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Abstract: Despite various advantages, opioid peptides have been limited in their therapeutic uses
due to the main drawbacks in metabolic stability, blood-brain barrier permeability, and bioavailability.
Therefore, extensive studies have focused on overcoming the problems and optimizing the therapeutic
potential. Currently, numerous peptide-based drugs are being marketed thanks to new synthetic
strategies for optimizing metabolism and alternative routes of administration. This tutorial review
briefly introduces the history and role of natural opioid peptides and highlights the key findings
on their structure-activity relationships for the opioid receptors. It discusses details on opioid
peptidomimetics applied to develop therapeutic candidates for the treatment of pain from the
pharmacological and structural points of view. The main focus is the current status of various
mimetic tools and the successful applications summarized in tables and figures.

Keywords: opioid receptors; analgesic drugs; bioavailability; peptidomimetic; peptide backbone
modifications; locally constrained peptides

1. Introduction

Peptidomimetics are synthetically altered peptides with adjusted molecular properties
for specific biological or therapeutic applications and have been an important class of drug
molecules due to their potential features, high potency, and low toxicity since the term was
created first in the late 1970s [1]. Although endogenous opioid peptides such as endorphin
(END), enkephalins (ENKs), and dynorphins (DYNs) play various complex roles in the
body, they have been shown to have a key role in regulating pathological states of pain
as well as in multiple behavioral processes: addiction, reward, sedation, and depression.
Their activities in the central nervous system (CNS) have been of particular interest for the
treatment of pain, considering the centrally mediated actions of the pain process. Despite
their critical roles, the endogenous peptides have limited clinical use due to their lack of
drug-like properties: low metabolic stability, poor bioavailability, and low blood-brain
barrier (BBB) permeability [2].

To overcome the intrinsic disadvantages and to optimize the therapeutic potential,
various strategies have been applied to the design of novel opioid peptidomimetics through
in-depth structural analyses and structure–activity relationships (SAR) studies while main-
taining key structural features responsible for the biological activity. These, in general,
include deletion, addition and/or replacement of certain natural amino acids with non-
natural amino acids, and introduction of steric constraints into flexible peptide bonds,
which resulted in the discovery of various new opioid peptidomimetic structures with
enhanced efficacy and therapeutic potentials.

This article reviews the current development of opioid peptidomimetics from the
pharmacological and chemical points of view, which aims toward the development of
opioid peptide-derived therapeutics for the treatment of pain. It includes typical mimetic
strategies of which the representative molecules with drug-like agonist or antagonist
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activity are selected and discussed. Emphasis is given to the relatively short length (up to
around ten residues) of structures with high receptor selectivity and potency or unique
biological profile.

In the following second chapter of this review, opioid receptors and natural pep-
tides are described together with a brief introduction about the discovery and progress.
The third chapter covers pharmacological and chemical structural aspects of opioid pep-
tidomimetics. In the former part, pharmacological efforts aimed at developing molecules
with enhanced biological activity, receptor selectivity, metabolic stability, BBB permeability,
and oral bioavailability are discussed together with successful examples. In the latter part,
chemical aspects of opioid peptidomimetics are discussed based on various structural
approaches and representative molecules. Starting with the introduction of the well-known
“message–address” concept for the opioid receptor-peptide interactions, the part discusses
opioid peptidomimetics at MOR, DOR, and KOR for which the relationships to natural
peptide scaffolds and activities have been established. The part also outlines useful tools for
the opioid peptidomimetic design: local modifications, global restrictions, and secondary
structure mimetics. These include the cyclization, N/C-terminal modifications, peptide
linking, local backbone modifications, simple non-natural amino acid replacements, etc.
Successful cases are discussed in detail, sometimes with failed ones that are worth intro-
ducing. Finally, it details prospective aspects of opioid peptidomimetics as therapeutics
aiming to inspire future research.

2. Opioid Receptors and Natural Opioid Peptides

Opioid receptors which belong to G-protein coupled receptors are known to be in-
volved in pain modulation, numerous physiological functions, and behavioral effects and
are characterized in three subtypes, mu- (MOR), delta- (DOR), and kappa-opioid receptor
(KOR) with overall 60–65% high structural homology [3]. The extracellular region has much
lower homology, and the differences in the region are responsible for the subtype-selectivity
of endogenous opioid peptides [4]. There are three main families of the endogenous opioid
peptides, END, ENK, and DYN, which are derived from three different precursor proteins,
pro-ENK, pro-DYN, and pro-opiomelanocortin, and prefer to bind at the MOR, DOR, and
KOR, respectively, with low selectivity but strong analgesic effects in vivo with milder
side effects, unlike morphine [3]. Regardless of the receptor selectivity, all of the endoge-
nous opioid peptides share the same N-terminal tetrapeptide sequence (YGGF) that acts
as the message part for the receptor, while their C-terminal acts as the address part for
selectivity (Table 1).

Since their discovery, endogenous peptides, mostly smaller peptides, have been stud-
ied extensively to discover a safe analgesic with minimal alkaloid opioid-related adverse
effects. Although END was found to be the most potent analgesic due to high MOR selec-
tivity, fewer studies have been done due to the relatively larger size [5]. A SAR study of
END showed that DAla substitution at position 2 did not change metabolic stability and
biological activity, contrary to the ENK analogs that enhanced the stability and activity [6].

ENKs that are slightly selective for DOR over MOR have been selected as a good scaffold
to modify for druggable molecules due to the small size, lower toxicity, and lack of MOR-
caused adverse effects. Activation of DOR with an agonist is not strongly analgesic, like
that of MOR, but seems to cause less addictive and relatively fewer severe side effects [7–9].
C2,5[DPen2, DPen5]-ENK (DPDPE), [DAla2, DLeu5]-ENK (DADLE), and [DSer2, DLeu5]-ENK
(DSLET) are representative molecules modified from the ENK structure showing enhanced
selectivity and affinity with full agonist activity for the DOR [10–12]. Interestingly, [DAla2,
NMePhe4, Gly-ol5]-ENK (DAMGO) is a highly selective MOR agonist derived from ENK
structure as well [13].
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Table 1. Natural opioid peptides and their selectivities for the opioid receptors.

Peptides Structure Selectivity

β-Endorphin (END) YGGFMTSEKSQTPLVTLFKNAIIKNAYKKGE MOR > DOR

Enkephalins (ENKs)

YGGFL DOR > MOR

YGGFM DOR > MOR

YGGFMRF MOR > DOR > KOR

YGGFMRGL MOR > DOR > KOR

Dynorphin (DYN) A YGGFLRRIRPKLKWDNQ KOR > MOR > DOR

DYN B YGGFLRRQFKVVT KOR > MOR > DOR

Endomorphin (EM)-1 YPWF-NH2 MOR

EM-2 YPFF-NH2 MOR

Dermorphines (DERs)

YaFGYPS-NH2 MOR

YaFGYPK MOR

YaFWYPN MOR

Deltorphine (DLT) A YmFHLMD-NH2 DOR

DLT-1 YaFDVVG-NH2 DOR

DLT-2 YaFEVVG-NH2 DOR

DYNs that are formed by cleavage of the precursor prodynorphin contain a high
proportion of basic amino acids and exert their analgesic effects primarily through the
KOR with slight selectivity over the other subtypes. Activation of the DYN A/KOR system
produces similar actions to other opioids but also opposite ones to those of MOR [14]. The
KOR appears to be involved in reward, mood state, and cognitive function in the CNS,
and its inhibition by an antagonist has recently drawn more attention as a therapeutic
target for the treatment of stress-related mood disorders, drug-seeking, and relapse [14–18].
Nonetheless, KOR agonists are still useful if the activity is localized in the peripheral
region due to the potential to avoid serious central side effect, dysphoria. The selectivity of
DYN for the KOR is known to come from C-terminal region including Arg6 to Lys11, and
DYN A-(1-11) is identified as a short fragment that retains similar KOR agonist activity
to that of DYN A [19]. Its further modifications led to the development of potent and
selective KOR agonists (ex. N-benzyl[DPro10]-Dyn A-(1-11)) as well as antagonists (ex.
N-benzyl-c5,8[DAsp5, Dap8]-DYN A-(1-11)-NH2 (Zyklophin)) [18,20].

Endomorphin (EM)-1 and -2, which are structurally distinct, are atypical endogenous
opioid peptides consisting of more constrained amino acid residues (Pro-Trp and Pro-
Phe, respectively) in the middle positions and showing higher MOR selectivity over DOR
and KOR [21–23]. These endogenous peptides are localized in the CNS associated with
pain mechanism and in the ending of sensory neurons, and their interactions with the
opioid receptors produce clinically effective analgesia, which seems to be dissociated by
rewarding, and respiratory depression [23–25]. However, their low ability to penetrate
the BBB and low metabolic stability prohibit therapeutic uses as analgesics, and therefore
significant efforts have been made to improve metabolic stability and to obtain longer
lasting antinociceptive effects through various modifications [26,27]. Cyclic EM-1 analogs
such as ZH853 (Tyr-c[DLys-Trp-Phe-Glu]-Gly-NH2) are recent discoveries showing longer
duration of action and effective antinociception in multiple pain models with reduced
adverse side effects [28–30].

Other naturally occurring peptides are dermorphines (DERs) and deltorphins (DLTs),
which are isolated from frog skin and milk peptides and are the most selective for MOR
and DOR, respectively [31,32]. The amino acid sequences of these two peptides are quite
different from the other endogenous opioids and have been extensively used as a starting
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point for the development of highly selective opioid peptidomimetics. The N-terminal
tetrapeptide of DERs, YaFG, is a minimum structure for the MOR activity and its modified
analog, [DArg2, Lys4]-DER (DALDA), is a highly selective MOR agonist but has a limit
in crossing the BBB because of multiple positive charges [33]. DLTs are the most selective
naturally occurring opioid peptide with a high affinity and potency for the DOR as well as
a high BBB penetration rate [34].

3. Peptidomimetics for Opioid Receptors
3.1. Pharmacological Aspect
3.1.1. Improving Bioactivity, Specificity, and Selectivity for the Opioid Receptors

Structural homology and the natural flexibility of endogenous linear opioid peptides
limit their uses for a specific subtype receptor because of the possible interactions with more
than one subtype receptors and drastic SAR results caused by subtle structural change. For
this reason, selectivity, mostly between MOR and DOR, has been a major problem for the
linear opioid peptides, and tremendous efforts have been made to reduce their structural
flexibility and thereby enhance the subtype selectivity and potency. Incorporation of a
constrained amino acid, configurational change from L to D, and cyclization of a backbone
have been the most useful tool to achieve high selectivity and specificity. Figure 1 displays
highly selective opioid peptidomimetics derived from ENK and DYN A for respective
subtypes with high potency. DAMGO is a potent and selective MOR agonist to be rendered
by introducing an N-methyl group into ENK to reduce rotational freedom around the
peptide bond (ϕ/ψ constraint) [13]. Its crystal structure bound to the MOR showed a very
similar pose in the binding pocket to those of other small molecule morphinans [35]. DPDPE
is the most successful example of cyclization through a disulfide bond that constrains the
ENK to an active conformation state for the DOR and has been used the most for scientific
purposes [36,37]. It is noteworthy that both selective molecules have originated from
less selective ENK. [DAla3]-DYN A-(1-11)-NH2 is a highly selective KOR agonist with a
similar affinity to DYN A-(1-11)-NH2 showing how simple substitution can affect receptor
selectivity drastically [38].
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Figure 1. Subtype selective opioid peptidomimetics developed from endogenous opioid peptides.

