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Abstract

Background/Objectives: Reinforcement learning (RL), a subset of machine learning, has
emerged as a promising tool for supporting precision medicine and dynamic treatment
regimes by enabling adaptive, data-driven clinical decision making. Despite its poten-
tial, challenges such as interpretability, reward definition, data limitations, and clinician
adoption remain. This review aims to evaluate the recent advancements in RL in preci-
sion medicine and dynamic treatment regimes, highlight clinical fields of application, and
propose practical frameworks for future integration into medical practice. Methods: A
systematic review was conducted following PRISMA guidelines across PubMed, MED-
LINE, and Web of Science databases, focusing on studies from January 2014 to December
2024. Articles were included based on their relevance to RL applications in precision
medicine and dynamic treatment regime within healthcare. Data extraction captured study
characteristics, algorithms used, specialty area, and outcomes. Results: Forty-six studies
met the inclusion criteria. RL applications were concentrated in endocrinology, critical
care, oncology, and behavioral health, with a focus on dynamic and personalized treatment
planning. Hybrid and value-based RL methods were the most utilized. Since 2020, there
has been a sharp increase in RL research in healthcare, driven by advances in computational
power, digital health technologies, and increased use of wearable devices. Conclusions: RL
offers a powerful opportunity to augment clinical decision making by enabling dynamic
and individualized patient care. Addressing key barriers related to transparency, data
availability, and alignment with clinical workflows will be critical to translating RL into
everyday medical practice.

Keywords: reinforcement learning; machine learning; artificial intelligence; precision
medicine; dynamic treatment regimen; health informatics
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1. Introduction to Reinforcement Learning and Its Applications
1.1. Introduction

Artificial intelligence (AI) makes use of computer-based technology to augment and
increase human understanding and capacity. Machine learning (ML) is a subdiscipline of
AI, describing how computers learn to associate and provide predictive power through
datasets. Collectively, the application of AI/ML in medicine is being seen in a wide range of
medical subspecialities including dermatology, oncology, epidemiology, gastroenterology,
and cardiology [1–5]. By training on data, an AI tool responds to new data based on similar
frameworks and is able to undertake complex tasks [6,7], allowing for new opportunities
to improve patient care, optimize health systems, and transform medical subspecialties.
Of the many challenges in this field, the most important may be creating translatable and
actionable processes and converting computer science-based technologies into applications
clinicians can understand and make clinical decisions from. However, ML has already
shown increasing efficacy in the medical field in terms of diagnosis and outcomes prediction.
Furthermore, its employment within healthcare is promising given its ability to make
accurate predictions using various sources of data [7].

There are primarily three approaches to machine learning: supervised learning, un-
supervised learning, and reinforcement learning (RL), all of which have applications in
medicine (Figure 1) [8]. Supervised learning makes use of a dataset that includes a labeled
input and output class or “target” at the start of training, in effect creating a predictive
model (through classifications or regressions) to help with future projections on fresh
data. This process has been used in practices ranging from disease prediction to diagnosis,
prognosis, and staging in oncology [9,10]. Unsupervised learning differs from supervised
learning because it uses an unlabeled dataset with no predefined or desired output. It often
utilizes clustering to find input regularities and to reduce dimensionality. This approach
has been employed in a wide range of medical applications including radiomics, pathology,
and the musculoskeletal system [11–13].

 

Figure 1. The three approaches to machine learning: supervised learning, unsupervised learning,
and reinforcement learning. Their broad applications in medicine are noted.

Reinforcement learning is policy-based and focuses on solving problems where there
is an interaction between an agent (which produces an action) and the environment (which
provides a specific reward or penalty) [8], enabling the model to identify the most effective
way to achieve an intended result. The applications of RL within medicine and healthcare
are broad and diverse. It is starting to be utilized more in clinical fields including internal
medicine, surgical subspecialties, and healthcare administration [14–17]. Prior reviews have
grouped the implementations of RL into categories, with minor variations depending on the
source [16,18–21]. They are as follows: precision medicine (PM), dynamic treatment regime
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(DTRs), personalized rehabilitation, medical imaging, diagnostic systems, control systems,
dialog systems, clinical support systems, health management systems, drug discovery
and development, robotics-assisted surgery, and wearable devices and remote patient
monitoring (Table 1). Compared to traditional rule-based systems and many supervised
ML methods, RL offers a distinct advantage in its ability to optimize sequential decision-
making through dynamic feedback. This makes RL well-suited for clinical care and other
applications, including treatment planning, dosage titration, and personalized regimens,
where actions must adapt over time to evolving patient responses.

Table 1. Categories of the applications of RL in medicine.

Categories of Reinforcement Learning in Medicine

(1) Precision Medicine
(2) Dynamic Treatment Regime
(3) Clinical Support Systems
(4) Medical Imaging
(5) Diagnostic Systems
(6) Dialog Systems

(7) Personalized Rehabilitation
(8) Control Systems
(9) Health Management Systems
(10) Drug Discovery and Development
(11) Robotic-Assisted Surgery
(12) Wearable Devices and Remote Patient Monitoring

In this paper, we focus on the applications of RL in medicine in regard to PM and
DTRs. These two categories were chosen because of their focus on personalized, adaptive,
and data-driven decision making, the hallmark of RL applications. The authors believe
this to be the catalyst for the next evolution of data-driven medicine. We also provide a
special focus on the ways physicians and other clinicians may use RL in daily practice,
including the clinical know-hows and practical implications. Further, we will discuss
current challenges, and future directions that are applicable for medical clinicians being
introduced to this topic. Finally, we will provide examples that illuminate how RL has the
potential to be directly integrated into the clinical practice with minimal friction, thereby
allowing physicians of any background or with a limited knowledge base to take part in its
implementation. This paper differs from prior comprehensive reviews by our focus on PM
and DTR, as well as providing practical knowledge for clinicians [16,19–22].

1.2. Background of RL

AI includes a wide variety of computational means to create artificial inference. Defi-
nitions of AI vary along two main dimensions, the first is concerned with thinking versus
acting, and the second dimension is concerned with whether the standard is to emulate
humans or to achieve rationality [23]. This yields four categories of AI: (1) systems that
think like humans; (2) systems that act like humans; (3) systems that think rationally;
and (4) systems that behave rationally. The fourth category is arguably the most valuable
category to consider for AI development for several reasons. The first reason is that infer-
ence is one of many mechanisms that can be used for achieving rational behavior. Secondly,
rationality is more compliant to scientific systems than systems that mimic humans. Thirdly,
it is intrinsically difficult to understand the thinking process, but behaviors are measurable.
All together, these characteristics are important to an end user. For the focus herein, a
physician end user always needs to consider and process real-time information and decide
the best rational decision for their patients.

