
Research Article
Machine Learning-Based MRI LAVA Dynamic Enhanced
Scanning for the Diagnosis of Hilar Lesions

Haijin Wang ,1,2 Song Wang ,3 and Lihua Zhou 1

1School of Nursing, Anhui Medical University, Hefei, China 230032
2Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
230022
3Medical imaging center, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China 230002

Correspondence should be addressed to Lihua Zhou; 531879548@qq.com

Received 30 November 2021; Revised 3 January 2022; Accepted 26 January 2022; Published 24 February 2022

Academic Editor: Kelvin Wong

Copyright © 2022 Haijin Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Objective. To explore the value of machine learning-based magnetic resonance imaging (MRI) liver acceleration volume
acquisition (LAVA) dynamic enhanced scanning for diagnosing hilar lesions. Methods. A total of 90 patients with hilar lesions
and 130 patients without hilar lesions who underwent multiphase dynamic enhanced MRI LAVA were retrospectively selected
as the study subjects. The 10-fold crossover method was used to establish the data set, 7/10 (154 cases) data were used to
establish the training set, and 3/10 (66 cases) data were used to establish the validation set to verify the model. The region of
interest was extracted from MRI images using radiomics, and the hilar lesion model was constructed based on a convolutional
neural network. Results. There were significant differences in respiration and pulse frequency between patients with hilar
lesions and without hilar lesions (P<0.05). The subjective scores of the images in the first three phases of dynamic enhanced
scanning in the training set were higher than those in the validation set (P < 0:05). There was no significant difference between
the training and validation set in the last three phases of dynamic enhanced scanning. Conclusion. Machine learn-based MRI
LAVA dynamic enhanced scanning for diagnosing hilar lesions has high diagnostic efficiency and can be used as an auxiliary
diagnostic method.

1. Introduction

Magnetic resonance imaging (MRI) has been widely used in
clinical diagnosis because of its safety, no radiation, high soft
tissue resolution, multidirectional, and multiparameter [1].
The anatomical structure of the hilar region is complex,
and the incidence rate is high. Therefore, MRI has irreplace-
able advantages as an essential method to check hilar lesions
[2]. Liver acceleration volume acquisition (LAVA), as a new
MRI imaging technology with high time resolution, can
obtain images at different times. The dynamic enhancement
features of lesions can be displayed in more frequent
sequences, often used in dynamic enhancement imaging.
However, this sequence is greatly influenced by the patients’
respiratory movement, which largely determines the quality
of MRI [3].

Hilar lesions need to consider the anatomical location,
scope, and relationship with peripheral blood vessels of the
tumor [4]. Therefore, it is essential to obtain clear and
high-quality images of hilar hepatic without artifacts. Radio-
mics is a noninvasive method for identifying quantitative
imaging indicators to predict critical clinical outcomes [5,
6]. This technology combines imaging and machine learning
to extract high-throughput quantitative features from clini-
cal images [7]. In recent years, studies have shown that con-
volutional neural network (CNN) machine learning based
on deep learning architecture can automatically perform
image classification by providing supervised input-output
data [8–11]. However, there are few reports about applying
this model in the imaging examination of hilar lesions.

The purpose of this study was to explore the value of
machine learning-based MRI LAVA dynamic enhanced
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scanning for the diagnosis of hilar lesions to provide clini-
cians with an auxiliary diagnostic method for hilar lesions.

2. Materials and Methods

2.1. General Information. A random sampling method was
used to select 90 patients with hilar lesions clinically found
from July 2019 to October 2019 who underwent multiphase
dynamic enhanced MRI LAVA examination. In addition,
130 patients without hilar lesions who underwent this exam-
ination were selected.

Inclusion criteria are as follows: (1) Patients had no con-
traindications for MRI examination, and all underwent mul-
tiphase LAVA dynamic enhanced scanning for the first time.
(2) Patients can cooperate with examination, with no mental
diseases. (3) Before the examination, all patients were truth-
fully informed about the content of this study, obtained and
signed informed consent.

Exclusion criteria are as follows: (1) patients allergic to
contrast agents; (2) patients with underlying severe diseases;
(3) patients with vague mental consciousness and lack of
cognitive ability; and (4) patients having a cardiac pace-
maker or metal implant.

A 10-fold crossover method was used to establish a data
set for all 220 patients. 7/10 data (n = 154 cases) established a
training set, including 82 males and 72 females, aged 19-81
years, with an average of (51:5 ± 14:9) years. A validation
set was established in 3/10 data (n = 66 cases), including 36
males and 30 females, aged 18-81 years, with an average of
(52:0 ± 16:6) years. Then, the machine learning model was
constructed, and its performance was evaluated. The model-
ing flow chart is shown in Figure 1.