3.1.2. Transforming Bioactivity from Agonism to Antagonism

While opioid agonists are used for pain relief, antagonists are also substantial in
preventing or reversing the opioid agonist effects and intoxication as well as in pharma-
cological studies to investigate any endogenous opioid regulation. However, there is no
opioid antagonist that naturally occurs, and currently available ones have been developed
from opioid agonists by structural modifications. In general, agonist versus antagonist
behavior of opioid peptides depends on very subtle structural differences, as shown in
many cases [3,39,40].
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The most effective and generalized structural modification for the conversion into an
antagonist is the deletion of an Nα-amino group or its replacement with the other groups
such as allyl and hydroxybenzyl [39,41,42]. These modifications similarly affect the three
subtypes receptors. Substitution of Tyr1 with 3-(2,6-dimethyl-4-hydroxyphenyl)propanoic
acid (Dhp) or (2S)-2-methyl-3-(2,6-dimethyl-4-hydroxyphenyl)propanoic acid (Mdp) con-
verted opioid agonist peptides to corresponding antagonist peptides with high potency
and selectivity [43]. The substitution of position 2 with 1,2,3,4-tetrahydroisoquinoline-3-
carboxylic acid (Tic) in ENK and DER analogs converted their respective agonist activities
at DOR and MOR to DOR selective antagonists, and NMR analysis indicated a 90-degree
arrangement of the two aromatic rings in the cis-Tyr-L-Tic moiety responsible for the con-
version [44]. It was also shown that modifications of EM-2 and morphiceptin (YPFP-NH2)
at position 3 with DPhe or D-2-Nal converted the MOR agonist activity to the antagonist
activity [40]. Details are discussed in the later part, 3.2. Structural aspects.

3.1.3. Optimizing Drug-like Characteristics including Metabolic Stability, BBB Permeability,
and Oral Bioavailability

Clinical application of opioid peptides has been limited due to poor metabolic stability
in the body and low ability to cross the BBB [2]. The ability to cross the BBB and reach
the CNS to interact with opioid receptors for analgesic effects relies on physicochemical
properties including size, lipophilicity, enzymatic stability, hydrogen bonding potential,
and other structural features [45]. Physicochemical properties of opioid peptides have been
far from optimal and have restricted their oral bioavailability. The nonpeptidic nature of
peptidomimetics has the potential to overcome the detrimental therapeutic characteristics
and prolong and enhance biological activities at the target site [2,46]. Therefore, various
peptidomimetic approaches have been devised to develop molecules with optimized CNS
activity, although there are still no definitive alternatives to using the classical analgesics
for pain treatment [45,47].

The difficulty of eliciting analgesia with three endogenous opioid peptides is mainly
due to the rapid cleavage of the Tyr1-Gly2 bond, and simple modification of Gly2 with DAla2

in ENK resulted in long-lasting analgesic effects by avoiding the critical degradation [47,48].
Replacing a peptide bond susceptible to peptidases with a dipeptide isostere such as olefin,
ester, and triazole has also been a useful tool to increase peptide stability as well as conjugating
with antibodies [47,49,50]. A recent study showed that β-Ala at the N-terminus of an ENK-
like tetrapeptide amide resulted in longer analgesic effects owing to less accessibility of
endopeptidases [51]. Another recent study showed that Nα-guanidinyl group at the N-
terminus, which mimics the ionic state of the parent peptide, significantly improved the
stability and lipophilicity as well as affinity and potency, when combined with C-terminal
tetrazolate and DAla in guanidyl-Tyr-DAla-Gly-Phe-Leu-tetrazole (Figure 2) [52].

Although metabolic stability has been improved by various structural modifications,
the efforts to improve the drug-like property of opioid peptides have been made with
limited success for the CNS analgesic effect due to the poor permeability across the BBB.
Pharmacological approaches to enhance a peptide delivery to the CNS are to increase
biochemical attributes by modifying its structure or conjugating a molecule like lipophilic
enhancer, polymer, and antibody. Increasing lipophilicity has been the most useful tool for
BBB penetration despite the risk of plasma protein binding [45,53,54]. DPDPE with poor
BBB permeability has been modified by methylations, halogenations, Nα-acylation, and
C-terminal esterification, and the resulting lipophilic analogs have produced significantly
increased central analgesic effects as well as BBB permeability [53,55–57]. Unlike bis[Tyr-
NH]-alkyl peptides, short bivalent analogs linked via an alkyl group, 2′,6′-dimethyl-L-
tyrosine (Dmt)-substituted analogs produced strong analgesic effects after systemic (s.c.
and oral) administrations through the MOR [58]. Among those, pyrazinone-containing
analog (Figure 2) was the most potent analgesia in tail flick and hot plate tests. The
molecular modeling studies suggested that the bis-Dmt analog contains the identical
message and address regions and fits the MOR binding pocket, unlike large dimeric ENK
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or DER analogs [59]. A study showed that simple C-terminal esterification of EM can
significantly increase lipophilicity, metabolic stability, and systemic antinociceptive activity
after i.c.v. or oral administration, although it provided no explanation on how the change
in physicochemical properties are responsible for the side effects [60].
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Interestingly, [Dmt1]DALDA, a highly polar ligand with a 3+ net charge, produced
36 times more potent antinociceptive effects than morphine in mice after subcutaneous
(s.c.) administration indicating high BBB transport to the brain [61]. Many studies also
demonstrated that hydrophilic peptides could penetrate the cell membrane via absorptive-
mediated endocytosis. The common feature was that those peptides contained multiple
Arg and/or Lys. E-2078 is also a polycationic DYN A-(1-8) analog internalizing to brain
capillaries by the endocytosis [62]. MOR selective DER analogs, H-Tyr-DArg-Phe-Sar/β-
Ala-OH, showed potent analgesic effect with low physical and psychological dependence.
Their modifications with Nα-amidinoTyr1 resulted in the slower onset of the analgesic
effect after systemic administration because of the loss of a positive charge and the resulting
slow BBB transport [63,64]. Based on the observation, modifying the positive charges might
be a useful tool to control the BBB transport and the pharmacological effects in the CNS.

The addition of carbohydrates to a peptide, glycosylation, has also been used to im-
prove BBB penetration and enzymatic resistance while maintaining the biological activity
of a parent peptide. The applications for ENKs, DER, DLT, and EM have been success-
fully performed to enhance central analgesic effects after systemic administration and oral
bioavailability [65–71]. A glycosylated hexapeptide, H-Tyr-DThr-Gly-Phe-Ile-Ser(β-DGlc)-
NH2 (Figure 2), increased metabolic stability and BBB penetration as well as systemic
(i.v.) antinociceptive activity, and its further modification with β-lactose and β-melibioside
produced highly potent antinociception [67]. The same efforts, glucosylation or galactosy-
lation at the C-terminal region, were made for DER and DLT and resulted in a remarkable
increase of antinociceptive activity following systemic administration while retaining high
in vitro activity as well [72,73]. Thr4 glycosylated analog, however, reduced activity dra-
matically, indicating the important role of the position for opioid activity. Orally active
EM-1 analog in which a lactose moiety was linked to the N-terminus through a succinamic
acid spacer showed a strong antineuropathic effect without producing constipation [71]. A
cyclic glycosylated pentapeptide H-Dmt-c2,4(-SCH2CH2S-)[DCys-Aic-DPen]Ser(Glc)-NH2
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possessing potent mixed MOR agonism/DOR antagonism and poor bioavailability was
also successfully modified to afford high antinociceptive efficacy after intraperitoneal (i.p.)
administration without acute tolerance [74]. Modeling studies and NMR analysis of glyco-
sylated ENK analogs indicated the modification did not disturb the peptide backbone [75].

Conjugation of polyethylene glycol (PEG) has been used to enhance the therapeutic
potential of opioid peptides by reducing enzymatic degradation while maintaining the
biological activity of a parent peptide [45]. I.v administration of pegylated DPDPE, PEG-
CH2-CH2-CO-DPDPE (Figure 2), showed an increased analgesic effect despite 176-fold
lower binding affinity than DPDPE, which indicated better ability to cross the BBB and
undergo hydrolysis in the brain [76]. Nonetheless, there are potential risks of losing
activity and brain uptake due to increased molecular size and hydrophilicity or improper
applications. To improve the brain uptake, pegylated liposomes as carriers have also been
used as a carrier, and glutathione pegylated liposomal formulation of DAMGO was shown
to increase and prolong the brain uptake significantly [77].

Prodrugs have been designed to improve the exposure of opioid peptides at target
sites, mostly the brain, after systemic administration. Esterification of amine, hydroxyl, or
carboxylic acid improves brain uptake by increasing lipophilicity. Likewise, the addition
of a Phe residue to DPDPE was shown to increase the BBB permeability as a prodrug [78].
Cyclic prodrugs have also been built using linkers susceptible to esterase hydrolysis for
improved delivery characteristics [79–81]. For a prodrug, its bioconversion to an active
parent peptide within the target sites is the most critical as well as stability in the blood.
A study on cyclic prodrugs of DADLE was not successful due to the formation of stable
intermediate and the substrate activity for efflux transporters on the BBB nonetheless
improved metabolic stability (Figure 2). The enzymatic bioconversion rates were dependent
on the chirality of specific amino acids, and therefore alterations in their chirality might be
critical for the success of prodrug [82].

Although oral delivery is the most preferred mode of drug administration, the bioavail-
ability of peptides remains low due to degradation and limited absorption in the gastroin-
testinal tract. The development of oral delivery for opioid peptides requires the same
strategies as those applied to optimize the BBB permeability, such as increasing lipophilicity
and structural constraint. An amine-modified prodrug of ENK by a reversible aqueous
lipidization (REAL) (Figure 2) approach produced prolonged strong oral antinociceptive
effects in an inflammatory pain model along with increased metabolic stability, gastroin-
testinal absorption, and limited CNS-penetration [83]. Thiazole-containing cyclic DAMGO,
N-terminal amidated-DERs, and phenolic group acylated-DERs are successful examples
showing good oral analgesic effect [84,85]. Likewise, Nα-glycosylated EM showed a strong
antinociceptive effect after oral administration in the chronic constriction injury (CCI)
model but no significant constipation in contrast to morphine [71].