RL has served as a paradigm for solving very complex decision-making problems
because of several high-profile successes in various problems [24]. Notable non-medical
examples include general Atari 2600 game-playing, control of robots, and the famous
defeat of a top human expert at the game of GO [25–27]. RL problems are specified
in terms of a state space, an action space, and a reward function [28]. As the agent
takes actions, the environment state changes and a reward is received. The agent aims
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to maximize the cumulative reward by learning an appropriate policy which works in
the given environment. An example of the general RL process is illustrated in Figure 2.
Depending on the algorithmic approach, the RL agent will have at least one of the following
components: a model, a policy, or a value function [28]. A model can be mathematical
models of the agent’s dynamics and rewards. A policy maps a state to an action, or a
strategy for deciding what action to take in a given scenario. Lastly, a value function
accounts for the future rewards the agent will accrue by being in certain states and taking
the specified actions according to a particular policy [28].

 

Figure 2. General conceptualization of reinforcement learning.

These three components (value functions, policies, and models) underlie three general
approaches to solving RL problems: methods based on value functions, methods based on
policy search, and model-based methods [23,29]. Model-based methods allow the agent
to plan based on its model of the situation, but often a complete ground truth model
(a model that represents an accurate and definitive standard against which other models or
predictions can be validated) is usually not available. This prompts the need for model-free
approaches based on the policy or value function. Policy-search methods allow for an agent
to directly learn a policy, which dictates what actions to take from any given state. Value-
based methods only indirectly optimize for agent performance but can be substantially
more efficient. Value-based methods and policy search methods are not exclusive to one
another. A common technique is to combine both value-based methods with policy search
methods to form value–policy hybrids, for example actor–critic methods [23,24,29]. More
recently, deep RL has been developing in medicine. Deep learning involves the utilization
of a set of inputs and transforms it into output using an artificial neural network. Deep
RL combines a deep learning algorithm with RL, which allows agents to make decisions
from unstructured input data similar to the way a brain would make a decision in an RL
framework [30]. In their daily practice, doctors frequently use frameworks like those of RL
in which parts of the actions they perform are learned through trial-and-error interactions
with their patients. Even seasoned doctors occasionally encounter novel pathologies,
requiring them to experiment in their environment.

1.3. Research Directions

While the potential of RL has been demonstrated in robotics and successful applica-
tions to games such as Go and Atari, its use within healthcare is more complicated due to
the nature of clinical practice. Regardless, RL has received significant attention within the
medical community due to its ability to support precision medicine, learn about clinical
treatments, discover new medical knowledge, and ascertain patterns in clinical data [19].

Currently, RL research in medicine is focused on overcoming the heterogeneity within
patient populations. No two patients are exactly alike, given their comorbidities, family
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histories, real-time diagnostic testing, and many other factors. Individualized treatment
plans are increasingly utilized to help produce optimal healthcare, particularly for diseases
like Parkinson’s, cervical cancer, and type 2 diabetes [17,31,32]. These pathologies, among
many others, require continuous complex decision-making processes over a long course of
time. RL is uniquely equipped to handle these tasks.

Often, these RL applications are aimed at addressing complex decisions in the form
of modifying previously static dosing regimens. Dosing requires constant analysis into
an array of factors not limited to weight changes, kidney function, liver function, burden
of treatment on the patient, and overall health and energy. This is where RL research
and wearable devices come together for the continuous examination of patient symp-
toms. For example, one study utilized wearable sensors on patients with Parkinson’s
disease to examine bradykinesia and dyskinesia. This helped in evaluating the best time
to administer Parkinson’s medication and in determining the dose at which symptoms
are minimized [31].

The current landscape has largely focused on fields such as oncology to optimize
treatment plans, generating overall better-quality regimens with fewer symptoms and
extended survival [33–35]. Unlike the long-term pathologies outlined above, acute illnesses
like sepsis require immediate action. Sepsis management is a great candidate for RL
research because it possesses multiple simultaneous inputs requiring constant monitoring
of a patient’s health to ideally manage their critical needs. As a result, several recent studies
examined the exact methodology of intervention delivery based on the patient’s unique
profile and state [36–40]. Ultimately, the current goal of RL research for medical applications
is to minimize the decision-making burden on clinicians without compromising patient
outcomes and to highlight time-critical opportunities in the treatment process. This is
similar in concept to many traditional RL applications which aim to coordinate operations
to focus human intervention to the most impactful level [29].

RL holds significant promise in enhancing PM and DTR within medicine and health-
care. Their focus on personalized, adaptive, and data-driven decision making enables them
to evolve care while accounting for a patient’s needs and responses over time.

1.3.1. Introduction to Precision Medicine

PM is sometimes referred to as personalized medicine and has been defined as “the
tailoring of medical treatment to the individual characteristics of each patient” [41,42].
Within the current healthcare system, medical decisions are often influenced or based on
national guidelines (i.e., USPSTF, ACC/AHA, etc.). The recommendations are commonly
based on evidence from high-quality randomized control trials and large population cohort
studies. However, these traditional static approaches often rely on predefined protocols that
are applied within heterogeneous patients. PM is enhanced from RL because it offers a way
to continuously optimize treatment plans in real time by adapting to patient feedback and
outcomes (Figure 3). This is made possible through RL’s ability to analyze patient data (such
as vital signs, laboratory values, medical history, imaging, genetic information) and learn
the optimal intervention strategies based on how a patient responds to the treatment [43].
This allows the model to personalize treatments rather than relying on generalized clinical
guidelines, providing further benefits in diverse patient populations. Applications of RL
within PM are broad, including surgery, internal medicine, and public health [15,16,44,45].
Furthermore, unlike the one-size-fits-all protocols, RL models continuously refine treatment
strategies based on evolving patient conditions—a closely related phenomenon of DTR.
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Figure 3. Reinforcement learning and its approach to precision medicine.