2.2. Scanning Method. The images were obtained in the GE
Signa HDx 3.0 T MRI system, body phased-array surface
coil. The scanning sequence included axial T1WI, axial iso
phase inversion, coronal T2WI, axial fat compression
T2WI, DWI (b = 800 s/mm2), magnetic resonance cholangi-
ography (MRCP), and LAVA multiphase dynamic enhance-
ment sequence. The scanning process is as follows: After
plain scanning, 0.1mmol/kg (gadolinium spray meglumine,
GD-DTPA) was injected through the cubital vein mass at a
flow rate of 2.0mL/s, followed by injection of 20mL normal
saline, and dynamic scanning was performed in six phases
(phase A1-A6). 10 s after the contrast agent injection, the
patients were instructed to hold their breath for about 15-
20 s for stage A1 scan. After each scan, patients were
instructed to take a deep breath, followed by stage a2-a5 scan
at 55, 90, 120, 180, 240, and 360 s. The holding time for each
phase was 15-20 s.

2.3. MRI Interception. After preprocessing the experimental
images, the image was segmented into regions of interest
(ROI). The tumor was separated from other tissues by a cir-
cle corresponding to the size of the hilar tumor to calibrate
the tumor region. The ROI images were collected using
radiomics (Figure 2).

2.4. Data Collection. Typical CNN consists of a convolution
layer and pooling layer. The basic structure of the convolu-
tional neural network is shown in Figure 3. The convolution
layer can directly conduct convolution operations with two-
dimensional data, read images, and identify their features.
As the core of CNN, the convolution layer is used to extract
the features of input data. The convolution layer extracts
local information from the data sampled regularly, and each
convolution layer is composed of multiple filters. After the
convolution, an activation graph describing the existing
degree of features in the data is generated [12]. In general,
the output of the JTH filter in the one-dimensional convolu-
tion layer is

xlj = ReLU 〠
i∈D

xl−1i ∗wl
ij + blj

 !
ð1Þ

In machine learning, regularization is used to train set
observations to prevent overfitting. For the cost function Jð
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Figure 1: Modeling flow chart.

Figure 2: Capture of hilar region of interest for MRI.
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Figure 3: Schematic diagram of convolutional neural network.
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Figure 4: General data comparison of patients in training and test sets. There were no significant differences in gender (a), proportion of
hilar lesions (b), and age (c) between the training set and the validation set (P > 0:05).
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θ ; X, yÞ, with grid parameter θ, the function correspond-
ing to the J-th layer of the training set is

Ĵ θ ; x, yð Þ = J θ ; x, yð Þ + λ1 wk k1 + wk k2: ð2Þ

2.5. Evaluation Index. The image quality of the training set
and validation set was graded by two attending physicians.
The dynamic enhanced scan’s six-phase images (phases
A1-A6) were evaluated separately as follows: 1 point: the
image was clear and without any motion artifact; 2 points:
the image is clear, with a few motion artifacts; 3 points: there
are certain motion artifacts, the image is still clear, the
lesions can be displayed, and their enhancement features
are not affected; 4 points: the motion artifact was obvious,
the image was not clear, and the lesion could be displayed

to a certain extent, but it had a great influence on the diag-
nosis; 5 points: the motion artifact was significant, the image
was not clear, and could not be used for diagnosis.

2.6. Statistical Analysis. SPSS 20.0 statistical software was
used to analyze and process relevant data. Independent sam-
ple t-test was used for measurement data comparison, and
an independent sample nonparametric statistical Mann–
Whitney rank-sum test was used for image scoring. P <
0:05 was considered statistically significant.

3. Results

3.1. General Conditions. There were no significant differ-
ences between the training set and the validation set in gen-
der, age, and proportion of hilar lesions (P > 0:05), as shown
in Figure 4. There were significant differences in respiration
and pulse frequency between these two sets (P < 0:05,
Table 1).

3.2. Image Quality Score. Patients with good breath-holding
coordination during dynamic enhanced scan showed clear,
dynamic enhancement characteristics of hilar lesions and
liver parenchyma, which could meet the diagnostic require-
ments (Figure 5). For patients with poor breath-holding
coordination, the image artifacts were heavier or even

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5: MRI LAVA dynamic enhanced scanning showed clear hilar features. A 72-year-old female patient presented with hilar infiltrating
cholangiocarcinoma. The patient had good breath-holding coordination, clear images at all stages, and no noticeable respiratory artifacts.
Plain scan showed irregular thickening of the bile duct wall (a), MRCP image showed significant dilation of the intrahepatic bile duct
(b), and images of LAVA dynamic enhancement showed irregular thickening of the hilar bile duct wall with “progressive enhancement”
(c–h, arrow).

Table 1: The respiratory and pulse scores of patients with hilar
lesions in two set.

Group n Respiration (times/min) Pulse (times/min)

Training set 63 18:56 ± 1:37 76:89 ± 6:12
Verification set 27 19:53 ± 1:59 81:42 ± 6:95
t value 2.932 3.089

P value 0.004 0.003
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completely deformed, which could not meet the diagnostic
needs (Figure 6). The image data in the training set were
integrated into the CNN model to obtain the scoring results
of important features (Table 2). The number of image cases
with 1 score and the image quality in first three stages (A1-
A3) was statistically significant (P < 0:05). The number of
image cases and the image quality in last three stages (A4-
A6) were not statistically significant (P > 0:05).