3.1.4. Reducing Opioid Side Effects

There appears to be no substitute for opioids in achieving adequate pain relief in
some cases. MOR is primarily responsible for the antinociception but also causes the
most undesirable adverse effects, limiting its clinical use. Acute administration causes
respiratory depression, constipation, sedation, dizziness, and nausea, and chronic use
causes tolerance, dependence, and abuse liability. Despite extensive research in the field,
reducing the serious adverse effects of the MOR agonists remains unsolved. The DOR
and KOR are also involved in the antinociceptive effect and related side effects, such as
convulsion and dysphoria, respectively, to a lesser extent, in vivo. There have been several
strategies to design opioid peptidomimetics with reduced adverse effect occurrence [86].
Those are to develop novel ligands that target multiple subtype opioid receptors, interact
with receptors peripherally, produce a biased signaling, etc.
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Multifunctional Ligands

Of those, multifunctional opioids that can act on more than one subtype receptor as
a single molecule emerged as a promising approach to lessen the opioid-related adverse
effects and provide a safer alternative to traditional opioid analgesics [87–89]. Mixed
agonist activity at the MOR and DOR may bring synergistic antinociception that can
reduce adverse effect occurrence by reducing the amount given for the same effect. It
was shown that the occupation of DORs by an agonist or antagonist prevented toler-
ance and physical dependence on morphine [90]. Based on the involvement of DOR in
MOR activity proven in numerous studies, such bifunctional ligands with a MOR ago-
nist/DOR antagonist property as AAH8, UFP-505, KSK-103, DIPP-NH2[Ψ], [Dmt1, 2′,4′,6′-
trimethyl phenylalanine (Tmp)3]-EM-2, or with a MOR/DOR agonist property as biphalin,
[Dmt1, 2′-ethyl-6′-methylphenylalanine (Emp)3]-EM-2, and LYS739 seemed to be a good
approach [74,87,91–93] (Figure 3). Biphalin is a homo-bivalent ligand consisting of two
tetrapeptides and showing MOR/DOR agonist activities [94]. It produces a substantial
antinociceptive effect but causes fewer side effects, suggesting synergistic effects obtained
from the activation of both receptors [94,95].
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A glycosylated DTLES analog, NMP-2200 (YrGFLS(O-βD-lactose)-NH2) is a centrally
active MOR/DOR agonist demonstrated to reduce addiction liability associated with the
MOR agonist analgesics through the simultaneous activation of the MOR and DOR [68,96].
Alteration of EM-2 with a Dmt1 and an alkylated Phe3 (Dmp, Tmp, Emp) led to the bifunc-
tional activities depending on the substitution of Phe3: di- and tri-methyl phenylalanine for
the DOR antagonism and ethyl methyl phenylalanine for the DOR agonism and increased
DOR affinity, yet retained MOR activity, leading to potent MOR/DOR agonism or MOR ag-
onism/DOR antagonim [97]. Metkephamid (H-Tyr-DAla-Gly-NMeMet-NH2) is a balanced
MOR/DOR agonist producing central analgesic effects after systemic administration in
animal models [98,99]. It showed a lesser degree of side effects in extensive clinical tests,
indicating DOR activation effect on the CNS. Clinical development, however, was stopped
after phase 1 due to unusual side effects, which might be caused by the DOR activation in
the CNS. For this reason, MOR agonist/DOR antagonist has been pursued more vigorously
than MOR/DOR agonist.

TIPP-NH2 was the first to show a mixed MOR agonist/DOR antagonist property, and
its further modifications resulted in the discovery of H-Dmt-Tic-[CH2NH]Phe-Phe-NH2
(DIPP-NH2[Ψ]) possessing a balanced MOR agonist/DOR antagonist property and ex-
hibiting a reduced tolerance and dependence upon chronic administration [100]. Several
other mixed MOR agonist/DOR antagonists containing a Dmt-Tic pharmacophore were
also developed. Intrathecal (i.th.) injection of UFP-505 (H-Dmt-Tic-Gly-NH-Bzl) showed
less tolerance in rats than morphine [101]. A 2-aminoindane (Aic)-substituted cyclic ana-
log (KSK-103, Dmt-c(-SCH2CH2S-)[DCys-Aic-DPen]-OH) with a poor bioavailability also
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developed fewer tolerance and reward symptoms through the MOR agonist/DOR antag-
onist activities after C-terminal glycosylation [74,102]. Recently, numerous stable struc-
tures of MOR agonist/DOR antagonist have been developed showing central analgesic
effects after systemic administration, but no in vivo study on the side effects has been
reported [92,103–105].

Other subtype combinations are MOR/KOR, DOR/KOR, and MOR/DOR/KOR
proposed for reducing side effects, but little peptidomimetic structure has been identi-
fied [87,106]. Cyclic EM-2 analog, H-Dmt-c[DLys-Phe-2′-MePhe-Asp]-NH2 was an agonist
for MOR, DOR, and KOR possessing strong antinociceptive effects potentially through
the concomitant activation of three receptors [107]. The substitution of β-amino acids
has been shown to alter a peptide’s selectivity to a mixed receptor property. Likewise,
modifications of a MOR selective morphiceptin with β2- or β3-amino acid residues resulted
in various multifunctional opioid profiles. Dmt-DAla-(R)-β2-1-Nal-Pro-NH2 was a potent
MOR/DOR/KOR agonist exhibiting a strong peripheral antinociceptive effect after i.p.
and oral administration [108].

Localization of the Site: Peripherally Mediated Analgesics

Emerging evidence indicates that opioids also act in the periphery to contribute to
analgesic actions, although much less is known about this, compared to the central func-
tions [86,109]. During inflammation, peripheral opioids interact with upregulated opioid
receptors in damaged tissue, and the localized interactions can induce therapeutically safe
analgesic effects by avoiding undesirable centrally mediated adverse effects [86,109]. The
main strategy to localize the interactions in the PNS was to increase the hydrophilicity of
the opioid peptides to inhibit the brain uptake. It afforded numerous peripherally acting
opioid peptidomimetics with a variety of biological profiles [110].

[β-Pro2]-EM-1 is a potent MOR agonist showing peripheral antinociceptive activity
after systemic administration along with increased metabolic stability [111]. DAMGO,
CR845 (Difelikefalin, H-DPhe-DPhe-DLeu-DLys-[γ-(4-N-piperidinyl)amino carboxylic
acid]), DALDA, PL017 ([NMePhe3, DPro4]morphiceptin), CJC-1008, and BW443C (H-Tyr-
DArg-Gly-Phe(p-NO2)-Pro-NH2 were shown to produce peripherally localized analgesic
effects [112–114]. Preliminary clinical studies of BW443C demonstrated peripheral opioid
analgesic effects avoiding relevant central effects [115]. CR845, the first approved opioid
peptide drug, is in medical use of moderate to severe itching and is under development
for the treatment of postoperative and osteoarthritis pain [116]. CJC-1008, a maleimido
propionyl group-attached DYN A-(1-13) analog, was designed to promote covalent bond
formation with serum albumin and showed a greater peripheral analgesic effect compared
to placebo with prolonged activity in Phase II clinical study [113]. Likewise, the conjugation
of a biocompatible nano-carrier with a big molecular size also localizes the opioid peptides
by blocking the BBB transport [50,86,109].

Biased Ligands, etc.

In β-arrestin-2 knockout mice, morphine enhanced analgesia with reduced constipa-
tion and respiratory depression [117]. Based on the result, biased ligands that preferentially
activate one downstream pathway, G-protein pathway over β-arrestin, have been suggested
as a safer, better tolerated, and more efficacious opioid analgesic despite a recent study to
the contrary [118–121]. A study discovered a cyclic peptide, H-Dmt-c[DLys-Phe(p-CF3)-
Phe-Asp]-NH2, with high MOR affinity and in vitro functional activity, which turned out to
be a G-protein biased MOR agonist [122]. Studies suggested positions 4 and 5 of ENK might
be responsible for the biased signaling because the substitutions at the positions resulted
in distinctly biased signaling [123–125]. Furthermore, positive allosteric modulators were
shown to enhance the activities of endogenous opioid peptides, maintain their temporal
and spatial action, and potentially limit the adverse effects [126]. Although a few allosteric
modulators were identified for opioid receptors and characterized in vitro, their utility
in vivo is yet to be determined [127].
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3.2. Structural Aspect
3.2.1. Conformational Studies and Design from Pharmacophore

The hierarchical approach to peptidomimetics is to (i) identify the conformational
structure along with the side chain functional requirements for a target receptor, (ii) reflect
the outcomes in building a constrained structure, and (iii) determine the three-dimensional
arrangement of the critical side chain and backbone functionalities. Based on this, con-
strained peptidomimetics in which the peptide scaffold is replaced globally or locally (at
a particular amino acid residue or peptide bond) by other organic moieties are designed
and synthesized [49,128]. The use of constrained peptidomimetics, new insight into their
interactions with opioid receptors, and additional fine-tuning of the constrained structure
are critical in developing a novel therapeutic analgesic agent. Recent advances in structural
biology using crystallography, molecular docking, molecular dynamics simulations, and
NMR spectroscopy provided key insights into the binding modes of opioid peptidomimet-
ics to the receptors. Interestingly, a study using cryo-electron microscopy indicated that the
N-terminus of DAMGO interact with conserved receptor residue of the morphinan ligand
pocket while the C-terminus occupies the regions for MOR selectivity [35].