1.3.2. Introduction to Dynamic Treatment Regime

DTR is closely related to PM. As defined by Chakraborty et al., DTR “consist of a
sequence of decision rules, one per stage of intervention, that dictate how to individualize
treatments to patients based on evolving treatment and covariate history” [46]. These
“regimens” fit within a larger paradigm of PM. More specifically, PM dictates what treat-
ment to provide based on a patient’s state. DTR expands the concept of personalized
medicine to encompass evolving treatment settings, where care is continually adjusted to
align with a patient’s dynamic and time-varying state. This application of RL has strengths
in adapting to disease progression or handling complex and multistep treatments. For
example, in diseases like cancer or chronic conditions, RL can optimize the treatment course
by adjusting pharmacotherapy based on how the disease responds, while also working to
minimize side effects [47,48]. In addition, many healthcare conditions, such as sepsis or
insulin management, require multistep treatments over a period of time [49,50]. RL models
are well equipped to manage this complexity versus conventional modes.

1.4. Current RL Challenges

The biggest challenge when it comes to RL in medicine is parallel to general issues in
RL research: extrapolating to new problems and appropriately maximizing reward. For
many, the “reward” in medicine means enhanced survival, yet that is not the only relevant
endpoint one must consider when designing a treatment plan. Other things one must
consider include tolerability, ease of compliance, cost, and quality of life. RL applications
also need to ensure rewards gained are legitimate and not from hallucinatory “reward
hacking” results, whereby ill-posed reward functions enable rewards to be accumulated
through physically nonsensical means [51].

Thus, a significant challenge for RL moving forward is the definition of reward for
clinical applications, which ultimately may result in outputs that do not necessarily coincide
with those of the patients or those of the clinicians. Even more nuance is brought into this
idea of reward when examining short-term versus long-term outcomes [52]. For example,
“reward” in the short-term can directly contradict long-term reward when examining states
like disease remission. In other words, a treatment that does not yield benefit immediately
may in fact better suit patients when combined with another agent rather than a single
treatment with immediate success [52]. Sequence in treatments matters and these trade-offs
of short-term gain versus long-term success are difficult for RL to overcome, as they are
for clinicians.

Another challenge for all RL is lack of transparency. Such issues run counter to the
general desire for an understanding of the decision-making process in medicine. However,
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as the potential benefits and uses of RL become more widespread within medicine, the
‘nuts and bolts’ of what makes up any individual RL algorithm will inevitably become more
unclear to clinicians, which is another large hurdle facing RL implementation. If a clinician
is unable to say for certain what inputs were used, what reward was being examined at the
highest cost, or what outputs versus traditional treatments were measured, then we must
ask: are clinicians really able to implement such a tool?

A key hurdle that also affects the use of RL in medicine concerns data acquisition
and computation. For many of the rare pathologies that exist, clinicians are limited by the
available patient cases and data. For instance, twenty percent of all cancers diagnosed in
the United States are defined as rare cancers [53]. The question then becomes the following:
are there enough patients to enable an RL algorithm to be made which can enhance clinical
treatment? This may lead many to face the infamous curse of dimensionality, which refers
to the exponential increase in the number of possible actions as the number of features
(degrees of freedom) increases [54]. RL takes a large amount of data to train on and
learn from, raising the computational cost significantly. The worry is that clinicians do
not have the resources to execute such a workflow [54]. Lastly, when considering RL,
the mere reproducibility of the data is an important factor; there are limited benchmarks
available for ensuring reproducibility from an existing RL algorithm. This is due to several
factors, including the intrinsic variance of any individual algorithm, the stochasticity of
the environment, and the dependence on several hyperparameters [55]. This is not to say
that it is impossible to reproduce any given RL algorithm; however, there needs to be
standardized benchmarks by which others can reproduce the RL algorithm.

2. Systematic Review
2.1. Methodology

This systematic review was conducted following the PRISMA (Preferred Reporting
Items for Systematic Reviews and Meta-Analyses) guidelines. A comprehensive literature
review was conducted across several databases, including PubMed, MEDLINE, and Web
of Science. Other bibliographic databases (such as IEEE Xplore and arXiv) were not in-
cluded, as this scope was chosen to focus on the studies that are most relevant to clinical
practice. All publications regarding the applications of RL within dynamic treatment
regime and precision medicine published in the last 10 years (January 2014–December
2024) were identified. The final search strategy for publications within each database was
as follows: (Reinforcement Learning AND (Dynamic Treatment OR Precision Medicine)).
A total of 1594 articles were identified through initial screening, with retrieved references
imported into EndNote for deduplication and screening. Inclusion criteria included pa-
pers only related to the application of RL versus other ML algorithms, uses of RL within
dynamic treatment regimen or precision medicine, articles published within the past 10
years, articles published in English with full-text available, impact and relevance of the
paper, and RL applications within healthcare. Articles were excluded based on not meet-
ing the inclusion criteria, priority focus on other ML algorithms, focus on alternative RL
categories, insufficient data size for algorithm training and validation, and other publi-
cation types, including commentaries, editorials, case reports, systematic reviews, and
meta-analyses. The team utilized three screeners to limit bias and resolve any screening
discrepancies in the literature review and selection. After the assessment of the available
papers, 46 articles were selected for analysis and inclusion within the review (Figure 4).
A summary of excluded full-text studies and reasons for exclusion is provided in the
Supplementary Materials, Table S1.
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Figure 4. PRISMA flow diagram of literature review and article selection.

Data extraction was conducted independently by two reviewers using a predefined
extraction form. The extracted information included article characteristics, study method-
ology and data analysis, medical specialty, ML algorithms used, clinical applications,
outcome measures, and results. For quality assessment, the analysis was completed by two
reviewers. The overall quality of the evidence was evaluated further using the GRADE
(Grading of Recommendations, Assessment, Development, and Evaluation) framework,
represented by Table S2 in the Supplementary Materials. An analysis of the papers was
conducted, including a distribution of the surveyed papers in regard to their category, RL
algorithm, year of publication, and impact. The included papers are further discussed
and highlighted in the review. No quantitative effect measures were calculated. Due to
heterogeneity in outcomes and study designs, a narrative synthesis was conducted. No data
conversions or imputations were required. Study results were summarized narratively and
supported by descriptive figures (Figures 5–7). No statistical meta-analyses, heterogeneity
analyses, or sensitivity analyses were performed due to diversity in study designs, outcome
measures, and study aims. Reporting bias was not formally assessed as no quantitative
synthesis was performed. As such, results regarding reporting bias were not applicable.
This systematic review was retrospectively registered on the Open Science Framework
(OSF) and is publicly available at https://doi.org/10.17605/OSF.IO/8fRJP (accessed on
12 July 2025).

https://doi.org/10.17605/OSF.IO/8fRJP
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Figure 5. Number of papers arranged by reinforcement learning category.

