see also Materials and Methods). A subset of these (n = 17) were also analyzed
for nuclear magnetic resonance (NMR) metabolites. For our metagenomics data, we
obtained 379 Gbp of sequencing across all 33 samples, which included (i) the original shal-
low sequencing of all samples (1.7 to 4.9 Gbp/sample) (23) and (ii) an additional deeper
sequencing of 10 samples (15.3 to 49.2 Gbp/sample), which are reported here for the first
time. We reconstructed 655 metagenome-assembled genomes (MAGs), of which 102 were
denoted as medium or high quality based on current standards (25). MAGs from both
transects were then dereplicated (99% identity; see Materials and Methods) into the 55
unique genomic representatives that constitute the microbial component of HUM-V
(Table S2) (see “Data availability”). Of the MAGs retained in HUM-V, 36% were obtained
from deeply sequenced, assembled, and binned samples, 27% were from coassemblies
performed across samples, and the remaining 37% came from single assemblies of shallow
sequences. The ability to recover additional MAGs relative to our group’s prior effort, which
used only shallow sequencing (23), demonstrates how sequencing depth and integration
of coassembly methods enhanced our ability to sample microbial HZ communities, corrob-
orating findings from other studies with similar methods (26).

Given the few metagenomic studies in HZ sediments, it was not surprising that HUM-V
contained the first MAG representatives of highly prevalent microorganisms (Fig. 2a and b;
Table S2). Taxonomic assignment of the 55 unique HUM-V MAGs revealed that they
spanned two archaeal and nine bacterial phyla and that most MAGs (n = 35) belonged to a

FIG 1 Overview of hyporheic zone sampling and the microbial MAGs included in the HUM-V database. (a) Samples were collected from
two transects, each with three sediment cores. Each core was subsectioned into 10-cm depth segments spanning 0 to 60 cm. This
experiment included 33 samples total because a subsample (50 to 60 cm) was not obtained from core N1 and the top 3 subsamples
from core N2 were combined (0 to 30 cm). (b) Schematic view of the data types available for each of the depth samples within a core.
Black-filled circles indicate that there was a sample for that data type; open circles denote missing analyses. (c) Deeper metagenomic
sequencing and NMR were performed on the remaining sediment samples, explaining why there are only 10 and 17 samples,
respectively. The total number of samples per method is reported, with additional information provided in Table S1 in the supplemental
material.
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FIG 2 A coupled metagenome and metaproteome approach revealed active members in the hyporheic zone microbiome. (a)
The taxonomic novelty of the dereplicated MAGs is colored by phylum and stacked according to the first empty position

(Continued on next page)
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subset of three bacterial phyla (Desulfobacterota, Nitrospirota, and Proteobacteria). To our
knowledge, the eight Desulfobacterota (class Binatia) and seven Proteobacteria (orders
Rhizobiales, Burkholderiales, Steroidobacterales, Thiohalobacterales, and Woeseiales) MAGs
identified here represent the first HZ MAGs sampled from these commonly reported line-
ages. For the Nitrospirota, a prior study reported 21 MAGs that we dereplicated into 12
unique MAGs (99% average nucleotide identity [ANI]) (21), a sampling we further
expanded by an additional 20 MAGs. The NitrospirotaMAGs sampled here spanned three
genera that to our knowledge have not been previously sampled from rivers
(Nitrospiraceae 2-02-FULL-62-14, 40CM-3-62-11, and NS7). Moreover, HUM-V contains one
MAG of the Actinobacteriota that may represent a new order, as well as six new genera
from Acidobacteriota, Actinobac-teriota, CSP1-3, Desulfobacterota, Proteobacteria, and
Thermoplasmatota (Fig. 2a and b). Further highlighting the genomic novelty of this eco-
system, HUM-V contains MAGs from entirely uncultivated members of different phyla (9
MAGs from CSP1-3 and Eisenbacteria) and classes (10 MAGs from Binatia and MOR-1).
Ultimately, HUM-V is a public MAG resource that can be leveraged to enable taxonomic
analyses and metabolic reconstruction of microbial metabolisms in HZ sediments.

HUM-V recruits metaproteomes offering new insights into HZ microbiomes.
Leveraging paired metaproteomes collected with the metagenomes allowed us to assign
gene expression to each MAG in HUM-V (Table S3). These MAGs recruited 13,102 total pep-
tides to 1,313 proteins. Because our genome analyses revealed that there were closely
related strains (Table S2), we analyzed the proteomic data using two approaches. First, we
considered the “unique” peptides that were assigned only to proteins from a single MAG.
These represented 67% of the genes expressed in our proteome. Next, we considered pro-
teins that recruited “nonunique but conserved” peptides, which we defined as those
assigned to proteins that (i) have identical functional annotation and (ii) are from more than
one MAG within the same genus. These proteins are shown in gray in Fig. 2b, and although
they accounted for a smaller fraction of the genes expressed (14%), this method prevented
us from excluding data due to strain overlap in our database.

In microbiome studies, dominance is often used as a proxy for microbial activity. Here,
we evaluated this assumption by using our paired metagenome and metaproteome data.
When comparing the MAG relative abundances to protein expression patterns, we
observed that the most abundant MAGs were not necessarily those that were most
actively expressing proteins at the time of sampling. The most abundant MAGs included
members of the Binatia, Nitrospiraceae NS7, and Nitrososphaeraceae TA-21 (formerly
Thaumarchaeota) (Fig. 2b). However, only the dominant Nitrososphaeraceae MAGs had
high recruitment of the uniquely assigned proteome. On the other hand, some low-abun-
dance members (e.g., Actinobacteriota) accounted for a sizeable fraction (30%) of the
uniquely assigned proteome.

Leveraging these metagenomic and metaproteomic data sets, we first examined meta-
bolic traits that were conserved across nearly all HUM-V MAGs. Notably, all but one
(CSP1_3_1) of the MAGs recovered from this site encoded the genomic capacity for aerobic
respiration. We defined this capability by the recovery of genes indicating a complete elec-
tron transport chain and some form of terminal oxidase within each MAG. Consistent with
these genomic data, resazurin reduction assays indicated that the bulk of sediments were
oxygenated and could likely support aerobic microbial respiration (Fig. S1a) (27). However,
while proteomic evidence for aerobic respiration (cytochrome c oxidase aa3) was detected
in nearly 40% of samples, it could be confidently assigned only to the Nitrososphaeraceae.
This is likely due to the highly conserved nature of this gene, as well as the limitations
of detecting membrane, heme-containing cytochromes with metaproteomic data

FIG 2 Legend (Continued)
within the taxonomic string provided by the Genome Taxonomy Database GTDB-Tk (Table S2). Each color represents a MAG
phylum according to the MAG phylum legend, a coloring scheme that is maintained throughout this article. (b) The summed
genomic relative abundance across all samples (left side) and the normalized mean proteomic relative abundance (right side)
for dereplicated MAGs (55 total, 49 shown), with bars colored by phylum. MAGs that contain a partial or complete 16S rRNA
sequence are denoted with an asterisk. Nonunique specialized peptide assignment is defined in Materials and Methods and is
indicated by gray bars.
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(28). As such, we consider it likely that this metabolism was more active than was
captured in the metaproteomic data.