Regardless of the sequences, natural opioid peptides contain multiple aromatic amino
acids in common as key pharmacophoric residues, and their SARs have long been analyzed
based on the message–address concept (Figure 4). The message region of opioid peptides
is the N-terminal three or tetrapeptide responsible for biological activity, and the address
region is the variable structure following the message region responsible for receptor
selectivity [129–132]. In the message region, Tyr and Phe are key pharmacophoric residues,
and their Nα-amino, phenolic, and aromatic groups are known to be critical for receptor
recognition. Relative orientation and length of the two aromatic rings are also critical for the
subtype selectivity. Overall longer backbones are preferred for MOR and shorter ones for
DOR. DOR or KOR selectivity over the other subtypes is attributed to the C-terminal region,
as shown in DLT (the hydrophobic Val5-Val6 residues) and DYN A (the basic Arg6-Lys11

residues), respectively. The message–address concept has contributed to the design of
highly potent and selective opioid peptides and their modifications for the development of
novel opioid peptidomimetics [33,132–134].
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3.2.2. Peptide Scaffolds as a Starting Point for Mimetics: EMs, DER, Morphiceptin, ENKs,
DLTs, and DYN
MOR Peptidomimetics

EMs have been suggested to inhibit pain with reduced side effects, particularly the
reward effect and respiratory depression [24,25]. Their simple structures, which differ from
other endogenous opioids, and high MOR specificity over DOR and KOR have stimulated
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the structural modifications for overcoming their limits, mainly metabolic instability and
low BBB permeability, as therapeutic agents [23,71,107,135,136]. L-configuration of Pro2,
which is a spacer between two aromatic amino acid residues, was shown to be critical, and
numerous chemical modifications were focused on the position [23]. NMR analysis and
X-ray crystallography revealed that it folded into cis-form around the Tyr-Pro amide bond
and formed β-turn structure [137–139]. Substitution of Pro2 with a pseudoproline, β-Pro,
Cα,α-disubstituted glycine, alicyclic β-amino acids, or other substituents was well tolerated,
and piperidine-3-carboxylic acid (Nip) derivative, [(R)-Nip2]EM-2 showed picomolar range
of high affinity for MOR (Figure 5 and Table 2) [133,136,140–144]. Further substitution of
Tyr1 with Dmt1 led to a potent MOR agonist with high stability and analgesic effect, while
the selectivity was reduced by increasing DOR affinity [145]. The role of Phe4 residue,
which is the only distinct residue from morphiceptin, is still not identified, although the
majority of results have shown little effect on MOR activity. C-terminal modification of
Dmt-Pro-Phe-NH-X with various aromatic or aliphatic groups showed the picomolar range
of high affinities at MOR as agonists together with weak DOR antagonist activities [146].
Due to its essential role, Tyr1 has been the most conserved residue, but several studies
showed that its substitution could be tolerated in some cases. c[Tyr-DPro-DTrp-Phe-Gly]
contains a Gly bridge for lipophilic property and showed the nanomolar range of binding
affinity at the MOR nonetheless lacking the protonable amine [147]. The Phe residue
at position 3 is also critical for MOR, and its substitution with sterically hindered Phe
residue improved MOR affinities while abolished DOR affinities [148]. The suitable spatial
arrangement and conformational restriction of the Phe3 seemed to be significant for the
MOR activity.

DER is a potent and selective MOR agonist showing a strong analgesic effect after
peripheral administration due to slow metabolic degradation [149,150]. The N-terminal
tetrapeptide is the minimal pharmacophore for the activity, and the D-configuration of the
second position is critical for the MOR agonist activity [149]. DER tetrapeptide analogs
containing DArg2 showed very potent and long-lasting antinociceptive activity with vari-
ous peripheral injections due to high resistance to enzymatic degradation [32,149]. It has
been derivatized over the years to yield other highly selective agonists such as [DArg2,
βAla4]-DER-OH (TAPA), [DArg2, Sar4]-DER-OH (TAPS), N-amidino-[DArg2, MeβAla4]-
DER-OH (ADAMB), and DALDA [33,85,151,152]. I.th., i.c.v., or s.c. administration of
TAPA produced very potent and long-lasting antinociceptive effects with reduced physical
dependence but very low bioavailability [63,151,153]. ADAMB is the most potent DER
analog with increased oral bioavailability and slow onset of antinociceptive effect after
systemic administration [64,85]. DALDA that contains two positively charged amino acid
showed extremely high selectivity for MOR but relatively lower antinociceptive effect after
systemic administration due to low BBB permeability [33]. [Dmt1]-DALDA displayed
very potent antinociceptive effects after systemic administration due to increased resis-
tance to enzymatic degradation, and further modifications resulted in an extremely potent
MOR/DOR agonist, Dmt-NMe-DAla-[(S)-4-amino-1,2,4,5-tetrahydro-2-benzazepine-3-one
(Aba)-Gly]-NH2, with picomolar potencies [154,155]. Interestingly, these DER analogs
containing DArg2 showed distinct antinociceptive profiles from the traditional MOR ago-
nists: release of DYN and suppression of the antinociceptive effects by KOR antagonists, as
observed in EM-2 [149].

Morphiceptin is a MOR selective agonist identified from β-casein with a unique struc-
ture, two Pro residues which allow cis/trans isomerization around the amide bonds between
positions 1 and 2, and 3 and 4 [129,156]. The L-configuration of Phe3 was not critical and its
modifications with DPhe or D-1-Nal improved analgesic effects significantly (>150 folds),
and cis-2-aminocyclopentane carboxylic acid (βAc5) substituted analogs improved binding
affinities through the formation of MOR favorable cis-conformation [40,129,137,157–159].
Recent multiple modifications with Dmt1, DAla2, (R)-β3-1-Nal3 yielded a highly selective
and potent MOR agonist, while substitution with (R)-β2-1-Nal at position 3 produced mixed
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MOR/DOR/KOR agonist activity showing strong peripheral antinociceptive effects after
i.p. or oral administration [108].

Deletion of the Nα-amino group of an opioid agonist or its replacement with the other
groups such as allyl and hydroxybenzyl has been utilized for the development of an opioid
antagonist with limited success [39,41]. The modifications in Dhp1-c[Nε,Nβ-carbonyl-
DLys2,Dap5]-ENK-NH2 and [N,N-bis(p-hydroxybenzyl)-Gly]-DArg-Phe-βAla-NH2 were
less successful due to the diminished MOR selectivity [43,160]. Successful modifications
occurred by N-allylation in [Dmt1]-EMs. The N-allylation was the first successful case
to convert an alkaloid MOR agonist into an antagonist, which can be a useful tool to
investigate the pharmacological role of MOR and the related addiction and abuse [39].
H-DPhe-c[Cys-Tyr-DTrp-Arg/Orn-Thr-Pen]-Thr-NH2 (CTAP/CTOP) is a commonly used,
highly selective MOR antagonist derived from somatostatin, and its structural dissimilarity
to known opioid peptides made it an attractive starting point. The substitution of N-
terminal DPhe with a constrained analog, DTic, led to the most potent and selective MOR
antagonists TCAP and TCOP [161].

DOR Peptidomimetics

A potential advantage of targeting DOR in the modulation of pain is reducing opioid-
related side effects such as respiratory depression, addiction, and immune functions, and
therefore its endogenous ligands, ENKs, have been extensively studied to develop a potent
DOR agonist [7–9,20,162]. The Phe residue at position 4 was shown to be critical for the
DOR activity and selectivity together with Tyr1 and C-terminal carboxylate [162]. The
replacement of Gly at position 2 with DAla reduced DOR selectivity in numerous ENK
analogs by increasing MOR activity [163]. However, further replacement of a Leu residue
with a DLeu in DADLE recovered the DOR selectivity and produced highly potent agonist
activity. Interestingly, C-terminal truncated [DAla2]-ENK tetrapeptide retained the DOR
activity, unlike its parent tetrapeptide. Substitutions at the positions other than position 2
with more lipophilic and constrained amino acids occasionally increased binding affinity,
selectivity, and potency at the DOR. Despite the critical role of Tyr1 and Phe4, the first
and third amide bonds seemed to be replaceable with other functional groups such as a
fluoroalkene without a large loss in the activity [164–166]. However, the relative proximity
between two aromatic rings at positions 1 and 4 was considered to be critical for the DOR
versus MOR selectivity. Based on this, more constrained cyclic analogs were developed
using a disulfide bond.

Considering its high selectivity and potency, DPDPE is a major success in DOR
peptidomimetic and has been the most commonly used for the studies of biochemical,
pharmacological, and physiological properties [20,36,167]. [Des-Gly3]-DPDPE (JOM-13,
Tyr-c[DCys-Phe-DPen]-OH) designed for additional conformational restriction retained
good selectivity and affinity for DOR (Figure 5 and Table 2) [168]. In this scaffold, increasing
the ring size by inserting an alkyl group into the disulfide bond resulted in the decrease
of DOR activity and selectivity. JOM-6 (Tyr-c2,4(SCH2CH2S)[DCys-Phe-DPen]-NH2) with
a dithioether ring was a selective MOR agonist. Various modifications at position 4 with
constrained amino acids were not successful due to its important role except p-alkyl
substituted or β-methyl substitution. Interestingly, [Dmt1/β-methyl-2′,6′-dimethyl tyrosine
(Tmt)1, Phe(X)3]-DPDPE resulted in highly potent and selective MOR agonists with the
improved drug-like property [20]. Conformational analysis of DPDPE and side chain
topography led to the development of nonpeptidic or peptidic DOR ligand SL-3111 with
2000-fold selectivity (Ki = 8.4 nM) for the DOR [169].

DLTs (DLT A, -1 and 2) are highly selective and potent DOR agonists containing
D-amino acid and anionic residues responsible for the distinctive biological and structural
features [31]. Moreover, these peptides are enzymatically stable and permeable to the BBB
due to their structural features [34]. Their message region, Tyr-DAla-Phe-, was shown to
form a β-turn structure stabilized by the DAla, and the substitution of a Phe residue with a
more constrained β-iPrPhe residue enhanced the conformation resulting in the exceptional
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selectivity (30,000 fold) over MOR [170]. The C-terminal address region was attributed to
the DOR selectivity through the hydrophobic Val5-Val6 residues, which stabilize an optimal
conformation for the binding rather than interact with the receptor [31,171]. The deletion of
the anionic character at position 4 resulted in the loss of selectivity due to increased MOR
activity. The application of 1-aminocycloalkane-1-carboxylic acids at positions 2, 3, and 4
retained its activity at the DOR, and deletion of the anionic character (Asp4) resulted in
the enhancement of MOR activity, indicating unfavorable repulsion between negative ion
and the MOR receptor [172]. Contrarily, positive net charges were favored for the MOR
over DOR, as shown in DALDA [149]. Most cyclic analogs reversed the selectivity due
to the marked decrease in DOR binding while some were MOR selective [31]. c[DCys2,
Pen5]-DLT-1 was a highly selective DOR agonist, but c[DCys2, Cys5]-DLT-1 was a mixed
MOR/DOR agonist [173].