 

Figure 6. Number of papers arranged by reinforcement learning algorithm.

 

Figure 7. Number of papers arranged by specialty.
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2.2. Dynamic Treatment Regime

DTR provides a robust and innovative framework for optimizing patient care by
adapting therapeutic interventions in real time to an individual’s evolving health state. This
approach facilitates the delivery of personalized, multistage treatments designed to address
complex, chronic, or acute conditions with improved outcomes. The dynamic and adaptive
nature of DTR is particularly valuable in medical scenarios where patients experience
fluctuating or progressively deteriorating conditions. By leveraging DTR, clinicians can
fine-tune treatment strategies to align with a patient’s unique and changing needs, offering
a new level of precision in healthcare delivery. This framework has demonstrated its
utility across a variety of fields, from chronic neurodegenerative diseases to acute critical
care settings.

In the field of neurology, DTR has proven particularly impactful for certain diseases
such as Parkinson’s disease (PD), a progressive brain disorder characterized by debil-
itating motor symptoms. Patients with PD often experience transitions between the
so-called ‘ON’ and ‘OFF’ states, where medications, such as dopaminergic agents, are
effective only during the ‘ON’ state. A study conducted by Shuqair et al. highlighted
the potential of reinforcement learning in this domain [56]. The researchers developed
an integrated deep Long Short-Term Memory (LSTM) neural network coupled with mul-
tiple one-class unsupervised classifiers to create an RL-based adaptive classifier. This
system was tested using two datasets of PD patients, enabling the model to accurately
predict periods when medication would be most effective. Such advancements in RL-based
classifiers have the potential to significantly improve the quality of life for PD patients
by personalizing treatment timing to maximize therapeutic efficacy while minimizing
adverse effects.

While neurodegenerative diseases benefit from RL-guided interventions that optimize
medication timing, other conditions and specialties, such as psychiatry, can benefit from
RL. Substance use disorders (SUDs) require adaptive treatment strategies that address
long-term behavioral patterns. SUDs represent chronic and multifactorial conditions
where maintenance of remission and prevention of relapse are critical components of
treatment. Tao et al. introduced a tree-based reinforcement learning (T-RL) method that
employs a recursive, tree-based approach to dynamically adjust treatment decisions over
time [57]. This approach allows the model to consider the evolving behavioral patterns
of individuals, resulting in tailored and effective treatment plans. For instance, T-RL
has demonstrated the ability to adapt to changes in a patient’s behavior, providing more
accurate interventions as the patient progresses through recovery. Another study by Zhao
et al. explored the use of two distinct DTRs, Backward Outcome Weighted Learning
(BOWL) and Simultaneous Outcome Weighted Learning (SOWL) in the context of smoking
cessation [58]. Both approaches utilized multistage personalized treatment frameworks,
enabling tailored interventions based on patient responses over time. When compared to
fixed, non-adaptive strategies, these DTR models showed significantly better outcomes,
highlighting the advantages of using RL to address the complex behavioral dynamics
associated with SUDs. The success of these models underscores the potential of DTR to
transform the management of chronic behavioral health conditions.

In addition to long-term interventions, DTR has also shown promise in fields that
manage acute, life-threatening conditions such as sepsis. Sepsis is a leading cause of
mortality in intensive care units (ICUs) and is characterized by a dysregulated immune
response to infection, leading to life-threatening organ dysfunction. Effective management
of sepsis requires rapid, evidence-based decisions to address the patient’s deteriorating
condition. Bologheanu et al. utilized the Markov Decision Process (MDP), a commonly
used RL framework, to optimize corticosteroid dosing in septic patients [59]. Analyzing
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data from 23,106 ICU admissions, their study revealed that RL-driven optimization of
corticosteroid timing and dosage significantly reduced ICU mortality. Similarly, Zhang
et al. developed a goal-oriented reinforcement learning (GORL) model tailored to the man-
agement of sepsis [60]. This approach addressed two critical challenges in RL applications
for ICU patients: the delayed rewards inherent in sepsis treatment and the complexity of
patient states. This model demonstrated a 10.23% reduction in patient mortality, further
emphasizing the life-saving potential of RL in acute care settings.

Beyond the realm of critical care, DTR has been applied to the field of cardiol-
ogy. One of the most common and life-threatening conditions to manage is coronary
heart disease, a condition that often requires dynamic medication adjustments in re-
sponse to acute hemodynamic changes. Guo et al. explored the use of a supervised RL
LSTM model in 13,762 ICU-admitted patients with coronary heart disease [61]. Their
findings indicated that, while RL alone did not significantly reduce in-hospital mor-
tality, it closely mimicked clinician behavior, suggesting its potential as a supplemen-
tary tool to enhance clinical decision making. This highlights an important considera-
tion in RL applications: while technology may not yet surpass human expertise in all
areas, it can serve as a valuable aid, offering consistency and data-driven insights to
support clinician judgment.

Within the field of oncology, diagnosis of certain cancers requires invasive procedures
that are often costly and require multiple steps afterwards. Given the complexity of
steps within management, developing a strong reinforcement learning model able to
make multistage dynamic decisions is invaluable. Tang et al. developed such a model
that uses tree-based reinforcement learning to identify optimal test-and-treat options for
prostate cancer [62]. Another group attempted to optimize a similar multistep treatment
for head and neck cancer using deep Q-learning [63]. The results showed that, by using
this approach, survival rates increased by 3.73%. The model’s treatment decisions matched
the clinician’s outcome, achieving a mean accuracy of 87.5%. While previous studies
explored multistep treatment modalities, Ebrahimi et al. concentrated on addressing the
challenges posed by a single fluctuating parameter—the need to continuously adjust the
radiation dose during adaptive radiation therapy (ART). ART is a technique that adaptively
adjusts the dose of radiation in response to changes during treatment [64]. Ultimately, their
goal was to develop an RL framework to optimize these adjustment points to lower drug
toxicity and maximize tumor control. The results showed that the new ART treatment plan
outperformed the reference plan.