We performed ordination analyses of our MAG-resolved metaproteomic recruit-
ment and revealed that the recruited gene expression in each sample did not cluster
significantly by sediment depth or transect position (Fig. S2a and b). These MAG-
resolved results agree with those previously published (23) using an unbinned meta-
proteome approach. That is, neither study observed any structuring at the transect
level based on any microbial data type (i.e., metagenomics or metaproteomics).
Consistent with this, over 90% of the measured gene expression was shared across
both transects (Fig. S2c). In contrast, significant differences at the transect level were
observed for metabolite concentrations and nonbiotic data like molecular weight and
carbon types, as previously reported (23). As such, when considering explanations for
this lack of microbiological spatial structuring, it is possible that (i) the microbial gene
expression heterogeneity in these samples occurred over a finer spatial resolution
(pore or biofilm scale, ,10 cm) or a larger one (.60 cm) than those sampled here and
thus were not captured in our analyses and/or (ii) that while the chemical data show
changes across transects, these changes do not differentially shape the metabolic
processes of the microorganisms, as the same substrate types are still mainly present
in both regions.

An inventory of processes contributing to microbial carbon dioxide production
and consumption. To uncover the microbial food web contributing to organic carbon
decomposition in these HZ sediments, we reconstructed a carbon degradation net-
work using coordinated genome potential, expression, and carbon metabolite data.
Based on linkages to specific substrate classes, MAGs were assigned to the following
trophic levels in carbon decomposition: (i) plant polymers, (ii) smaller organic com-
pounds (e.g., sugars, alcohols, and fatty acids), and (iii) single-carbon compounds (car-
bon monoxide, carbon dioxide, methane) (Fig. 3).

It is well recognized that heterotrophic oxidation of organic carbon derived in HZ
sediments largely contributes to river respiration (2). Despite generally low organic
concentrations in our sediments (,10 mg/g), FTICR-MS analysis showed that lignin-like

FIG 3 Integrated metaproteomics and metabolomics suggest carbon transformations expressed by bacterial and archaeal lineages in river sediments.
Background blue shading spans polymers (top) to single-carbon compounds (C1; bottom) (arrow on left). Detected metabolites are shown in boxes, with
NMR-detected compounds indicated in red type, polymers from FTICR-MS in orange type, and undetected metabolites in black type. MAG-resolved
metaproteome information is indicated by solid arrows, with MAG icons colored by phylum. Pink arrows indicate processes that are expressed and could
contribute to CO2 production, while black arrows indicate other carbon-transforming genes expressed in the proteome. Dotted arrows represent
transformations supported by only one method: (i) gray dotted arrow indicates metabolites and downstream products (but no proteome support) and (ii)
pink dotted arrow indicates metaproteomic evidence (but no geochemistry or metabolite support).
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compounds were the most abundant biochemical class detected in all samples regard-
less of transect or depth, suggesting that plant litter was a likely source of organic car-
bon (Fig. S3a). In support of this, 38% of the HUM-V MAGs encoded proteins for degra-
dation of phenolic/aromatic monomers, while 11% could degrade the larger, more
recalcitrant polyphenolic polymers. In fact, our analyses revealed that seven unique
MAGs constituting a new genus within the uncultivated Binatia encoded novel path-
ways for the decomposition of aromatic compounds from plant biomass (phenylpro-
pionic acid, phenylacetic acid, salicylic acid) and xenobiotics (phthalic acid) (Tables S2
and S3).

Gene expression of carbohydrate-active enzymes (CAZymes) also supported the degra-
dation of plant polymers like starch and cellulose. We detected the expression of putative
extracellular glucoamylase (GH15) and endoglucanase (GH5) from an Actinobacteriota
(Microm_1) and Nitrososphaeraceae (Nitroso_2) MAG, respectively. Additionally, using our
unbinned assembled fractions, we detected expression of three GH33 CAZymes which
could further contribute to the oxidation of organic carbon and were likely assigned to
unbinned Rokubacteria and an unknown Actinobacteria. The integration of our chemical
and biological data revealed that heterotrophic metabolism in these sediments could
in part be maintained by inputs of plant biomass. In support of carbon depolymeriza-
tion, sugars like glucose and sucrose were detected by nuclear magnetic resonance
(NMR) (Fig. S3b).

We next sought to identify microorganisms that could utilize these sugars and
found that members expressed transporters for fructose (Rhizo-Anders_1), glucose
(Microm_1), and general sugar uptake (Actino_1, Nitroso_2, Nitroso_3). In support of
further decomposition, we detected organic acids (acetate, butyrate, lactate, pyruvate,
propionate) and alcohols (ethanol, methanol, isopropanol) by NMR (Fig. S3b). Similarly,
proteomic data supported interconversions of these smaller carbon molecules, with
the Myxococcota (Anaerom_1) expressing genes for aerobic acetate respiration and the
archaeal Woeseia (Woese_1) respiring methanol. In summary, the chemical scaffolding
and overlaid gene expression patterns support an active heterotrophic metabolic net-
work in these HZ microorganisms, likely driven by plant biomass decomposition.

In addition to heterotrophy, our proteomic data revealed that autotrophy was also active
in these sediments. Dehydrogenase genes for the aerobic oxidation of carbon monoxide
(CO) were among the most prevalent across these sediments. This metabolism was
expressed by phylogenetically distinct lineages, including members of uncultivated lineages
Binatia (Binatia_2) and CSP1-3 (CSP1_3_1), as well as members of Actinobacteriota (Actino_1,
Microm_1), Methylomirabilota (Roku_AR37_2), and Proteobacteria (Burk_1, Thioh_1). The
wide range of bacteria and archaea that contained CO dehydrogenase genes, combined
with gene expression data, suggests that carbon monoxide oxidation may be an important
metabolism for persistence in HZ sediments.