N,N-diallylation of Leu-ENK analog resulted in the discovery of highly selective
DOR antagonist (Ke = 22.0 nM, 227-fold selectivity over MOR), ICI174864 (N,N-dially-
Tyr-Aib-Aib-Phe-Leu-OH) [174]. There are a greater number of specific DOR antagonists
than MOR antagonists that exhibit potent bioactivities. H-Tyr-Tic-Phe-Phe-OH (TIPP)
and TIP containing a constrained Phe analog, Tic, at position 2 are potent and selec-
tive DOR antagonists while DTic-substituted analogs act as a mixed MOR/DOR agonist,
showing the configuration-dependent differential effect on selectivity and intrinsic ac-
tivity [175]. These have been the molecule of interest for SAR studies to investigate
the agonist and antagonist properties of the receptor as well as to improve metabolic
stability [100,175,176]. Truncation of the C-terminal dipeptide led to small dipeptide
analogs with diverse biological profiles, DOR agonist or antagonist, or MOR agonist/DOR
antagonist. H-Tyr-Tic-NH-CH2-CH(Ph)2 and H-Dmt-Tic were a selective and potent DOR
agonist and antagonist, respectively [100,176]. Simple modification of the C-terminal car-
boxylate of TIPP to the carboxamide produced a mixed MOR agonist/DOR antagonist
activity, and further modification with Dmt1 resulted in a bifunctional activity in DIPP-
NH2 with a potent analgesic effect. H-Dmt-Ticψ [CH2NH]Phe-Phe-NH2 (DIPP-NH2[ψ])
designed to reduce chemical degradation via diketopiperazine formation showed more
potent i.c.v. analgesic effect in rat tail-flick test with no physical dependence and less
tolerance than morphine [100,176,177].

Dmt-Tic is the shortest peptide derived from TIPP possessing a highly selective and
potent DOR antagonist activity, and its modification showed a variety of MOR and/or DOR
selectivity and agonist and/or antagonist activities [178–180]. (S,S)-isomer of Aba-Dmt
moiety, where a Tic was replaced and the backbone direction was reversed, turned out to
be a potent MOR antagonist (Ke = 39 nM) [181].

KOR Peptidomimetics

DYN A and its fragments, DYN A-(1-13) and DYN A-(1-11), are highly active at KOR,
and the message and address regions are essential for adapting a helical conformation
extending from Tyr1 and Arg9. The address region containing multiple basic amino acid
residues was suggested to be responsible for the KOR efficacy. Although the relatively large
size of the molecule and the extensive metabolism are more problematic, many studies
demonstrated important roles of DYN A and its target receptor, KOR, in pain and other
disorders such as depression, anxiety, and drug abuse, and more interest is being focused
on the therapeutic potentials of KOR agonists and antagonists [182–184].

The low metabolic stability has been improved by various modifications such as D-
amino acid residue and N-alkylated amino acid substitution, C-terminal amidation, and
peptide backbone reduction. Nonetheless, low selectivity, [NMeTyr1, NMeArg7, DLeu8]-
DYN A-(1–8)-NHEt (E-2078) were examples of successful modifications to impart metabolic
stability in the shortest fragment together with ([DAla2, Arg6Ψ(CH2NH)Arg7]-DYN A-(1-8)-
NH2 (SK-9709) (Figure 5 and Table 2) [185]. E-2078 and SK-9709 showed good antinocicep-
tive effects mainly through the KOR in various pain models after systemic administration,
indicating the ability to cross the BBB [186,187]. Highly constrained peptidomimetics of
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Dyn A-(1-8) with a cyclopropyl methyl normetazocine moiety, which mimics a phenolic
ring, a basic nitrogen, and a phenyl ring, were potent KOR agonists with a high affinity
and selectivity over MOR and DOR as well as a potent antinociceptive effect [19,188].

A KOR agonist, DPhe-DPhe-DNle-DArg-NH2, was discovered by combinatorial li-
brary tool and modified at the C-terminus to afford a peripherally acting analog, DPhe-
DPhe-DNle-DArg-NH(4-picolyl) CR665 (FE200665) [189–191]. In various pain models, this
analog showed potent peripheral analgesic and anti-inflammatory effects [192]. The modi-
fication of DArg4 with dimethyl-DLys4 produced an orally active peripherally restricted
KOR agonist, CR845 [116]. It binds to nerves and immune cells in the periphery and blocks
pain and inflammation without central opioid side effects.

KOR antagonistic peptides are shown to possess high therapeutic potential in treat-
ing drug abuse due to limited duration of action, unlike small molecules with an ex-
tremely long duration of action. Therefore, significant efforts have focused on the de-
velopment of potent and selective antagonists using the DYN A scaffold. N-terminal
monoalkylation of [D-Pro10]-DYN A-(1-11) resulted in a marked enhancement in KOR
selectivity by decreasing MOR affinity and further N,N-dialkylation produced an an-
tagonist activity [42,193]. The substitution of Pro at position 3 was also reported to be
a highly selective KOR antagonist. Although a few key structural features were iden-
tified for the KOR antagonist activity, their applications to DYN A resulted in limited
success with weak efficacy, low selectivity, and residual agonist property. Later, numerous
peptide antagonists have emerged at the KOR, including the [(2S)-Mdp1]-DYN A-(1-11)-
NH2 (Dynantin), [AcPhe1,Phe2,Phe3,Arg4,DAla8]-DYN A-(1–11)-NH2 (Arodyn), c2,5[N-
BzlTyr1,DAsp5,Dap8]-DYN A-(1-11)-NH2 (Zyklophin), and c[Pro-Phe-Trp-Phe] (CJ-15208)
by deleting N-terminal free amine group [18,19,43,184,194–196]. Nα-benzylation of a cyclic
DYN A-(1-11) analog resulted in the discovery of a highly selective KOR antagonist with
desirable therapeutic potentials such as systemic activity, proper duration of action, and
the BBB penetration in the treatment of diseases such as depression, anxiety, and drug
abuse [18,182]. Zyklophin is a selective KOR antagonist with the ability to inhibit the KOR
selectively and high potential as a pharmacological tool and a therapeutic agent [18].

Table 2. In vitro biological activities of representative opioid peptides and peptidomimetics at MOR,
DOR, and KOR a.

Binding Affinity, IC50 (or Ki) [nM] Inhibitory Potency, IC50 [nM]

Refs.
MOR DOR KOR MOR

(GPI)
DOR

(MVD)
KOR

(GPI or RVD)

DAMGO 1.86 345 6090 4.50 32.8 105 [197]

EM-1 0.36 1506 5430 4.03 283 - [21,39]

EM-2 0.69 9233 5240 6.88 344 - [21,39]

[(R)-Nip2]-EM-2 0.04 >1000 - 0.0002 b >1000 b - [144,145]

[Tmp3]-EM-2 0.44 1400 - 1.90 >10,000 - [97]

DER 0.76 73.5 >1000 1.07 23.2 - [149,198]

ADAMB 12.9 >1000 >1000 - - - [85]

DALDA 1.69 19,200 4230 254 781 - [33,154]

Dmt-DALDA 0.143 2100 22.3 1.41 23.1 - [33,154]

Dmt-NMe-DAla-[(S)-Aba-
Gly]-NH2

14.8 5.0 >100,000 0.00174 c 0.016 c - [155]

JOM-6 0.29 24.8 2000 2.93 d 338 d - [199]
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Table 2. Cont.

Binding Affinity, IC50 (or Ki) [nM] Inhibitory Potency, IC50 [nM]

Refs.
MOR DOR KOR MOR

(GPI)
DOR

(MVD)
KOR

(GPI or RVD)

Morphiceptin 79.4 >1000 - 318 4800 - [159,200]

PL017 2.9 4200 - 21 1250 - [200]

PL032 5.5 >10,000 - 29 1510 - [200]

H-Tyr-Pro-D-1-Nal-Pro-NH2 1.9 >1000 - 9.57 35.4 - [160]

H-Dmt-DAla-(R)-β3-1-Nal-
Pro-NH2

0.34 238 1750 7.94 inactive inactive [108]

H-Dmt-DAla-(R)-β2-1-Nal-
Pro-NH2

0.05 1.04 11.2 3.55 89.1 224 [108]

Met-ENK 9.5 0.91 4440 190 19 - [201,202]

Leu-ENK 9.43 2.53 8210 35.6 1.73 550 [154,197]

DADLE 13.8 2.06 16,000 8.9 0.73 134 [197]

DPDPE 713 2.72 >15,000 3000 4.14 >10,000 [197]

DPLPE 659 2.80 >15,000 2350 2.77 >10,000 [197]

[Phe(p-F)4]-DPLPE 1600 0.43 - 740 0.016 - [203]

JOM-13 51.5 0.74 - 460 4.2 [204]

DSLET 31 3.8 - 360 0.58 - [205]

DLT-1 2140 0.60 - 2890 0.36 - [173]

DLT-2 1680 0.73 - 3180 0.67 - [173]

[(2S,3R)-β-iPrPhe3]-DLT-I 63,000 2.14 - 32,500 1.23 - [170]

c[DCys2, Pen5]-DLT-1 3760 2.2 - 1100 0.25 - [173]

c[DCys2, Cys5]-DLT-1 5.15 0.87 - 2.98 0.23 - [173]

[DAla2,Ac6c4]-DLT 2.45 0.045 - 558 0.52 - [172]

β-END 1.0 1.0 52 3.5 2.1 - [206,207]

biphalin 1.4 2.6 - 8.8 27 - [208]

DYN A 5.04 2.54 0.23 2.5 22.5 12.6 [209]

DYN A-(1-13)- NH2 1.29 4.07 0.15 1.7 78 63.1 [209]

DYN A-(1-11)-NH2 1.08 6.99 0.077 7.5 104 0.376 [209,210]

[DAla3]-DYN A-(1-11)-NH2 67 407 0.36 - - 2.38 [210]

E-2078 4.51 27.2 1.91 0.3 7.4 2.6 [185]

CR665 4050 20,300 0.24 - - 0.03 c [190]

CR845 - - 0.32 - - 0.16 c [211]

CTOP 4.3 5600 - 426 e - - [161]

CTAP 2.1 5310 - 75.8 e - - [161]

TIPP 1720 1.22 - inactive 4.80 e - [100]

TIPP-NH2 78.8 3.00 - 1700 18.0 e - [100]

DIPP-NH2 1.19 0.118 - 18.2 0.209 e - [100]

DIPP-NH2[ψ] 0.943 0.447 - 7.71 0.537 e - [100]

Dmt-Tic 1360 1.84 - inactive 6.55 e - [100]

Dmt-Tic-NH-(CH2)3-Ph 0.386 0.0871 - 102 1.69 e - [100]

[Pro3]-DYN A-(1-11)- NH2 5700 8800 2.7 - - 244 e [210]
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Table 2. Cont.