In the field of endocrinology, specifically diabetes, there remains the challenge of
optimizing insulin and other medications that can affect patients in real time. Since
these treatments are personalized, information might not be readily available for mod-
els to use for each patient. Saghafian et al. proposed a model that extends DTR to
account for ambiguity from unobserved confounders, introducing learning methods
that personalize treatment decisions and demonstrate strong empirical performance [65].
Many reinforcement learning models are trained on retrospective medical records but
often perform poorly in offline settings. Despite these challenges, Nambiar et al. de-
veloped an offline RL approach that demonstrated the effective optimization of real-
world diabetes management while improving consistency with clinical practice and
safety guidelines [66]. Additionally, Luckett et al. developed another model that
uses mobile technologies to estimate an optimal dynamic treatment regime for glu-
cose levels in patients with type 1 diabetes [67]. This technology leverages mobile
tools to allow for outpatient data collection, supporting better control of glucose levels.
The results showed that the proposed method can reduce the number of hyper- and hypo-
glycemic episodes.
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The application of reinforcement learning in various medical specialties, including
gastroenterology (GI), nephrology, and immunology, is gradually increasing. Within
GI, Hu et al. developed REMEDI, a dynamic treatment regime designed to model bile
acid dynamics and optimize therapeutic strategies for patients with primary sclerosing
cholangitis [68]. Similarly, in nephrology, Abebe et al. introduced a reinforcement learning
algorithm that is capable of identifying optimal, multistage, and multi-treatment regimens
for individuals with diabetic kidney disease [69]. Within immunology, Liu et al. proposed
a deep reinforcement learning (DRL) framework aimed at managing and preventing acute
and chronic graft-versus-host disease following transplantation [22]. Although RL-based
research in these specialties remains limited, these fields have substantial potential for
further advancements through RL-driven methodologies.

Lastly, in the general category of medicine, RL learning has provided dynamic treat-
ment through optimizing the electronic health records (EHR). Sun et al. developed TR-
GAN, an offline reinforcement learning model that incorporates real and counterfactual
patient trajectories—sequences of states, treatments, and outcomes over time—to opti-
mize treatment recommendations [70]. By leveraging electronic health record data, the
model inferred patient states at each time point and demonstrated improved treatment
optimization compared to existing offline RL methods. Zhou et al. conducted a study
leveraging free-text clinical information to optimize dynamic treatment regimes, demon-
strating that incorporating unstructured data improves counterfactual outcome estimation
compared to using structured EHR data alone [71]. Their approach resulted in more ac-
curate treatment recommendations, highlighting the value of integrating free-text data
into clinical decision-making models. Another study performed by Wang et al. devel-
oped supervised reinforcement learning with a recurrent neural network that uses an
off-policy actor–critic framework to tackle the intricacies between medication, diseases,
and personalized characteristics [72]. In a broader sense of RL and medicine, many pa-
tients often present with multiple chronic disease states that cannot be addressed in a
singular aspect. Cho et al. developed a reinforcement-learning-based method to opti-
mize dynamic treatment regimes that personalize multistage medical decisions by con-
sidering patient-specific factors and survival probabilities [73]. Their approach, utilizing
generalized random survival forests, enables adaptive treatment strategies that maximize
long-term patient outcomes while addressing challenges such as censoring and variable
treatment timing.

2.3. Precision Medicine

PM offers an innovative approach to enhance healthcare by enabling tailored in-
terventions that align with a patient’s unique health profile. This methodology utilizes
patient-specific data and clinical insights to craft adaptive treatment strategies that optimize
outcomes for chronic and complex conditions. Using RL algorithms, PM can achieve high
levels of customization in therapeutic decision making, addressing the changing needs
of patients with accuracy and efficacy, which enhances both patient outcomes and clini-
cal efficiency. The applications of PM range widely across medical specialties and focus
on tailoring treatment plans to individual patients based on their unique characteristics,
including genetic makeup, environmental factors, and lifestyle.

Diabetes is an ideal target for PM due to its heterogeneity in lifestyle factors, disease
progression, and treatment response. Jafar et al. employed a multi-agent RL algorithm
with single-agent RL to optimize insulin bolus recommendations for patients with type
1 diabetes; this fine-tunes glycemic control after high-fat meals and exercise by adjusting
insulin doses based on patient responses [74]. This approach demonstrated significant
reductions in hypoglycemia and postprandial hyperglycemia by dynamically adjusting
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insulin strategies to more complex metabolic scenarios. Similarly, Zhu et al. utilized a deep
RL algorithm to develop delivery strategies for insulin delivery and dual-hormone (in-
sulin and glucagon) delivery. Both single- and dual-hormone delivery strategies achieved
improved glucose control when compared against a standard basal–bolus therapy with
low-glucose insulin suspension, as measured by percentage time in target range for both
adults and adolescents [75]. In an earlier study, Zhu et al. developed an RL framework
for personalized insulin dosing, demonstrating its effectiveness in improving glycemic
control compared to standard basal–bolus therapy [76]. Their results showed that the
RL-based approach increased the percentage of time within the optimal glucose range
while reducing both hyperglycemic and hypoglycemic events, setting the stage for the
more advanced dual-hormone strategies explored in their later study. Shifrin et al. imple-
mented Markov Decision Processes (MDPs) with an individualized health reward function
that grades blood glucose levels based on patient-specific environmental changes to op-
timize insulin management [77]. This personalized approach improved blood glucose
regulation and demonstrated the potential of reinforcement learning in diabetes care. In
addition, Oh et al. used a deep Q-network framework to optimize treatment strategies
for patients managing both hypertension and type 2 diabetes. The system recommended
treatment regimes ranging from mono to triple therapy, tailored to individual patient
profiles. This showed better outcomes in controlling blood pressure and blood glucose
levels, while minimizing adverse effects and treatment inefficiencies [78]. In addition, Oh
et al. applied Q-learning to personalize antihypertensive regimens in patients with type
2 diabetes and hypertension using South Korean EHR data. The model recommended
mono, dual, or triple therapy based on individualized clinical states and achieved higher
concordance with physician prescriptions and improved blood pressure control compared
to a Markov Decision Process model [17]. Yang et al. developed PrescDRL, a deep RL
model designed to optimize herbal prescription planning for chronic disease treatment.
It achieved a 117% improvement in single-step reward and a 40.5% increase in prescrip-
tion precision compared to radiation methods when evaluated on a sequential diabetes
treatment dataset [79].