Given that these sediments have relatively low total carbon concentrations (Fig. S1b), we
consider it possible that carbon monoxide may act as a supplemental microbial energy
and/or carbon source. Based on genomic content, we cautiously infer that members of
Actinobacteriota (Microm_1), Binatia, and CSP1-3 may be capable of carboxydotrophy (i.e.,
using carbon monoxide as sole energy and carbon source), while the Actinobacteriota
(Actino_1) is a likely carboxydovore (i.e., oxidizes carbon monoxide, while requiring organic
carbon). While this metabolism is poorly resolved environmentally, recent efforts have
shown that it is induced by organic carbon starvation to mediate aerobic respiration,
thereby enhancing survival in oligotrophic conditions (29). Here, we add river sediments to
the list of oxygenated environments (e.g., ocean and soils) where this metabolism may act
as a sink or regulate the emission of this indirect greenhouse gas (GHG) (30, 31).

Since proteomics indicated that heterotrophy and carbon monoxide oxidation
could generate carbon dioxide, we next tracked microorganisms in HUM-V that
could fix this compound, sequestering its release. Analyses revealed that four
pathways for carbon fixation were encoded by 75% of HUM-V MAGs, including
the (i) Calvin-Benson-Bassham cycle, (ii) reductive tricarboxylic acid (TCA) cycle,
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(iii) 3-hydroxypropionate/4-hydroxybutyrate (3HP/4HB) cycle, and (iv) 3-hydroxy-
propionate bicycle. The two nitrifying lineages were inferred chemolithoautotrophs,
with Nitrososphaeraceae encoding 3HP/4HB and the Nitrospiraceae encoding the
reductive TCA cycle. Additionally, phylogenetically diverse lineages, Acidobacteriota,
Binatia, CSP1_3, Proteobacteria, and Woeseiaceae, encoded redundant fixation path-
ways. Although expression was not detected for these metabolisms in our MAGs or
unbinned data, we hypothesize that these are likely relevant given the distribution of
this metabolism across the microbial community.

Our genomic and proteomic data revealed the prevalence and activity of single-car-
bon metabolism in these sediments. Carbon monoxide and dioxide are likely the pri-
mary substrates, as HUM-V had only minimal evidence for methanol oxidation (Woeseia),
no methanotrophs, and no methanogens. Along these lines, the unbinned metaproteo-
mics approach also did not detect evidence for methanotrophy or methanogenesis in
these samples. Together, our findings hint at the importance of carbon monoxide and
carbon dioxide in sustaining microbial metabolism in these oxygenated but low, or fluc-
tuating, carbon environments. Further work is needed to understand physiochemical
factors controlling carbon monoxide oxidation and carbon dioxide fixation activity and
the balance between production (via heterotrophy and carbon monoxide oxidation) and
consumption (fixation) on overall river sediment carbon dioxide emissions.

Ammonium exchange can support coordinated nitrogen mineralization and ni-
trification pathways. The ratio of total carbon (C) (Fig. S1b) to total nitrogen (N)
(Fig. S1c) (e.g., C/N) is a geochemical proxy used to denote the possible microbial
metabolisms that can be supported in a habitat (32, 33). Our HZ sediments had C/N
ratios with a mean of 6.5 6 1.1 (maximum, 8.4) (Fig. S1d). Geochemical theory posits
that sediments with low C/N ratios (,15) support organic mineralization that yields
sufficient ammonium such that heterotrophic bacteria are not N limited and nitrifying
bacteria are able to compete successfully for ammonium, enabling nitrification (33–
35). Based on our sediment C/N ratios, we hypothesized that organic nitrogen minerali-
zation and nitrification co-occured in these sediments. Here, we profiled the microbial
substrates (organic nitrogen metabolites, ammonium) and expressed pathways (miner-
alization and nitrification) to provide biological validation of this established geochem-
ical theory.

To examine the microbial contributions to organic nitrogen mineralization, we examined
metaproteomic data for peptidases, i.e. genes that mineralize organic nitrogen into amino
acids, and free ammonium. In support of active microbial N mineralization, FTICR-MS
revealed that protein-like and amino sugar-like organic nitrogen compounds were corre-
lated with high microbial activity (23), while here we show that hydrophobic, polar, and
hydrophilic amino acids were prevalent in the 1H-NMR characterized metabolites (Fig. S3b).
The expression of peptidases in situ, combined with our genomic resolution of their hosts,
provided a new opportunity to interrogate the mechanisms underpinning nitrogen mineral-
ization. We first noted which microorganisms expressed extracellular peptidases (inferred
from references 36 to 38), as these enzymes could shape the external organic nitrogen pools
in the sediment. We categorized these expressed peptidases as either releasing free amino
acids (end terminus-cleaving families, e.g., M28) or releasing peptides (endocleaving families,
e.g., S08A, M43B, M36, and MO4) (Fig. 4a). Members of the Actinobacteriota, Binatia,
Methylomirabilota, and Thermoproteota were found to express extracellular peptidases and,
as such, are likely candidates that contribute to sediment N mineralization.

We then profiled the expressed amino acid transporters in our MAGs, i.e., genes for
the cellular uptake of these smaller organic nitrogen compounds (e.g., branched-chain
amino acids, glutamate, amines, and peptides were examined) (Fig. 4b). At the time of
sampling, some members expressed peptidases for cleavage of organic N to liberate
smaller peptides, yet we could not detect expressed genes for the transport of these
produced compounds. Other taxa like Actinobacteriota and Binatia expressed genes for
external peptidases and for transporting the organic N products into the cell.
Alternatively, members of the CSP1-3, Proteobacteria, and Thermoplasmatota expressed
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genes for assimilating peptidase products, but did not express genes that would con-
tribute to their production.

While it is tempting to speculate that at the time of sampling some members of the
community may have been operating as producers, and thus extending this concept
to organic nitrogen processing as others have noted for carbon decomposition (39–
41), we note that the metabolic potential of these microorganisms is more diverse
than their expressed patterns, as shown in Fig. 4. Thus, we could have missed the
expression of these genes, as they may be below detection in the proteome data or
they may be missed entirely because our MAGs are draft genomes (inferred comple-
tion mean is 82%, with a maximum of 99%). As such, the absence of data here should
be interpreted cautiously, and future research using model cultivated strains analo-
gous to the work of Pollak et al. for polysaccharides as a public good (39) is necessary
to classify producers and cheaters, and the conditions under which they operate, in or-
ganic nitrogen processing.