Binding Affinity, IC50 (or Ki) [nM] Inhibitory Potency, IC50 [nM]

Refs.
MOR DOR KOR MOR

(GPI)
DOR

(MVD)
KOR

(GPI or RVD)

N,N-diallyl-[DPro10]-DYN
A-(1-11)

31.7 149 3.60 228 e - 97 e [42]

dynantin 135 354 20.7 925 e 3220 e 0.632 e [196]

Arodyn 1740 5830 10.0 - - - [212]

Zyklophin 5880 >10,000 30.3 - - 84 (KB) c [213]
a The variability in the binding and functional data between various laboratories may be attributed to differences
in the synaptosomal preparations, the concentration, type of radioligand, and specific activity used, and the
method of reporting binding. Refer to the citations for the details. b Ca Assay, EC50; c cAMP Assay, EC50; d GTP
assay, EC50; e Antagonist mode, Ke; GPI: guinea pig ilem; MVD: mouse vas deferens; RVD: rat vas deferens.
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3.2.3. Tools for Mimetics
Peptide Backbone Modifications

Modification of the amide bonds that do not interact with the target is one of the most
widely used strategies to optimize the metabolic stability of peptides in vivo, despite the risk
of interrupting the conformational profile of the peptides. It is critical to retain the spatial
disposition of side chains that are essential for the interaction with the receptors. Peptoids,
poly Nα-substituted glycines are α-peptidomimetics, in which the side chains are attached
to the amide nitrogen atom rather than to the α-carbon atom, thus causing a loss of the intra-
backbone hydrogen bonding and chirality and a formal shift of the side chain position, but
improving the resistance to enzymatic hydrolysis and cell permeability [214,215] (Figure 6).
These are well suited for the high-throughput library synthesis, and CHIR4531, a peptoid
trimer, was the first active opioid peptoid with high MOR affinity (Ki = 6 nM) discovered
from a library of 5000 peptoids [214]. In most cases, however, peptoids or peptoid-peptide
hybrid modifications were not successful in the well-known opioid peptides due to resulting
conformational changes [216].
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β-peptides, poly β-amino acids, possess greater structural diversity and high resis-
tance to the enzymatic degradation due to the additional carbon atom in each amino acid
residue, and their biological properties differ from those of parent peptides. Substitution
of each amino acid with respective β-amino acids in Leu-ENK, DER, and DLT resulted
in a loss of the affinities at MOR and DOR [217]. Other backbone modifications are retro
(reversal of backbone), inverso (inversion of chirality of amino acid), and retro-inverso
modifications applied to opioid peptides as a tool for structural alteration to improve
metabolic stability [218]. These modifications of opioid peptides are not considered to be
promising due to the interruption of the spatial disposition of key side chains, despite a few
successful cases [218,219]. Overall, studies on backbone modifications of opioid peptides
indicated that this approach is not efficient due to resulting structural variability.
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Cyclization

Cyclization has been a major tool to develop conformationally constrained topograph-
ical structures for opioid receptors. Limiting the number of conformations enhances the
ability to position the backbone and/or side chains properly for the receptors and im-
proves receptor selectivity and specificity, bioavailability, and metabolic stability [220,221].
Cyclization decreases the number of hydrogen bonding and hydrodynamic radius in a
solution but increases lipophilicity, which aids the molecule to cross the BBB to reach
the CNS [45]. Constraints of cyclic peptides can be attained through the formation of a
covalent bond, such as a lactone, lactam, disulfide, thioether, etc., that spans from the
N-terminus to C-terminus, N/C-terminus to side chain, or side chain to side chain, which
is the most common [128,222–225] (Figure 6). Typical scaffolds of opioid cyclic peptides
are Tyr-c[Xxx-Gly-Phe-Yyy]-OH/NH2, Tyr-c[Xxx-Gly-Phe-Yyy], Tyr-c[Xxx-Phe-Phe-Yyy]-
OH/NH2, Tyr-c[Xxx-Phe-Yyy]-OH/NH2, and Tyr-c[Xxx-Phe-Yyy] modified from ENKs,
EMs, DER, DLTs, and morphiceptin, where Xxx and Yyy are residues to be consumed
for the cyclization through a variety of linkers. However, the cyclization of those small
sizes of opioid peptides is not straightforward due to the lack of folding ability in a
compact structure.

Due to the essential role of a positively charged nitrogen atom in the receptor recogni-
tion, most modifications left Tyr1 unaffected. Cyclic EM-1 analogs in which the N-terminal
amino group was consumed decreased MOR affinities dramatically to the micromolar
range, although there were a few exceptional cases, such as cN,C[Tyr-DPro-DTrp-Phe-Gly]
showing moderate binding affinity (Table 3) [147]. Dhp-c2,5[DOrn-2-Nal-DPro-Gly] was the
first cyclic analog without a positively charged nitrogen atom yielding a weak MOR/DOR
antagonist [41]. SAR studies on cyclic EM-2 analogs indicated optimal ring size for MOR
affinity and selectivity to be 14 while ENK preferred to be 18 [226,227]. I.c.v. and i.p. ad-
ministrations of cyclic EM-2 analogs (Tyr-c2,5[DLys-Phe(F/2,4-difluoro)-Tyr-Gly]) exhibited
potent analgesic effects indicating the potential brain uptake, and the structural analyses
using NMR spectroscopy suggested that a trans conformation of the backbone between
positions 2 and 3 is critical for affinity, selectivity, and functional activity at the MOR.
An extended structure of EM-1, ZH853 (Tyr-c[DLys-Trp-Phe-Glu]-Gly-NH2) is a recent
success showing high potential as a therapeutic agent for various pain states, including
neuropathic pain [28,30,228]. Another EM analog, Tyr-c2,5(-SCH2S-)[DCys-Phe-2-Nal-Cys]-
NH2 showed a MOR/KOR agonist and DOR partial agonist/antagonist profile with a
similar affinity at MOR and DOR [229]. Enhanced KOR activity was observed in a series of
cyclic EM pentapeptides, Dmt-c[DLys-Xxx-Yyy-Asp]-NH2, in which Xxx and Yyy are Phe
or NMePhe [195].

Interestingly, the substitution of a Tyr with a Dmt in cyclic peptides did not affect
affinities, unlike linear peptides, but still increased the metabolic stability. Oral administra-
tion of a cyclic morphiceptin analog, Dmt-c[DLys-Phe-DPro-Asp]-NH2 (P-317), inhibited
GI motility and produced a potent and long-lasting MOR-medicated antinociceptive effect
due to enhanced enzymatic resistance and anti-diarrhoeal activity [230,231]. The small
cyclic tetrapeptide, Tyr-c2,4[DLys-Phe-Ala], has the picomolar range of potency for MOR
(0.11 nM) and DOR (0.54 nM) in the GPI and MVD assays, and its modification with Asp4

significantly reduced both activities, indicating the incompatible effect of the negative
charge on both receptors [232]. Interestingly, Tyr-c[DLys-Phe-Asp]-NH2, in which the
side chain of Asp4 was consumed for the cyclization, was a highly potent and selective
MOR agonist [227].

Driven by the success of DPDPE, many modifications have been performed mainly
to replace a disulfide bond susceptible to enzymatic degradation and nucleophilic, with a
stable bond, such as a rigid olefin bond (Figure 6). Both cis and trans olefin analogs, Tyr-
c2,5(-trans/cisCH=CH-)[DAla-Gly-Phe-DAla]-OH, were potent MOR/DOR agonists with
a slight selectivity for DOR [224]. A methylamine-bridged ENK analog, Tyr-c[(NβCH3)-
D-A2pr-Gly-Phe-NHCH2CH2-], was a potent MOR/DOR agonist showing substantial
antinociceptive effects (ED50 = 27 ng) [233]. Lanthionine (thioether) bridge-substituted



Biomolecules 2022, 12, 1241 19 of 40

analogs, Tyr-c2,5(-S-)[DAla-Gly-Phe-D/LAla]-OH, were also potent MOR/DOR agonists
with a subnanomolar analgesic potency (ED50 = 0.0015 and 0.0018 nM, respectively) [223].
A series of cyclic ENKs with a urea bridge showed mixed MOR/DOR agonist activity.
Tyr-c2,5(-NHCONH-)[DLys-Gly-Phe-Dap]-NH2 was a very potent MOR/DOR agonist with
the subnanomolar range of EC50 (0.21 and 0.65 nM in the GPI and MVD, respectively)
and ED50 (0.0792 and 0.3526 nM in the hot-plate and tale-flick tests, respectively, i.c.v. in
rats) [226,234]. Cyclic biphalin analogs through various linkers such as xylene were highly
potent MOR/DOR agonists with prolonged analgesic effects after systemic administra-
tion [235,236]. Interestingly, a C-terminal-modified cyclic biphalin analog, c2,2′ (Dmt-DCys-
Gly-Phe)2-cystamine, was a very potent MOR/DOR/KOR agonist with the sub-nanomolar
affinities and the same high efficacies with DAMGO, DADLE, and salvinorin A at MOR,
DOR, and KOR, respectively [237].

DYN A was cyclized at various positions due to a relatively longer peptide chain, and
the positioning and stereochemistry of the cyclization impacted KOR affinity and selectivity.
cN,5[Trp3,Trp4,Glu5]-DYN A (1–11)-NH2 was the first cyclic KOR antagonist lacking the
N-terminal amino group but retained the nanomolar affinity [238]. Two isomers of c2,5(-
CH=CH-)[Ala2,Ala5]Dyn A (1–11)-NH2 exhibited a high KOR affinity but similar selectivity
to DYN A-(1–11)-NH2 [239]. Incorporation of DAla at position 3 of c2,5[DAsp2,Dap5]-Dyn
A (1–11)-NH2 resulted in the increase of KOR selectivity over MOR and DOR [195]. Two
isomers of c5,8(-CH=CH-)[Ala5,Ala8]Dyn A (1–11)-NH2 having the address region in a
cycle significantly increased KOR selectivity compared to Dyn A (1–11)-NH2 [239]. The
cyclization of a partial KOR agonist, [BzlTyr1]-DYN A-(1-11)-NH2, at the same positions
5 and 8 through a lactam ring resulted in the development of a highly selective KOR
antagonist, zyklophin, capable of crossing the BBB [18,194,213].

Table 3. Binding affinities of potent cyclic opioid peptidomimetics at MOR, DOR, and KOR a.

Structure
Ki or IC50 (nM)

Ref.
MOR DOR KOR

Tyr-c2,4[DLys-Phe-Asp]-NH2 0.21 461 684 [227]

Tyr-c2,5[DLys-Phe-Phe-Asp]-NH2 0.35 171 1.12 [240]

Tyr-c2,5[DCys-Phe-Phe-DCys]-NH2 0.05 0.4 1.6 [241]

Tyr-c2,4[DDap-Phe-Phe-Asp]-NH2 0.51 >1000 >1000 [227]

Tyr-c2,5[cis-DACAla-Phe-Phe-Asp]-NH2 3.2 >1000 - [242]

Dmt-c2,5[cis-DACAla-Phe-Phe-Asp]-NH2 0.04 >1000 >1000 [242]

Dmt-c[DLys-Phe-DPro-Asp]-NH2 (P-317)

Tyr-c2,5(-SCH2S-)[DCys-Phe-2-Nal-Cys]-NH2 0.47 0.48 1.3 [229]

cN,C[Tyr-DPro-DTrp-Phe-Gly] 34 - - [147]

Tyr-c2,5(-S-)[DVal-Gly-Phe-DAla]-OH 630 0.93 1600 [223]

Tyr-c2,5(-S-)[DAla-Gly-Phe-DAla]-OH 2.0 2.0 1600 [223]

Tyr-c2,5(-CH2CH2-)[DAla-Gly-Phe-Ala]-NH2 2.3 5.9 309 [225]

Tyr c2,5(-cisCH=CH-) [DAla-Gly-Phe-DAla]-OH 1.35 0.43 576 [224]

Tyr-c2,5(-NHCSNH-)[DDap-Gly-Phe-Dap]-NH2 0.4 5.4 - [243]

Dcp-c2,5[DCys-Gly-Phe(4-NO2)-DCys]-NH2 2.84 b 25.8 980 [244]

c2,2′ (Tyr-DCys-Gly-Phe-NH)2 0.60 0.87 - [236]

c2,2′ (Dmt-DCys-Gly-Phe)2-cystamine 0.27 0.36 0.87 [237]
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Table 3. Cont.