In addition to its application with chronic disease management, RL also has appli-
cations within oncology, targeting tailored treatment regimens based on patient-specific
tumor characteristics and clinical disease progression. Lu et al. developed a deep RL
framework for intermittent androgen deprivation therapy in prostate cancer, using a
competition-based model to balance responsive and resistant cells. This method prolonged
time-to-progression and reduced drug dosages compared to standard protocols [80]. East-
man et al. trained a deep double Q-learning agent using average patient parameters
and relative bone marrow density measurements, which allowed the agent to optimize
chemotherapy dosing schedules while minimizing drug toxicity for each patient undergo-
ing chemo [81]. In addition, lung cancer is a prime target for PM due to its variability in
tumor characteristics, progression, and patient-specific risk factors, like smoking history
and genetic predisposition. Wang et al. uses RL-based policies to individualize lung cancer
screening schedules, integrating patient-specific attributes such as nodule size, appear-
ance, and smoking history. These models reduced misdiagnosis, missed diagnoses, and
delayed diagnoses compared to guideline-based protocols, demonstrating RL’s capacity
for tailoring follow-up intervals to individual risk profiles and enhancing diagnostic accu-
racy [82]. Niraula et al. utilized reinforcement learning to optimize daily radiation doses
for non-small-cell lung cancer and hepatocellular carcinoma patients using the Adaptive
Radiotherapy Clinical Decision Support (ARCliDS) system. This model aligned with clini-
cal decisions from physicians in their clinical trial dataset, successfully enhancing favorable
decisions in up to 50% of cases while reducing unfavorable decisions in up to 74% of
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cases, which highlights the ability of RL to refine real-time therapeutic adjustments to
improve patient outcomes [83]. Krakow et al. furthers these findings in a more specific
context: using Q-learning to optimize immunosuppressive therapy sequences for managing
graft-versus-host disease (GVHD) in patients undergoing allogeneic hematopoietic cell
transplantation. Their model identified specific treatments associated with improved
personalized survival outcomes, which further underlies its potential to refine complex
therapeutic strategies [84].

Within critical care, PM addresses highly variable conditions and, by using patient-
specific data, enables tailored interventions such as fluid management, ventilatory support,
and drug dosing. Shirali et al. uses a multi-objective deep Q-learning model to optimize
critical care interventions by leveraging frequently measured biomarker signals with sparse
reward structures. Using ICU data, the model enhanced the relatability of critical care
policies while maintaining focus on primary outcomes like mortality [85]. Likewise, Ma
et al. proposed the Deep Attention Q-Network (DAQN) that integrated historical patient
data and improved treatment recommendations for sepsis and acute hypotension. The
model demonstrated superior outcomes in managing SOFA scores and lactate levels out-
performing alternative methods [86]. Within critical care applications, dialysis treatment
has emerged as a target due to its highly variable nature from patient to patient. Grolleau
et al. validated an RL-based strategy for initiating renal replacement therapy in ICU pa-
tients with severe acute kidney injury, utilizing a policy model that dynamically adjusted
based on patient status and increased hospital-free days [87]. Yang et al. applied partially
observable MDPs to dynamically adjust dry weight in hemodialysis patients, incorporating
real-time patient data to reduce symptoms and improve five-year mortality rates. Elec-
trolyte management in critical care has also benefited from RL innovations [88]. Prasad
et al. used fitted Q-iteration to develop a clinical decision support tool, which reduced
unnecessary electrolyte repletion by learning optimal repletion policies from historical data,
thereby minimizing associated risk [89]. Meanwhile, Weisenthal et al. uses the concept of
relative sparsity within RL to optimize vasopressin administration for ICU patients with
hypotension, improving mean arterial pressure outcomes through a data-driven policy
tailored to patient responses [90]. Feng et al. presented an NIVAI model, an offline RL
approach that dynamically recommends optimal noninvasive ventilation (NIV) switching
policies for individual patients. This model outperformed physician decisions and reduced
mortality rates in high-risk patients by recommending intubation earlier and more often
on average than physicians by using partial oxygen pressure, oxygen flow, and Glasgow
Coma Scale scores [91]. Wu et al. further advanced PM in critical care by developing the
Weighted Dueling Double Deep Q-Network with embedded human expertise, an RL model
designed to enhance sepsis treatment decisions. By incorporating clinician knowledge and
adaptive Q-value weighting, the model achieved a 97.81% survival rate when tested on
the MIMIC-III dataset, outperforming other deep RL approaches [92]. This highlights RL’s
potential to optimize management of sepsis in real time, guaranteeing treatment policies
are aligned with clinical knowledge and data-driven. Gao et al. developed “Dr. Agent”, a
clinical predictive model that mimics the practice of seeking second opinions using two
RL agents: the first focuses on the most recent visit of the patient to assess their current
status, while the other analyzes the entire patient history comprehensively. Dr. Agent
outperformed baseline models when tested on the MIMIC-III database across four tasks,
including in-hospital mortality prediction, acute care phenotype classification, physiologic
decompensation prediction, and length-of-stay forecasting, showing up to a 15% higher
area-under-the-precision-recall curve [93].

The field of cardiology has also embraced RL and is a target for PM with a large range
of applications, including refining anticoagulation and rhythm management therapies.
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Zeng et al. used MDPs to optimize postoperative warfarin anticoagulation, learning
from patient-specific data to maintain therapeutic INR ranges and outperform clinician
practices [94]. Barrett et al. employed tabular Q-learning to enhance rhythm control in
atrial fibrillation for eight specific patient subtypes based on other heart comorbidities,
reducing mortality and achieving superior clinical outcomes, including lower mortality
and longer time-to-event intervals. Innovative RL models have also targeted personalized
warfarin dosing in atrial fibrillation [95]. Petch et al. employed deep Q-learning to optimize
dosing algorithms, achieving better time-in-range for INR targets and reducing adverse
outcomes such as stroke and hemorrhage by tailoring recommendations to individual
patient profiles [96]. Similarly, Zuo et al. utilized RL to enhance anticoagulant treatment
strategies, with policies that reduced ischemic stroke and systemic embolism rates by
aligning treatments to patient-specific risks [97].

Behavioral health and psychiatry are inherently patient- and situation-specific, making
interventions in the field ideal for PM through RL. Piette et al. introduced the “PowerED”
program, which used an RL-based model to optimize counselor time allocation by dy-
namically prioritizing patient needs, resulting in improved opioid misuse scores and
more efficient resource utilization [98]. Kahkoska et al. applied RL trees to analyze data
from the FLEX trial, identifying subgroup-specific optimal treatment rules for adoles-
cents with type 1 diabetes and improving quality of life metrics through individualized
behavioral counseling [99].