Finally, we examined the proteomes for evidence that nitrification co-occured with
organic nitrogen mineralization. Supporting this possibility, the substrate ammonium
(NH4

1) was detected in all 33 sediment samples (Fig. S1e and S3b). We did not detect
genomic evidence or expression for comammox or anammox metabolisms in HUM-V
MAGs and did not identify these metabolisms in our metaproteomes mapped to the
unbinned, assembled data. This suggests that aerobic nitrification by different organ-
isms drives nitrification in our metabolic network. Proteomics confirmed that aerobic

FIG 4 Organic nitrogen mineralization and cellular transport are expressed processes in river sediments. Bubble plots indicate the genes that were
uniquely assigned to specific MAGs, including those coding for (i) extracellular peptidases and (ii) cellular transporters for organic nitrogen, with expression
in metaproteomics (colored circles) and potential (gray circle with colored outline) noted. Unique peptides detected in at least three samples are
represented by bubbles and colored by phylum. The table on the right shows putative amino acids cleaved or transported by the respective peptidases
(green or gray) or transporters (dark green/black). The shading denotes peptides that are cleaved into amino acids that could be transported, providing
linkages between extracellular organic nitrogen transformation and the transport of nitrogen into the cell. No shading (white boxes) indicates an organic
nitrogen transporter that recruited peptides but could not be linked to outputs of specific peptidases.
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ammonium oxidation to nitrite was performed by archaeal Nitrososphaeraceae. In fact,
ammonia monooxygenase (amo) subunits were within the top 5% most highly expressed
functional proteins in this data set. The next step in nitrification, nitrite oxidation to nitrate,
was inferred from nitrite oxidoreductase (nxr), which was expressed by members of
Nitrospiraceae. Demonstrating that new lineages first discovered in HUM-V could shape in
situ biogeochemistry, we confirmed that five MAGs from two new species of Nitrospiraceae
expressed nitrification genes (Nitro_40CM-3_1, Nitro_NS7_3, Nitro_NS7_4, Nitro_NS7_5,
and Nitro_NS7_14).

The proteome-supported archaeal-bacterial nitrifying mutualism outlined here
appears well adapted to the low-nutrient conditions present in many HZ sediments,
warranting future research on the universal variables that constrain nitrification rates
(i.e., ammonium availability, dissolved oxygen, pH) and their role in driving nitrogen
fluxes from these systems (42). In conclusion, our microbial data support the idea that
nitrification is concomitant with mineralization in these samples, providing biological
evidence to substantiate inferences made from the C/N ratio of these sediments.

Metabolic contributions from less characterized taxa actively shape nitrogen
cycling. Our proteomics suggests that aerobic nitrification could complement alloch-
thonous nitrate from groundwater discharges, contributing to measured nitrate con-
centrations in excess of 20 mg/L (2, 43). Based on this, we next sought to summarize
the metabolic potential and expressed gene content related to the use of nitrate or
oxidized nitrogen species in our metagenome data set.

HUM-V MAGs with the genomic capacity for denitrification were phylogenetically diverse
(Table S3). Nitrate reductases (narG or napX) were encoded in an additional 11 MAGs from
the Actinobacteriota, Binatia, Myxococcota, and Proteobacteria, of which 2 had the subse-
quent capacity to reduce nitrite to nitric oxide gas. Notably, the conversion of nitric oxide to
nitrous oxide, a potent greenhouse gas, was encoded by two Gammaproteobacteria
(Steroid-FEN-1191_1 and Steroid_1) and a member of the Myxococcota (Anaerom_1). We
also detected that the dissimilatory nitrite reduction to ammonium (DNRA) was encoded by
multiple members of the Binatia and Nitrospiraceae (Table S3).

On the basis of the gene expression data, three members were assumed to be actively
contributing to nitrogen reduction at the time these samples were collected. The only narG
protein detected in our proteome for our MAGs was uniquely assigned to the Binatia, while
proteins for nitrite reduction were assigned to the denitrifying Burkholderia and nitrifying
Nitrososphaeraceae (Table S3). We did detect expression of narG and nirk within our unbinned
data, but they were taxonomically inferred to be from Nitrospiraceae and Nitrososphaeraceae
represented in HUM-V. We did not detect the expression of DNRA in our HUM-V MAGs or the
unbinned fractions, but due to the high number of genomes encoding this functionality, we
hypothesize that it could play important roles in ammonia generation by the microbes in
these sediments. Additionally, while nitrous oxide production genes were not expressed in ei-
ther the binned or unbinned fractions, we did detect nos gene expression for reducing nitrous
oxide to nitrogen gas by the nondenitrifying Desulfobacterota_D (Desulf_UBA2774_1), for-
merly Dadabacteria (44). Our phylogenetic analysis (see “Data availability”) revealed that this
sequence was a “clade II” nosZ sequence, an atypical variant adapted for lower or atmospheric
nitrous oxide concentrations that is often encoded in nondenitrifying lineages (45).

Our metaproteome data add to the emerging interest on the use of untargeted
approaches to identify the nitrogen-transforming genes that are expressed in hypo-
rheic sediments. To our knowledge, we provide the first gene expression evidence for
two lineages lacking cultured representatives, the Binatia and a member of the
Desulfobacterota, in hyporheic zone denitrification. We also provide expression data
supporting the notion that clade II nosZ gene expression could act as a nitrous oxide
sink (without contributing to its production) (46, 47). Importantly, the activity of this
enzyme would have been missed using traditional nosZ primers, indicating the value
of our untargeted, expression-based approach (48). In summary, our gene expression
data pinpoint new metabolic contributions from less characterized taxa that actively
shape nitrogen cycling in the hyporheic zone.
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Viral influence on sediment carbon and nitrogen cycling. We reconstructed
2,482 viral MAGs (vMAGs) that dereplicated into 111 viral populations (.10 kb) in
HUM-V (Fig. 5a; Table S4), making this one of only a handful of genome-resolved stud-
ies that include viruses derived from rivers (16, 49, 50). To our knowledge, this is the
first study to provide a coordinated analysis of microbial and viral community MAGs,
and given their sparse sampling, only 5 of the 111 HUM-V vMAGs had taxonomic
assignments established from standard reference databases. To better understand
whether the remaining vMAGs had been previously detected in other virally sampled
freshwater systems, we compared the protein content of the vMAGs in our system to
that of an additional 1,861 vMAGs we reconstructed de novo or obtained from public
metagenomes from North and South America (Fig. 5b; Table S4). Of the 106 nontaxo-
nomically assigned viruses, 15% (n = 17) clustered with these freshwater-derived viral
genomic sequences, indicating possible cosmopolitan viruses, and another 23%
(n = 26) clustered only with vMAGs recovered in this data set, indicating multiple sam-
plings of the same virus across different sites and depths. The remaining 57% (n = 63)
of the vMAGs were singletons, meaning that they were sampled only from these sedi-
ments once. Combined, these results hint at the possible biogeographically diverse as
well as endemic viral lineages, warranting further exploration in river sediments.