Structure
Ki or IC50 (nM)

Ref.
MOR DOR KOR

c2,5[DAsp2,DAla3,Dap5]-Dyn A (1–11)-NH2 3.89 139 0.21 [195]

c5,8(-transCH=CH-)[Ala5,Ala8]Dyn A (1–11)-NH2 36.0 460 2.46 [239]

cN,5[Trp3,Trp4,Glu5]-DYN A (1–11)-NH2 331 >8900 26.8 [238]
a The variability in the binding data (Ki or IC50) between various laboratories may be attributed to differences in
the synaptosomal preparations, the concentration, type of radioligand, and specific activity used, and the method
of reporting binding. Refer to the citations for the details. b Antagonist.

N- and/or C-Terminal Modifications: Amide (-NHMe, -NHMe, -NMe2), Ester (-OMe, -OEt,
-OBu), Hydroxy (-OH), or Hydrazide (-NH-NH2)

In addition to the optimization of enzymatic stability, modifications of the N- and
C-terminus of opioid peptides affect functional activity and receptor selectivity, respec-
tively, based on the message–address concept [129,132]. Due to the essential role, N-
terminal modifications were limited to the trials converting functional activity, from
agonism to antagonism, while C-terminal modifications were performed frequently to
optimize the selectivity and physicochemical property or conjugate with other pharma-
cophoric structure [39,43,93,245]. Transformations of the C-terminal carboxylate into a
carboxamide or a carboxylate ester resulted in the reduction of DOR selectivity in ENK and
DPDPE due to an enhanced MOR activity [57,167]. The attachment of alkyl urea moiety
(-NHCH2CH2NH(C=O)NH2) at the C-terminus of ENK retained the same activity at MOR
and DOR [246]. Various C-terminal amidations of TIPP transformed the selective DOR
antagonist into a mixed MOR agonist/DOR antagonist [175]. Simple C-terminal modifica-
tions of EMs to an ester or a hydrazide showed significant analgesic effects after central
(i.c.v.) and peripheral (s.c.) administrations with the reduced tolerance, cardiovascular,
and constipation [60]. There was no explanation of how physicochemical properties modu-
lated side effects. A recent study showed C-terminal amidated ENK reduced β-arrestin
recruitment efficacies at MOR and KOR [247]. The role of the C-terminus is still not clear,
due to the inconsistent results [60]. Further modification of Phe4 to -NH-X- (aromatic,
heteroaromatic, and aliphatic groups) resulted in the loss of MOR activity [23].

Deletion and modification of the N-terminal amino group alter opioid agonist activi-
ties to antagonist activities as discussed in Section 3.1.2 [39,43]. Interestingly, incorporation
of lipoamino acids to the N-terminus of EM retained MOR agonist activity and afforded
a strong antinociceptive effect without causing constipation after oral administration in
CCI rats [71]. Cationization of the N-terminus of morphiceptin and EM through guanidiny-
lation (NH2-C(=NH2)-NH-) increased the brain uptake and metabolic stability, although
decreased affinity at MOR occurred [71]. N-guanidinylated cyclic ureido DLT analogs
exhibited the balanced nanomolar affinities at the MOR and DOR, and high enzymatic
stability that mediates clinically relevant analgesia [248]. A recent study showed that
modifications of the N- and C-terminus with a guanidine and a tetrazole could improve
metabolic stability (t1/2 > 6 h) and lipophilicity (clogD = 0.44) without affecting their activi-
ties at MOR and DOR [52]. ADAMB is a good example to show long-lasting activity and
strong oral antinociceptive activity after the substitutions at the N-terminus and position
4 [85]. Recent studies suggested that C-terminal modifications can regulate β-arrestin 2
recruitment and thus reduce MOR related side effects [123,124].

Peptide Linking

As shown in biphalin, linking two opioid peptides increases potency, efficacy, and
bioavailability compared to their corresponding monomeric counterparts in the cases of
receptor dimerization or cross-linking of neighboring receptors by triggering receptor-
receptor interactions [94,249]. Dual agonist activity at MOR and DOR results in a syner-
gistic antinociceptive effect that is advantageous in reducing dosage, thereby attenuating
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related side effects. Based on this advantage, peptide linking has been widely used by
connecting two address regions through various linkers while retaining two message
regions [94,235,250]. Biphalin showed a similar trend on modifications to ENK, and sub-
stitutions of Phe4 with Phe(X) and Nal residues affected its activity positively together
with the linker variation. It was shown that analogs with a hydrophilic linker such as
butanediol increased affinity at KOR whereas a piperazine linker produced a balanced high
affinity for MOR and DOR [94]. [Dmt1]DALDA-NH-CH2-CH2-NH-TICP(ψ), in which two
structural moieties were linked through an ethylenediamine, was a hetero-bivalent ligand
displaying MOR agonist/DOR antagonist profile with the nanomolar binding affinities
at both receptors [251]. Bitopic ligands, a new class of ligands that simultaneously target
orthosteric and allosteric sites, are an extension of the bivalent ligand concept, and no
bitopic opioid ligand has been identified yet. However, considering positive allosteric
interactions between MOR and DOR, bivalent ligands may act as a bitopic ligand [252].

Local Backbone Modifications

Peptide backbone is defined by the ϕ, ψ,ω, and χ torsional angles [128]. Altering a
peptide bond using various non-natural amino acids or isosteres has been widely used
to amplify conformational constraints of the dihedral angles and thereby to reduce the
rotational freedom of those side chains directly involved in the biological interaction
(Figure 6).

Most modifications of ENK using alkylurea, trifluoroethylamine, oxymethylene, olefin,
and bismethylene isosteres were not successful except in a few cases [57,253–255]. Among
them, olefine bonds from α,β-unsaturated α-amino acids conserve the planarity of the
peptide bond but no H-bonding because of the deletion of an oxygen atom, an acceptor. A
fluoroalkene substituted-ENK, [Tyr1-ψ[(Z)CF=CH]-Gly2]-Leu-ENK, was a successful case
increasing the stability as an orally active CNS-distributed peptide probe [166,256]. Its modi-
fications at the C-terminus reducedβ-arrestin recruitment through the DOR and MOR while
retaining affinity and cAMP potency [124]. Another DOR analogs, [Gly2-ψ[(Z)CF=CH]-
Phe3]-Leu-ENK, [Gly2-ψ[C(=O]O]-Phe3]-Leu-ENK, [Gly2-ψ[C(=S)NH]-Phe3]-Leu-ENK,
retained the agonist activity, indicating the amide bonds can be replaced by a fluoroalkene,
an ester, a thioamide possessing high dipole moment and rotational barrier without a
substantial loss of activity [165]. Positional scanning of the Leu-ENK with an ester bond
and N-methylation demonstrated that the fourth amide bond is replaceable [164]. The SAR
results of two analogs, [Gly4-ψ[C(=O]O]-Leu5]-ENK and [NMeLeu5]-ENK indicated that
an H-bonding acceptor is critical [164]. Trials to enhance the systemic analgesic effect of
[Dmt1]-DPDPE using oxymethylene (-C-O-), trans-double bond (-C=C-), or bismethylene
(-C-C-) isosteres were not successful [57]. β-sulfonamide analog of EM-2 in which Pro2

was replaced with 3-pyrrolidinemethanesulphonic acid (βPrs) retained a high affinity and
selectivity at MOR (Ki = 19 nM) [140]. Recently, aza-pipecolyl (azaPip) substituted EM and
morphiceptin analogs were developed to study the conformational requirements, whether
cis-amide geometry and β-turn conformation are critical for the receptor interactions [257].
Its application in H-Dmt-azaPip-DPhe-Pro-NH2 improved potency and affinity for MOR
and DOR, indicating the requisite for natural Tyr-Pro cis form for the receptor binding [257].

As a local variation of parent amide backbone, β-amino acids, γ-amino acids,
β-dipeptidomimetics, and the other conformationally constrained non-natural amino acids
(Figure 7) have been simply applied to opioid peptides [51,258]. Insertion of one (β-amino
acids) or two additional carbon atoms (γ-amino acids) into a peptide backbone changed
the conformational structure, afforded the structural diversity by increasing diastereomers,
and enhanced metabolic stability for prolonged in vivo effect [258]. Incorporation of cyclic
amino acids further produced successful peptidomimetics for degradation resistance and
restricted conformation. For these reasons, many studies have focused on incorporating a
variety of β-, γ-, or cyclic β-amino acids into opioid peptides.