2.4. Findings of the Review

Individual study results were summarized narratively. No structured summary tables
with effect sizes were produced, due to variability in study outcomes and lack of uniform
metrics. The findings of the surveyed papers were reported with respect to their type
of RL category, RL algorithm, and type of specialty. Figure 5 depicts the number of
PM and DTR papers in the study. Since 2015, the number of RL publications per year
has been steadily rising, with the largest increase seen in 2020. This indicates the rapid
growth and utilization of RL within medicine. Figure 6 shows the type and number of
RL algorithms used in each study. Hybrid and value-based RL methods were some of the
most-utilized methods, which reflects their ability to optimize sequential decision making
while balancing efficiency, adaptability, and interpretability. This is a result of methods’
capability to learn from sparse rewards, optimize long-term patient outcomes, and provide
actionable insights for real-world medical decision making. The distribution of RL across
different specialties is shown in Figure 7, reflecting the RL algorithm’s diverse applications.
A majority of the studies were implemented in critical care and endocrinology, specifically
diabetes. Both of these fields benefit from structured and continuous data, which allow
RL models, especially PM and DTR, to learn and adapt effectively. Overall, each figure
(Figures 5–7) demonstrates a sharp increase in publications regarding RL in medicine
around 2020–2021. This may have been driven by advancements in computational power,
machine and deep learning integration, and increased adoption within healthcare. The
COVID-19 pandemic may have also accelerated AI-driven decision making, particularly in
critical care where RL models were being used. Moreover, the adoption of personalized and
biometric wearable (such as continuous glucose monitors) have provided continuous and
real-world data. Across, studies, performance was evaluated using both clinical outcomes
(e.g., mortality reduction, glycemic control) and RL-specific metrics (e.g., cumulative
reward, policy concordance). A minority of studies also reported statistical performance
indicators such as AUROC or predication accuracy. This is represented in Table S3 in the
Supplementary Materials. Additionally, we summarized the loss functions used in the
included studies, as shown in Table S3. While several studies did not explicitly report
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their loss function, most used objectives consistent with their RL framework, such as mean
squared error (MSE) for Q-function estimation and temporal difference (TD) error in value
updates. These loss functions were typically designed to optimize cumulative reward
signals relevant to clinical outcomes. Our findings highlight the accelerating adoption of
RL in medicine and the growing need for AI-driven decision making within personalized
medical care.

2.5. Limitations of the Review

This review was conducted using a narrative synthesis approach; thus, no quanti-
tative effect measures were pooled due to heterogeneity in study designs, interventions,
and reported outcomes. While this enabled a broader, qualitative analysis, it limits our
ability to support statistically supported conclusions. In addition, the scope of the sur-
vey was limited to studies indexed in PubMed, MEDLINE, and Web of Science in or-
der to focus on studies that are most relevant to clinical practice. Future reviews could
broaden the scope by including additional databases (IEEE Xplore or arXiv) to better
capture technical developments and preclinical studies in RL. Non-English studies and
unpublished conference proceedings were not included, which may have augmented the
review. Formal assessments of study-level risk of bias and publication bias were also
not performed. These limitations may affect the comprehensiveness and generalizability
of the findings. Future studies should consider incorporating quantitative syntheses to
strengthen evidence-based conclusions. Lastly, the review did not include detailed mathe-
matical formulations of RL algorithms, as the review was aimed at clinicians rather than a
technical audience.

3. Future Directions and Practical Implications
3.1. Developing Research Taxonomy for Clinicians

RL has a wide variety of applications within healthcare, including PM and DTR. More
research and further clinical implementations in the coming years should aid physicians and
the medical field in making clinically relevant decisions. To facilitate this aim, the authors
have developed the taxonomy (Table 2) based on their literature review. This taxonomy is
separated into challenges and benefits as well as the scope of current applications and the
directions of research. In order to develop, implement, and further facilitate appropriate
RL use in medicine, let us examine each component more closely.

Table 2. General taxonomy of reinforcement learning for clinical applications.

Taxonomy of Reinforcement Learning for Clinical Applications

Challenges Benefits

Compute power
Lack of data
Defining rewards
Understandability

Dynamic
Efficient
Data-driven outcomes

Current Applications Directions

Precision medicine
Dynamic treatments
Clinical support
Diagnostic systems
Medical imaging

Intervention delivery optimization
Individual treatment plans
Manage complex disease over time
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3.1.1. Challenges

Challenges exist in both the application of algorithms and in the ability to apply
algorithms. In some of these challenging areas, especially when dealing with a lack of
data, employing advances made in fields such as simulation, could be used to augment
known data [100,101]. Challenges related to model interpretability are further compounded
by physicians’ limited familiarity with algorithmic methods, making clinical adoption
more difficult; the use of explainable artificial intelligence techniques offers a potential
solution to enhance understanding and trust [102]. There are also a few ethical implications
with the integration of RL within medicine. RL models can perpetuate existing biases
if trained on imbalanced or unrepresentative data, potentially resulting in inequitable
clinical recommendations. Furthermore, the limited explainability of RL algorithms may
also lead to opaque recommendations that lack clinical transparency. Ongoing validation
and bias mitigation strategies will be essential to combat this. Lastly, over-reliance on
automated decisions can introduce risk if the models are poorly generalized or if the reward
function is inadequately defined. As such, these models should augment clinical judgment,
not replace it. Therefore, a variety of research questions remain in this area, including
the following:

• How can RL methods gain trust for clinician use?
• How can the RL and clinical community better communicate to develop problems of

interest and a common lexicon?
• How can clinicians be better educated in algorithms?
• How can research on data augmentation and advanced experimental designs facilitate

the use of RL on rare diseases?
• How is RL being applied within clinical decision making and healthcare settings to

optimize both quality care and patient safety?

3.1.2. Benefits

Many of the potential benefits are directly related to challenges, e.g., benefits from
data-driven outcomes are hampered by a lack of data. Moreover, physicians often rely on
clinical skills based on the experience of seeing other patients with a particular condition
rather than a specific algorithm. Moving to data-driven medicine provides efficient and
dynamic use of data and benefits from using data from a single patient or from multiple
patients. A variety of research questions remain in this area, such as the following:

• How can RL benefits be best illustrated and presented to clinicians?
• What metrics and assessment are best suited to enable RL benefits to be provided with

minimal harm?
• How can a move toward data-driven patient outcome be best facilitated and welcomed?