We then assessed peptide recruitment to the viral portion of HUM-V (Fig. 5a;
Table S3). For viruses and microbes alike, the most abundant vMAGs did not have the
highest gene expression. While viral gene expression was not structured by edaphic or

FIG 5 Viruses in HUM-V are taxonomically novel, express genes, and may play roles in microbial host metabolism and river
geochemistry. (a) The genomic relative abundance (left side) and total peptides recruited (right side) for each vMAG population. Bars are
colored by clustering of vMAGs from this study with (i) viruses of known taxonomy (dark gray), (ii) novel genera (black), and (iii) no
clustering with members from any database (light gray, singletons), as defined in Materials and Methods. (b) Similarity network of the
few vMAGs from our study (denoted in black) that clustered to viruses with known taxonomy (gray) or to viruses in other freshwater,
publicly available data sets (denoted in pink, purple, orange, and turquoise) and the remaining clusters of viruses that were novel (e.g.,
did not cluster with prior vMAGs). The full network table including singletons is shown in Table S4. (c) The total number of vMAGs
(n = 32) with putative host linkages. Each bar represents a phylum, and lines within bars indicate the number of linkages for specific
MAGs within that phylum. (d) Subset of cartoons of microbial metabolisms for two representative MAGs with putative viral linkages, with
the genes shown in black text boxes denoting processes detected in proteomics. (e) Correlations between a subset of vMAGs, with
rectangle colors denoting the putative host taxonomy. Correlations between these vMAGs and ecosystem geochemistry (concentration
of NH4 [mg/g], %N, and %C) are reported, with significant correlation coefficients denoted by purple-green shading according to the
legend. Red asterisks indicate that the vMAG relative abundance predicted a key environmental variable by sparse partial least-squares
(sPLS) regression; note that these two vMAGs are shown in panel d.
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spatial factors (Fig. S4a and b), it was strongly coordinated to the microbial abundance
patterns (Fig. S4c). Like our microbial MAG peptide recruitment, 66% of the vMAGs
uniquely recruited peptides. This exceeded prior viral metaproteome recruitment from
other environmental systems (e.g., wastewater, saliva, and rumen, with ranges from 0.4
to 15%) (51–53). From this, we infer that a relatively large portion of the viral commu-
nity was active at the time of sampling.

The proteomic recruitment of viruses sampled in HUM-V hinted at the possibility that
viruses could structure the microbial biogeochemistry through predation. In silico analysis
assigned a putative host to 29% of the 111 vMAGs. Viruses were linked to 18 microbial MAGs
that belong to bacterial members in Acidobacteriota, Actinobacteriota, CSP1-3, Eisenbacteria,
Methylomirabilota, Myxococcota, Nitrospirota, and Proteobacteria (Fig. 5c; Fig. S4d and e).
Analysis of the metaproteomes for these putative phage-impacted MAGs revealed that these
hosts expressed genes for carbon monoxide oxidation (Actinobacteriota), carbon fixation
(CSP1-3), nitrogen mineralization (Acidobacteriota andMethylomirabilota), methanol respiration
(Myxococcota), nitrification (Nitrospirota), and ammonia oxidation (Proteobacteria) (Fig. 5d).
Thus, viral predation in HZs could impact carbon and nitrogen biogeochemistry and may
explain some of the strain and functional redundancy we observe in the microbial commun-
ities of these sediments.

We next inventoried HUM-V vMAGs for auxiliary metabolic genes (AMGs) with the
potential to augment biogeochemistry. We detected 14 AMGs which we confirmed were
not bacterial in origin and had virus-like genes on both flanks (54). These putative AMGs
had the potential to augment carbon (CAZymes), sulfur (sulfate adenylyltransferase), and
nitrogen (amidase to cleave ammonium) metabolism (Fig. S4f). One of our vMAGs that was
putatively linked to a Steroidobacteraceae (Steroid_1) contained a pectin lyase gene (PL1).
This viral PL1 could enable its host to cleave the backbone of pectin, generating pectin oli-
gosaccharides that could be used via two host-encoded glycoside hydrolases (GH4 and
GH2), ultimately freeing galactose for energy metabolism (Fig. S4g and h). While theoreti-
cal, we include this as an example to illustrate how virally encoded genes could expand
the substrate ranges for their hosts and alter biogeochemical cycling in river sediments.

In support of their importance for modulating microbial activity and sediment bio-
geochemistry, we noted that the use of vMAG abundance patterns in addition to MAG
abundance patterns improved our predictions of river sediment carbon and nitrogen
concentrations (Fig. S5). In summary, these results indicate that viral predation and
AMGs may contribute to river sediment biogeochemistry, either through top-down or
bottom-up controls on the microbial community.

A multi-omics-informed roadmap of carbon and nitrogen cycling in HZ sedi-
ments. Despite the importance of the HZ and its relative accessibility in terms of sampling
locations, HZ microbial and viral communities are surprisingly undersampled in a genomic
context. Previous studies pertaining to this ecosystem are not genome resolved and used
16S rRNA amplicons or unbinned metagenomes (8–11, 19, 20, 22), thus limiting the predic-
tive and explanative power of the study and oftentimes not discriminating between meta-
bolically active and inactive organisms. Furthermore, the few studies which are genome
resolved (21, 22) often focus on specific lineages or single processes and not the entire mi-
crobial community, missing the complex interplays between the carbon and nitrogen
cycles.

Here we created HUM-V, a MAG-resolved database, to expand on prior non-genome-
resolved analyses done in a previous publication by our team (23). Our MAG-resolved pro-
teomic data further provided some of the first activity indicators for members of hypo-
rheic microbiomes. As an example, we focus on new insights gleaned from the seven
recovered Binatia MAGs (one genome included a complete 16S rRNA gene), which are
uncultured and have been described only in terms of metabolic potential by one previous
publication (55). Proteomics demonstrated that these bacteria (i) aerobically oxidized car-
bon monoxide, (ii) mineralized organic nitrogen, and (iii) denitrified, contributing to car-
bon and nitrogen cycling in these sediments (Fig. S6a). Using 16S rRNA recovered from
these MAGs, we show that closely related strains are biogeographically widespread
(Fig. S6b), and thus it is possible that the gene expression findings we illuminate here are
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more widespread across other habitats. These results illustrate the power of HUM-V in
uncovering new roles for members of uncultivated, previously enigmatic microbial line-
ages in hyporheic zone biogeochemistry.

Empowered by our process-based metaproteomic analyses (Fig. 2 to 5), we present
a conceptual model outlining microbial and viral contributions to carbon and nitrogen
biogeochemistry in these sediments (Fig. 6). Together, our results demonstrated how
these pathways could result in the formation and depletion of nutrients in shared
resource pools. From gene expression data, we suggest a network of metabolisms that
affected organic and inorganic carbon cycling and that is intertwined with nitrogen
mineralization, nitrification, and denitrification pathways.