4. Discussion

Hilar lesions are a widespread disease, especially cholangio-
carcinoma [13]. At present, dynamic enhanced sequence
MRI LAVA is the best imaging method for diagnosing and
differential hilar lesions [14]. By obtaining dynamic
enhanced multiphase images, more accurate information
about blood perfusion of hilar lesions can be provided. Since
most patients have different degrees of anxiety, anxiety infe-
riority complex, and other corresponding negative emotions,
a 3.0T MRI abdominal scan is performed in a dark and
closed environment. In addition, patients must be coordi-
nated with regular breath and breath-holding during the
dynamic enhanced scan, and the whole examination process
takes a long time and is difficult to coordinate. These nega-
tive emotions will affect the coordination degree of patients’
examination and the accuracy of scanning site structure

image and lead to various uncomfortable symptoms such
as dizziness, palpitation, and nausea. Eventually, the diagno-
sis and treatment effect is not good [15]. Therefore, there is
still a specific risk of misdiagnosis in the traditional diagnos-
tic methods.

Radiomics based on machine learning can build models
according to the information provided by the training sets
and then predict the input sample information. In recent
years, radiomics has been widely used in diagnosing brain
dysfunction and lung cancer by MRI [16, 17]. Combining
radiomics with disease imaging can mine the underlying

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 6: MRI LAVA dynamic enhanced scanning showed unclear hilar features. A 53-year-old female patient with hilar cholangitis had
poor breath-holding coordination, and some phase images were not clearly displayed due to the presence of respiratory artifacts. Scan
and T2WI coronary (a and b), no obvious abnormal changes; LAVA dynamic enhanced early periods image quality display fair, no
obvious respiratory motion artifact (c–h); hepatic portal vein in the bile duct wall thickening of mild change, late to enhance image has
the obvious respiratory motion artifact, hepatic portal vein display is not clear, cannot be used for diagnosis.

Table 2: Image quality score of patients with hilar lesions in two
sets.

Phase
Training set (n = 63) Verification set

(n = 27) P value
1 2 3 4 5 1 2 3 4 5

A1 61 2 0 0 0 18 8 1 0 0 <0.001
A2 58 5 0 0 0 20 5 2 0 0 0.026

A3 60 3 0 0 0 19 7 1 0 0 0.004

A4 40 22 1 0 0 17 7 2 0 1 0.193

A5 37 19 5 0 2 18 5 2 0 2 0.588

A6 32 20 7 1 3 12 9 2 2 2 0.629
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information of related images, which can be applied to indi-
vidual diagnosis and prognosis assessment [18]. This study
showed that the respiratory and pulse scores of patients in
the training group with hilar lesions were lower than those
in the without hilar lesions group (P < 0:05), which indicates
that the machine learning model has better prediction reli-
ability and is effective in improving diagnostic efficiency.
Our results are similar to previous studies [19]. Liu et al.
assisted in the preoperative classification of HCC based on
MRI radiomics. They found that the radiomics model based
on unsupervised learning descent mode had a good predic-
tive performance in the identification of pathological classi-
fication [20]. Zhang et al. established a model based on
machine learning to intercept the region of interest of pri-
mary liver cancer tumors in CT images. Their results
showed that the features of high-throughput images could
be effectively extracted, and the prediction model had good
identification efficiency in different pathological types [21].

As one of the essential factors for the success of MRI
LAVA dynamic enhancement, respiratory coordination deter-
mines the length of examination to a certain extent and deter-
mines the quality of diagnostic images [22]. However, in a
convolutional neural network based on deep learning architec-
ture, many high-dimensional and quantitative image features
are extracted fromMRI images at high throughput for analysis
[23, 24]. The results show that the image quality of the training
set is better than that of the verification set in the first three
phases (A1-A3 phase), which indicates that the model can
effectively extract practical features, verify the validity of the
model, and improve the image quality. The image quality of
the last three phases (A4-A6) did not improve. The possible
reasons are analyzed as follows: (1) Due to the experimental
scanning method of end-expiratory breath-holding, patients
are more prone to involuntary movement in the late stage of
breath-holding with the extension of breath-holding time. In
addition, the total time of the six dynamic scans was longer
than that of the available scans, which would significantly
increase the possibility of motion artifacts in the later stage
of breath-holding. (2) The imaging time of each phase of the
LAVA dynamic enhancement scan sequence is shorter, so
the influence of patients’ respiratory movement on the LAVA
dynamic enhancement sequence is more significant than that
of the conventional sequence. In general, machine learning-
based MRI LAVA dynamic enhanced scanning has good pre-
dictive efficacy in MRI diagnosis of hilar lesions.

There are some limitations to our study. Machine learn-
ing needs to extract feature parameters from images during
classification and recognition and then carry out targeted
analysis, which may miss some critical information and
reduce the model’s accuracy [25, 26]. In addition, the sample
of this study was a single-center retrospective study, which
needs further verification in the prospective study of a large
multicenter sample.

5. Conclusion

In conclusion, machine learning-based MRI LAVA dynamic
enhanced scanning in this study has stable and reliable results
of LAVA dynamic enhancement examination for patients

with hilar lesions. The imaging quality has been improved,
providing an auxiliary means for clinicians to diagnose.
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