3.1.3. Current Applications

The authors largely reviewed the breadth and depth of current applications of RL
for medicine in Section 3. However, due to the highly interdisciplinary nature of RL in
medicine, the entire scope of current applications might be unknown whereby medical
challenge problems are solved in a variety of domains without direct medical collaboration.
Thus, research questions in this area include the following:

• What applications are not captured in PubMed due to their interdisciplinary nature
and publication in other domains?

• How can challenges posed by medicine-related RL reach medical audiences effectively?
• Can better constructed interdisciplinary teams ensure that medical applications of RL

are adequately solved for potential clinical adoption?
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3.1.4. Directions

Finally, understanding the direction of RL algorithmic research and having means to
rapidly assess algorithms on relevant problems as demonstrated in is key to expanding
the use of RL [23,24,29]. Interest in the early exposure to the field of AI and RL in medical
school also facilitates its understanding and use [103–105]. A variety of research questions
remain in this area:

• What are the current research directions in RL that are most applicable to clinical problems?
• What clinical problems should be extended for RL solutions as challenge problems?
• What is needed to best assess RL solutions to clinical problems?

3.2. Practical Implications for Clinicians

The rise of digital medicine, bioinformatics, big data, and AI (and its subset, ML) forms
a catalyst for the transformation of healthcare. These modalities can improve, modify, and
accelerate new discoveries and health outcomes [106,107]. Real-time implementation of RL
in clinical settings requires integration with live data sources such as EHR as well as the
ability to generate rapid and reliable decisions. Achieving this will depend on developing
safe, interpretable, and computationally efficient models that can operate within clinical
workflows. Several studies included in this review explored such implementation strate-
gies, including offline RL training and EHR-integrated decision support tools [40,66,71].
While there is strong evidence that AI and related technologies will be useful, the greatest
challenge to AI in the healthcare domain is ensuring its adoption within clinical practice.
For widespread integration to occur, there must be approval from regulators, adoption
from administrators, incorporation within the electronic health records, standardization
within protocols and medical applications, and funding. Furthermore, it will ultimately
require not only buy-in from physicians but also successful education of how to utilize the
AI modality and subsequent integration within their clinical practice [104,108]. As prior
technological advancements have shown, these challenges will eventually be overcome,
but likely at a slower rate than the evolution of the technology themselves. Importantly, it
is clear that AI will augment healthcare and propel its evolution, as opposed to replacing
human clinicians. In the future, this will allow humans more time for data analysis versus
data entry, and ultimately transform our scope of practice to prioritize human skills, in-
cluding empathy, motivation, strategic overview, and overall perspective [109]. In order
for clinicians to understand and apply RL in medicine, there is a need to comprehend its
basics, potential applications, benefits, and challenges. As previously discussed, we have
reviewed the basics of ML (including RL), highlighted its applications within PM and DTR,
and developed a taxonomy to provide a structure for clinicians to start to understand and
implement RL. Importantly, it is critical to understand RL’s weaknesses and strengths to
effectively integrate one’s practice with it. Therefore, as we have detailed in Table 3, we
have compiled a concise list of the practice know-hows clinicians should be cognizant of. It
is our hope that clinicians can use these frameworks to begin their own transformation of
understanding and utilizing AI. Lastly, cognizance of future avenues is advantageous for
clinicians to anticipate how RL may evolve in tandem with other technologies. For exam-
ple, hybrid approaches that combine RL with emerging deep learning architectures, such
as vision transformers (ViT) and large multimodal models, have demonstrated superior
performance in pattern recognition and representation learning compared to traditional
models [110]. These architectures could enhance RL’s ability to interpret complex clinical
data and support more-informed decisions.
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Table 3. RL aspects and practical know-hows for clinicians.

Aspect Practical Know-How

RL Basics RL learns through interactions by using rewards and penalties to optimize
decisions.

Data Familiarity Know the importance of high-quality data and how RL uses
patient-specific variables for PM.

Integrations RL offers real-time recommendations. Use clinical judgment to interpret
and validate suggestions.

Table 3. Cont.

Aspect Practical Know-How

Patient Safety
and Ethics

Prioritize patient safety by ensuring treatments guided by RL are safe.
Ensure transparency in the RL application to encourage patient trust and
shared decision making.

Limitations
Be aware of data limitations and biases in RL models, including the risk of
overfitting. Critically evaluate model performance across diverse and
heterogeneous patient populations.

Collaborations
Work with administrators, regulators, and data scientists to align the RL
models with clinical priorities, ensuring patient safety, health outcomes,
ethical considerations, and regulatory compliance.

Training and
Education

Engage in continuous education to learn AI/ML concepts and develop
critical evaluation skills to assess RL models in clinical practice.

4. Conclusions
RL faces many challenges in its progress toward implementation. However, the

potential advantages of RL as an enabler of PM are incredible. To facilitate the appropriate
and wider use of RL in clinical settings, the authors first reviewed RL, its trends and
current applications in medicine. From this, the paper develops a taxonomy of RL use in
medicine and poses further research questions that can improve the use of RL for clinical
applications in both outpatient and inpatient practices. The most notable challenge facing
implementation of RL is the lack of clear standards in what the algorithm should value
as its reward. To that effect, it is up to clinicians and patients to determine and build
appropriate RL algorithms to reflect their own goals. Likewise, these RL algorithms need
to be transparent to the point clinicians are able to decipher the inputs that went into
building them and the way the particular RL defines reward. The applications that lead
to the implementation of RL need to be easy to use by physicians at any level of training
from a novice physician that lacks an understanding of RL to an already overburdened
physician. Inevitably, technological problems such as limited computational power and lack
of data availability for many pathologies will be overcome in time. Lastly, for clinicians,
the implementation of RL within the clinical setting is rapidly expanding. RL’s ability
to learn from real-time patient data and optimize dynamic treatment plans make it a
powerful and auspicious paradigm for strengthening personalized medicine. By ceaselessly
adapting to a patient’s treatment response, RL can propel more effective and precise
healthcare interventions that optimize outcomes while minimizing risks and side effects.
This approach of utilizing RL to enhance PM and DTR represents a needed shift from static
treatment protocols to dynamic and personalized strategies that evolve with the patient’s
condition. The application of RL and other ML strategies within healthcare may ultimately
be the catalyst in the next evolution of medicine—a paradigm that effectively utilizes big
data to augment patient care.
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