In conclusion, while river carbon and nitrogen budgets are often quantified by direct
measurements of inputs and the concentrations of inorganic and organic compounds
exported from rivers, our findings put forth an integrated framework that advances the
resolution of microbial roles in hyporheic carbon and nitrogen transformations. It yields

FIG 6 Conceptual model summarizing the microbial and viral contributions to HZ carbon and nitrogen cycling
identified in this study. Black arrows signify microbial transformations uncovered in our MAG-resolved metaproteomic
data. Specific processes (e.g., mineralization, nitrification, CO oxidation, denitrification, and aerobic respiration) are
highlighted in beige boxes, with microorganisms inferred to carry out these processes denoted by overlaid cell shapes
colored by phylum. Possible biotic, atmospheric, and aquatic carbon and nitrogen sources are indicated by purple,
green, and blue arrows, respectively. Inorganic carbon and nitrogen sources are shown by black squares (aqueous)
and black circles (gaseous), with white text and dashed arrows indicating possible gasses that could be released to
the atmosphere. Processes that could be impacted by viruses are marked with gray virus symbols.
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insights that could inform research strategies to reduce existing predictive uncertainties
in river corridor models and resolves some of the microbial contributions that were
thought to occur but were poorly defined in river sediments (e.g., nitrogen mineraliza-
tion). We also highlight previously enigmatic processes that could directly impact river
GHG fluxes in unappreciated ways (e.g., carbon dioxide fixation, carbon monoxide oxida-
tion, type II nitrous oxide reduction). Ultimately, we show that a MAG-resolved database
allows us to track the consumption and production of carbon dioxide, ammonium, and
inorganic nitrogen and helps us explain how these transformations might contribute to
overall GHG fluxes.

MATERIALS ANDMETHODS
Sample collection, DNA isolation, and chemical characterization. Samples were collected from

the hyporheic zone of the Columbia River (46°22915.800N, 119°16931.520W) in March 2015 as previ-
ously described (23). Briefly, sediment profiles (0 to 60 cm) were collected along two transects sepa-
rated by approximately 170 m (Fig. 1). At each transect, three sediment cores up to 60 cm in depth
were collected at 5-m intervals perpendicular to the river flow. Liquid-N2-frozen sediment profiles
were collected as detailed previously (56), with a pointed stainless-steel tube (152-cm length, 3.3-cm
outside diameter, 2.4-cm inside diameter) driven into the riverbed and liquid N2 poured down the
tube for ;15 min. Once the sediments were frozen, the tube and attached material were removed
from the riverbed with a chain hoist suspended beneath a tripod. Profiles were placed over an alumi-
num foil-lined cooler containing dry ice. The material was then wrapped in the foil and transported on
dry ice to storage at 280°C. In the lab, each core was then sectioned into 10-cm segments from 0- to
60-cm depths for downstream analyses, except for core “N2,” which had the first 3 depths (0 to 30 cm)
subsampled together, and for core “N1” (50 to 60 cm), which was damaged and did not pass quality
control. For processing, samples were transferred to an anaerobic glove bag with 95% N2 and 5% H2

(Coy Laboratory Products, Grass Lake, MI) and thawed on clean 2-mm stainless steel sieves prior to
processing. Approximately 5 g was transferred to a 40-mL borosilicate glass vial and stored at 280°C
for chemical analyses. An additional sample was taken for elemental analysis (organic carbon [OC],
and nitrogen [N]), and the remaining material was divided into 20-g samples collected into 40-mL bor-
osilicate glass vials and stored at 280°C.

DNA isolation was carried out as previously described (23). To release biomass from sediment par-
ticles, thawed samples were suspended in 20 mL of chilled phosphate-buffered saline (PBS)–0.1% Na
pyrophosphate solution and vortexed for 1 min. The suspended fraction was decanted to a fresh tube
and centrifuged for 15 min at 7,000 � g and 10°C. DNA was extracted from the resulting pellets using
the MoBio PowerSoil kit in plate format (MoBio Laboratories, Inc., Carlsbad, CA) in accordance with the
manufacturer's instructions, with the addition of a 2-h proteinase K incubation at 55°C prior to bead
beating to facilitate cell lysis. DNA was then sent to the Joint Genome Institute (JGI; n = 33) for sequenc-
ing. The additional deep sequencing described here was performed at the Genomics Shared Resource
facility at The Ohio State University (OSU; n = 10) using a Nextera XT library system. Libraries at both
facilities were sequenced using an Illumina HiSeq 2500 platform. Table S1 in the supplemental material
details all sequencing information, including accession numbers for metagenomes.

Chemical analyses included geochemical and metabolite data, for which geochemistry and Fourier
transform ion cyclotron resonance mass spectrometry (FTICR-MS) methods were performed as previ-
ously described (23). Regarding FTICR-MS, sediments were extracted with three solvents with different
polarities—water (H2O), methanol (CH3OH; abbreviated MeOH), and chloroform (CHCl3)—to sequentially
extract a large diversity of organic compounds from samples, according to previous publications (57,
58). Water extractions were performed first, followed by extractions with MeOH and then CHCl3. Ultra-
high-resolution mass spectrometry of the three different extracts from each sample was carried out
using a 12-T Bruker SolariX FTICR-MS located at the Environmental Molecular Sciences Laboratory
(EMSL) in Richland, WA.

The total nitrogen, sulfur, and carbon content was determined using an Elementar vario El cube
(Elementar Co., Germany). NH4

1 was extracted with KCl and measured with a Hach kit (Hach, Loveland,
Co). Aerobic metabolism was inferred by the resazurin reduction assay, based on a method previously
described (27). FTICR-MS compounds are reported as relative abundance values based on counts of C, H,
and O. The relative abundance of a biochemical class is defined as follows: (number of formulas in a class
per sample)/(total number of formulas per sample). This was done for the following H:C and O:C ranges:
lipids (0 , O:C # 0.3, 1.5 # H:C # 2.5), unsaturated hydrocarbons (0 # O:C # 0.125, 0.8 # H:C , 2.5),
proteins (0.3 , O:C # 0.55, 1.5 # H:C # 2.3), amino sugars (0.55 , O:C # 0.7, 1.5 # H:C # 2.2), lignin
(0.125 , O:C # 0.65, 0.8 # H:C , 1.5), tannins (0.65 , O:C # 1.1, 0.8 # H:C , 1.5), and condensed
hydrocarbons (0 # 200 O:C# 0.95, 0.2# H:C , 0.8) (57).

Additional metabolite data were obtained through 1H nuclear magnetic resonance (NMR) spec-
troscopy on water-extracted sediments. Thawed sediment samples were mixed with 200, 300, or
600 mL of Milli-Q water depending on the sediment mass (Table S1) and centrifuged to remove the
sediment (58–60). Supernatant (180 mL) was then diluted by 10% (vol/vol) with 5 mM 2,2-dimethyl-2-
silapentane-5-sulfonate-d6 (DSS-d6) as an internal standard. All NMR spectra were collected using a
Varian Direct Drive 600-MHz NMR spectrometer equipped with a 5-mm triple-resonance salt-tolerant
cold probe. Chemical shifts were referenced to the 1H or 13C methyl signal in DSS-d6 at 0 ppm. The
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one-dimensional (1D) 1H NMR spectra of all samples were processed, assigned, and analyzed using
Chenomx NMR Suite 8.3 with quantification based on spectral intensities relative to the internal stand-
ard as described previously (61, 62). For the NMR, while obtaining concentrations is possible, many
compounds were below the limit of quantitation (2 mM) but above the limit of detection (1 mM). To
still derive meaning from these data, we reported NMR-identified compounds as present (detected) or
absent (not .1 mM), with “relative abundance” reported as the number of formulas in a class per sam-
ple divided by the total number of formulas per sample. All geochemical and metabolite data can be
found in Table S1.

Metagenome assembly and binning. Raw reads were trimmed for length and quality using Sickle
v1.33 (https://github.com/najoshi/sickle) and then subsequently assembled using IDBA-UD 1.1.0 (63)
with an initial kmer of 40. Two of our samples did not assemble with IDBA-UD 1.1.0 at this kmer and
were assembled with metaSPAdes 3.13.0 (64) using default parameters (Table S1). To further increase
genomic recovery, for the 10 samples that had shallow and deep sequencing, metagenomic reads were
coassembled using IDBA-UD 1.1.0 with an initial kmer of 40 (Table S1). All assemblies, including coas-
semblies, were then individually binned using MetaBAT2 v2.12.1 (65) with default parameters to obtain
microbial MAGs.

For each bin, MAG completion was estimated based on the presence of core gene sets using
Amphora2 (E value = 1e23, which used RaxML [v8.2.9], HMMER [v3.3], and EMBOSS [v6.6.0.0]) and
CheckM v1.1.2 (66, 67). To ensure that only quality MAGs were utilized for metabolic analyses, we dis-
carded all MAGs that had completion of ,70% and contamination of .10%. This equates to “high-qual-
ity” (HQ) bins and a more stringent “medium-quality” (MQ) bin cutoff than those used by the genome
consortium standard (25). These 102 MAGs (6 HQ, 96 MQ) were then dereplicated using dRep (68) with
default parameters to result in a final set of 55 MAGs (.99% ANI, which represents strain-level MAG dis-
tinctions) (Table S2). To further assess bin quality, we used the Distilled and Refined Annotation of MAGs
(DRAM) v1.0 tool (54) to identify rRNAs and tRNAs to ensure they were taxonomically consistent with
overall taxonomic assignments. To further curate our bins, we used bowtie2 (69) to calculate the cover-
age of each scaffold within a MAG and manually checked scaffolds that had 10% higher coverage than
the mean, confirming consistency in taxonomic assignment and annotations of the scaffold in question
with the overall bin. MAG quality and taxonomic information are reported in Table S2.

Metabolic and taxonomic analyses of MAGs. Medium- and high-quality MAGs were taxonomically
classified using the Genome Taxonomy Database (GTDB) Toolkit v1.3.0 using reference data r95 on
September 2020 (70). Novel taxonomy was identified as the first taxonomic level with no designation
using GTDB taxonomy. MAG scaffolds were annotated using the DRAM v1.0 tool, which uses the PFAM
(v33.1), KEGG (v89.1), dbCAN (v9), MEROPS (v120), and VOGDB database for annotations (54) (https://
github.com/WrightonLabCSU/DRAM). Phylogenetic analyses were performed on genes annotated as re-
spiratory nitrate reductase (nar) and nitrite oxidoreductase (nxr) to resolve the novel Binatia role in nitro-
gen cycling. Specifically, sequences from reference 71 were downloaded and combined with nar and nxr
amino acid sequences from dereplicated bins, aligned using MUSCLE (v3.8.31), and run through an in-
house script for generating phylogenetic trees (https://github.com/WrightonLabCSU/columbia_river).
Phylogenetic trees are provided in Zenodo at https://doi.org/10.5281/zenodo.6339808. For polyphenol
and carbon polymer degradation, we used predicted secretion and functional annotations to character-
ize these metabolisms. To determine if the predicted genes encoded a secreted protein, pSortb (36) and
SignalP (38) were used to predict location; if those methods did not detect a signal peptide, the amino
acid sequence was queried using SecretomeP (with a SecP score of .0.5 [37] used as a threshold to
report noncanonical secretion signals). Metabolic characterization for each MAG discussed in this paper
is available in Table S3.

Viral analyses.Metagenomic assemblies (n = 43) were screened for DNA viral sequences using VirSorter
v1.0.3 with the ViromeDB database option (72), retaining viral contigs ranked 1, 2, 4, or 5, where categories 1
and 2 indicate high-confidence predicted lytic viruses and categories 4 and 5 indicate high-confidence pro-
phage sequences from VirSorter output (72). Viral sequences were filtered based on size to retain those
greater than or equal to 10 kb on the basis of current standards (73). Viral scaffolds were then clustered into
vMAGs at 95% ANI across 85% of the shortest contig using ClusterGenomes 5.1 (https://github.com/simroux/
ClusterGenomes) (73). After clustering, vMAGs were manually confirmed to be viral by looking at DRAM-v
annotations and assessing the total virus-like genes relative to nonviral genes per scaffold. Using DRAM-v,
vMAGs that were assigned the J-flag (which indicates vMAGs containing more than 18% of nonviral genes)
were deemed suspicious, manually confirmed to contain no viral hallmark genes, and subsequently discarded
(54). All vMAG information can be found in Table S4.

To determine taxonomic affiliation, vMAGs were clustered with viruses belonging to the viral refer-
ence taxonomy databases in NCBI Bacterial and Archaeal Viral RefSeq V85, and viruses from the
International Committee on Taxonomy of Viruses (ICTV) by using the network-based protein classifica-
tion software vConTACT2 v0.9.8 with default settings (74, 75). To determine the geographic distribution
of viruses in freshwater ecosystems, we included viruses mined from publicly available freshwater meta-
genomes in the following vConTACT2 analyses: (i) East River, CO (PRJNA579838); (ii) a previous
Columbia River, WA, study (PRJNA375338); (iii) Prairie Potholes, ND (PRJNA365086); and (iv) the Amazon
River (PRJNA237344). The viral sequences that were identified from these systems and the genes used
for vConTACT2 are deposited in Zenodo under https://doi.org/10.5281/zenodo.6310084 with more infor-
mation about downloaded data sets provided in Table S4.

Viral contigs were annotated with DRAM-v (54). Genes that were identified by DRAM-v as being
high-confidence possible auxiliary metabolic genes (auxiliary scores of 1 to 3) (54) were subjected to
protein modeling using the Protein Homology/analogY Recognition Engine (PHYRE2) (76). Auxiliary
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scores were assigned by DRAM (54), based on the following ranking system. A gene is given an auxil-
iary score of 1 if there is at least one hallmark gene on both the left and right flanks, indicating that
the gene is likely viral. An auxiliary score of 2 is assigned when the gene has a viral hallmark gene on
one flank and a virus-like gene on the other flank. An auxiliary score of 3 is assigned to genes that
have a virus-like gene on both flanks. To identify likely vMAG hosts, oligonucleotide frequencies
between virus (n = 111) and nondereplicated hosts (n = 102) were analyzed using VirHostMatcher
using a threshold of d2* measurements of ,0.25 (77). The lowest d2* value for each viral contig of
,0.25 was used. All vMAG information is reported in Table S4.

MAG relative abundance calculations and their use in predictions. To estimate the relative abun-
dance of each MAG and vMAG, the metagenomic reads for each sample were rarefied to 3 Gbp and mapped
to 55 unique MAGs via Bowtie2 (60, 61, 69). For MAGs, a minimum scaffold coverage of 75% and a depth of
3� coverage were required for read recruitment at 7 mismatches. For vMAGs, reads were mapped using
Bowtie2 (69) at a maximum mismatch of 15, a minimum contig coverage of 75%, and a minimum depth cov-
erage of 2�. Relative abundances for each MAG and vMAG were calculated as their coverage proportion
from the sum of the whole coverage of all bins for each set of metagenomic reads. MAG relative abundances
per sample for MAGs and vMAGs are reported in Tables S2 and S4. Correlations and sparse partial least
squares regression (sPLS) predictions (PLS R package [78]) used mapping data pertaining to only the 10
deeply sequenced metagenomes rarefied to 4.8 Gbp (Tables S2 and S4).

Metaproteome generation and peptide mapping. Metaproteomic mapping results for MAGs and
vMAGs are shown in Table S3. Sediment samples were prepared for metaproteome analysis as previ-
ously reported by Graham et al. (23) and using the protocol outlined by Nicora et al. (79). As previously
described (61, 80), tandem mass spectrometry (MS/MS) spectra from all liquid chromatography-tandem
mass spectrometry (LC-MS/MS) data sets were converted to ASCII text (.dta format) using MSConvert
(http://proteowizard.sourceforge.net/tools/msconvert.html), and the data files were then interrogated
via a target-decoy approach (81) using MSGF1 (82). For protein identification, spectra were searched
against two files that included (i) 55 dereplicated MAG and (ii) 111 clustered vMAG amino acid sequen-
ces. Peptide recruitment for each MAG amino acid sequence per sample is reported in Table S3. Hits
were divided into three categories: (i) unique peptide hits to a single protein, (ii) nonunique specialized
peptide hits to multiple amino acid sequences that all had same annotation and MAG taxonomy, and
(iii) nonunique peptide hits to multiple amino acid sequences with different annotations or from MAGs
with different taxonomies. This last designation was necessary, as several hits could not be resolved to
the MAG level due to functional conservation across closely related MAGs (strains) in the HUM-V data-
base. Data in Fig. 2 showcase categories (i) and (ii). Microbial metaproteomes were converted to normal-
ized spectral abundance frequency (NSAF) values and subsequently divided into unique, nonunique spe-
cialized, and nonunique categories and only reported as expressed when detected in more than three
samples (unless otherwise noted and subsequently manually inspected to be good hits). Viral metapro-
teomes were analyzed using peptide counts only from unique hits due to low recruitment.

To understand changes in the metaproteome recruited to MAGs over spatial gradients, nonmetric
multidimensional scaling (NMDS) ordinations were performed on the subset of 29 samples that recruited
sufficient peptides. Analyses were run with multiple transformations and with presence/absence and rel-
ative abundance data. Relevant code for Fig. S2a and b, Fig. S4a and b, and input data used can be
found on GitHub (https://github.com/WrightonLabCSU/columbia_river).

In addition to our binned approach, we also analyzed all proteins that recruited peptides across all
assembled contigs (i.e., both binned and unbinned). Proteins that recruited peptides uniquely and in
more than three samples were then annotated using DRAM. To determine if the predicted carbon cy-
cling genes encoded a secreted protein, pSortb (36) and SignalP (38) were used to predict location; if
those methods did not detect a signal peptide, the amino acid sequence was queried using SecretomeP
(with a SecP score of .0.5 [37] used as a threshold to report noncanonical secretion signals). The genes
that were relevant to the article and their annotations are included in Table S3, along with the mapping
results for all unique genes. The annotations for all unique hits, without QC, are available on Zenodo at
https://doi.org/10.5281/zenodo.6607647.

Data availability. The data sets supporting the conclusions of this article are publicly available. All
sequencing data information can be found in Table S1 and are available in NCBI under BioProject no.
PRJNA576070. The reads sequenced at JGI are also available on JGI/M ER under Gold ID Gs0114663
alongside their respective JGI Assembly Pipeline data (https://img.jgi.doe.gov/mer/). MAG accession
numbers and quality information can all be found in Table S2 and are deposited under BioSample no.
SAMN18867633 to SAMN18867734. The accession numbers and quality for 111 vMAGs can be found in
Table S4, and the sequences are deposited in NCBI under BioProject no. PRJNA576070.

Raw annotations for each MAG are deposited in Zenodo at https://doi.org/10.5281/zenodo.5128772,
with the corresponding DRAM interactive heat map at https://zenodo.org/record/5124964. Additionally,
the data set of freshwater viruses used to cluster to the HUM-V vMAGs is provided on Zenodo at https://
doi.org/10.5281/zenodo.6310084. Metaproteomic data are deposited in the MassIVE database under
accession no. MSV000087330. Metabolomics data are publicly available and deposited in Zenodo at
https://doi.org/10.5281/zenodo.5076253. Phylogenetic trees are provided on Zenodo at https://doi.org/
10.5281/zenodo.6339808. GTDB-Tk phylogenetic analysis output is provided on Zenodo at https://doi
.org/10.5281/zenodo.6502149. The unbinned metaproteomic mapping annotation data is hosted on
Zenodo at https://doi.org/10.5281/zenodo.6607647. All scripts along with the input files used in this pa-
per are available at https://github.com/WrightonLabCSU/columbia_river.
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