Position 2 of EM has been modified successfully without damaging the affinity but
improving the enzymatic hydrolysis resistance despite the reduction of MOR selectivity
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over DOR [111,136,142,240,259]. Likewise, many studies showed that the substitutions
of various β-amino acids including acyclic β-amino acids into EMs were well tolerated
at position 2, unlike the other positions [136,141,143]. Substitution of a Pro residue with
β2-(R)-Pro or β3-(S)-Pro increased or retained affinity at the MOR and exhibited good
resistance to the proteolytic enzyme and effective peripheral antinociception [111,260].
Dmt-(1S,2R)Achc-Phe-Phe(p-F)-NH2, in which cis-2-aminocyclohexane carboxylic acid
(Achc) was substituted at position 2 was a potent MOR agonist (EC50 = 51 nM) with high
efficacy (176% compared to DAMGO) and enhanced proteolytic stability (t1/2 > 20 h in
rat brain membrane) [136]. Incorporation of β2-, β3-hPhe, or β3-hTic at positions 3 and
4 resulted in the decrease of MOR selectivity by increasing DOR activity while retaining
MOR activity, and NMR and molecular modeling studies indicated their predominant
turn structures [261,262]. A series of more constrained β-amino acids, 2-methylene-3-
aminopropanoic acids (MAP), were incorporated into positions 3 and 4 of EM [263]. H-
Tyr-Pro-Trp-(2-Furyl)Map-NH2 was a very potent MOR agonist with the picomolar range
of binding affinity (Ki = 0.22 nM), 430-fold increased agonist activity (EC50 = 0.0334 nM,
Emax = 97%) in the cAMP test, high metabolic stability, and enhanced antinociceptive
activity in the mice tail-flick test [263]. β-dipeptidomimetics (-β3hPhe-Tbac-, -β3hPhe-Tia-,
-β3hPhe-β2hPhe-, -β3hPhe-β3hPhe-, -β2hPhe-β2hPhe-) replacing the native backbone of
Phe3-Phe4 residue in EM-2 retained MOR affinity due to the prevalent extended conforma-
tion [262]. Substitution of a Phe residue with chiral α-hydroxy-β-phenylalanine (AHPBA,
βAtc) in EMs and [Dmt1,Tic2]-EMs retained the biological activities of the parent peptides
and improved half-life slightly in most cases [264]. Among those, Dmt-Tic-(2R,3S)AHPBA-
Phe-NH2 significantly increased the half-life (>2 h) and retained a strong antinociception
(ED50 = 2.0 nM, i.c.v.) without causing a motor effect and acute tolerance due to the
potential role of DOR antagonist involved.
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In morphiceptin analogs that are similar to the structure of EMs, incorporation of
cis-2-aminocyclopentane carboxylic acid (cis-2-Acpc) into position 2 retained the activ-
ity and selectivity of parent peptides for MOR due to enough separation of Tyr1 and
Phe3[129,141,157]. Contrarily, the incorporation of cis-2-Achc into DER lost MOR activity,
indicating its unfavorable conformation for the receptor and distinct receptor interaction
from morphiceptin [265]. In multiply modified analogs, the substitution of β2- or β3-amino
acids affected the selectivity depending on their configurations and resulted in the de-
velopment of an agonist, H-Dmt-DAla-β2-(R)-1-Nal-Pro-NH2, for MOR, DOR, and KOR
(Ki = 0.05, 1.04, and 11.2 nM, respectively) with high metabolic stability (t1/2 > 50 h) [108].
Incorporations of β3-homo amino acids into the message region of DLT decreased binding
affinity at DOR except positions 2 and 3 [217].

Many studies have focused on restricting conformational structures to an active one
using constrained amino acid analogs [266]. Tic, 7-hydroxy-1,2,3,4-tetrahydroisoquinoline-
3-carboxylic acid (Htc), and β-carboline-3-carboxylic acid (Tcc) are a constrained cyclic
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analog of Phe, Tyr, and Trp, respectively, which are key structural elements of most opioid
peptides. and Tic has been successfully applied to the design of opioid peptidomimetics
(Figure 8). Dmt-Tic is the shortest peptide pharmacophore for DOR antagonism and is
being widely used as a template due to the remarkable alterations in selectivity and ac-
tivity [180,264,267,268]. 1,2,3,4-tetrahydroquinoline (Thq) derivative coupled with a Dmt
residue to resemble JOM-13 structure showed potent MOR agonist activity [269]. Further
modifications at C-6 and C-8 positions of Thq with various aromatic, cycloalkyl, hetero-
cyclic, and alkyl groups transferred its activity to a mixed opioid activity with optimized
pharmacological properties reducing tolerance and dependence as well as improving
the BBB permeability [91,270,271]. The modification with 4-hydroxy 2-methylindanyl
group at C-6 significantly increased efficacy at KOR (Ki = 0.77 nM, EC50 = 25 nM, 92%
stimulation) and MOR (Ki = 0.18 nM, EC50 = 4.9 nM, 66% stimulation) resulting in a
MOR/KOR agonist [272].
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Replacement of Pro2 of EMs with a more constrained cyclic amino acid such as
(S)-azetidine-2 carboxylic acid (Aze) and 3,4-dehydro-(S)-proline (∆3Pro) improved the
potency but resulted in the loss of selectivity for MOR (Figure 8) [143,273]. In nature,
diverse structures of α,β-dehydroamino acids exist, and dehydrophenylalanine is the most
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widely used one. The substitution at position 4 of EMs retained the same high potency at
MOR as β-MePhe substituted analog [273,274]. A 4-imdidazolidone moiety that contains
a methylene bridge between two amide bonds was well tolerated for positions 4 and
5 of ENKs showing a similar range of affinities at MOR and DOR with a slight MOR
selectivity [275]. Replacement of Gly2-Gly3-Phe4 moiety with an aminobutyl-substituted
pyrazinone ring diminished MOR and DOR activities, whereas 6-(Dmt-NHBu)- and bis-
(Dmt-NHBu)-substituted pyrazinone rings showed very potent MOR agonist and weak
DOR antagonist properties [58,276,277]. Recently, triazole rings are receiving attention
thanks to the simple synthetic procedure, click chemistry, and the ability to adjust flexibility
on all the rotatable bonds [278]. However, the positional scanning of ENKs with a 1,4-
disubstituted triazole, 1,5-disubstituted tetrazole, 4-imidazolidinone, and cyclopropane
ring was not successful, with an overall loss of activity in most cases. It was suggested that
natural amide bonds are critical for receptor interactions, particularly through hydrogen
bondings between oxygen and hydrogen atoms [275,278–280]. Another positional scanning
of DER-tetrapeptide with piperazin-2-one moieties, N,N′-ethylene-bridged dipeptides
showed slightly different SAR depending on the chirality and backbone [281].

Bicyclic conformational constraints are the most common way of building β-turn mim-
ics, as established by the β-turn-dipeptide. Various heterocyclic scaffolds have been applied
to induce the β-turn structure of opioid peptides. Atypical MOR agonist without a cationic
amino group, in which Ri, Ri+2, and Ri+3 are 4-hydroxyphenethyl, phenethyl, phenethyl,
respectively, was identified through combinational libraries of β-turn peptidomimetics
of EM [128,139]. Another β-turn opioid peptidomimetic, thiazolidinone bicyclo [2,3]-Leu-
ENK, turned out to be a weak MOR agonist/DOR antagonist [282]. Azepinone scaffold has
been utilized for the formation of constrained dipeptidic moieties such as Aba, 8-hydroxy-4-
amino-1,2,4,5-tetrahydro-2-benzazepin-3-one (Hba), and 4-mino-1,2,4,5-tetrahydro-indolo
[2,3-c]azepin-3-one (Aia). Replacement of Tic-Gly in Dmt-Tic-Gly analogs with dipeptidic
moieties, Aba-Gly and DAia-Gly, shifted affinity and selectivity to afford a potent MOR
agonist and DOR antagonist, respectively [283–286]. The same replacement effect was
observed in DER tetrapeptide when Phe3-Gly4 was substituted by Aba-Gly [287]. Recent
application of a bicyclic scaffold rendered atypical cyclic EM peptidomimetic [155]. H-Dmt-
NMe-DAla-[(S)-Aba-Gly]-NH2 behaves as a mixed MOR/DOR agonist with high potency
(EC50 = 1.7 pM, 16 pM, respectively). Functional electrophysiological in vitro screening
using primary cortical and spinal cord networks indicated that this was the most potent,
showing potential for neuropathic pain.

Non-Natural Amino Acid Replacements without the Alteration of a Peptide Bond

The simplest approach to accomplish conformational changes is to replace one or sev-
eral positions with non-natural amino acids, such as D-amino acids, α-, β-, or γ-substituted
amino acids, and Nα-alkylated amino acids [162]. Introduction of a D-amino acid alters
the spatial orientation of a side chain and results in the change of the conformation of the
peptide backbone. The configuration-dependent differential effects on the opioid receptor
selectivity and intrinsic activity have been well evidenced [162,175]. Nα-substituted amino
acids also influence the conformational freedom of both the backbone and side chain of
an adjacent residue and increase the peptide’s lipophilicity with the reduced number of
hydrogen bondings, resulting in the enhancement of the BBB permeability. The simple
introduction of a NMePhe residue at position 4 of ENK retained a good DOR activity
along with the increase of lipophilicity and stability [164]. [DCys2, NMe-DCys5]ENK
turned out to be the most potent cyclic MOR/DOR agonist (IC50 = 1.3, 0.02 nM in GPI and
MVD, respectively), possessing a good analgesic effect [288]. FK33-824 (Tyr-DAla-NMePhe-
Met(O)-ol) and Metkephamid (Tyr-DAla-Gly-NMeMet-NH2) were representative analogs
showing central analgesic effects through systemic administrations, which indicate the
increased BBB permeability [98].

Cα-substituted amino acids have been used to limit the number of conformations
by reducing rotational freedom around a peptide bond. The 2-aminoisobutyric acid (Aib)
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is a common residue to elicit a turn-structure due to the extra methyl group-induced
steric hindrance [128]. Incorporation of an Aib residue into ENK (position 3) and DLT
(positions 2–4) retained a similar activity at DOR without detrimental effects [167,289,290].
ICI174864 is an example showing high DOR selectivity with the Aib substitutions [174].
Substitutions of Cα,α-dialkyl cyclic amino acids in DLT showed that the D-chirality of
the 2nd position is not critical for the DOR selectivity, and the aromatic ring of the 3rd
position is replaceable with a hydrophobic ring [172]. The replacement of Phe3 of DLT with
azidomethyl- or piperidinylmethyl-substituted Phe residues (S-form) retained the same
range of affinity and selectivity for DOR, whereas other derivatives lost affinities [134].

Cβ-substituted amino acids restrict the Cα-Cβ bond without affecting backbone an-
gles and select one rotamer of aromatic amino acids (Figure 9) [128]. For this reason,
Cβ-substituted amino acids have been frequently used to produce a constrained structure
optimized for biological activity and physicochemical property [291]. β-MePhe, β-iPrPhe,
β-methyl-2,6-dimethylphenylalanine, and Tmt are the most widely used in opioid pep-
tidomimetics [292,293]. The favorable side chain rotamer for DOR was the trans form (2S,
3R), and [(2S, 3R)-β-Tmt1]DPDPE and [(2S, 3R)-β-iPrPhe3]DLT increased DOR selectivity
with retained affinity [170,293]. D,L-amino-β-mercapto-β,β-pentamethylenepropionic acid
(Apmp) has a cyclohexyl ring in place of the geminal dimethyl group of Pen, and its substi-
tution at position 2 in DPDPE resulted in the loss of DOR affinity and selectivity due to
the steric hindrance and hydrophobic property while the substitution at position 5 was
tolerated [294].
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Sterically constrained aromatic amino acids have been substituted for Phe and Tyr
residues in opioid peptides successfully: 2′,6′-dimethylphenylalanine (Dmp), Emp, Tmp,
2′,6′-dimethyl tyrosine Dmt, and Tmt [97]. Among these, Dmt is the most successfully
applied in many opioid peptides to afford [100,267]. The β-methyl group on the side chain
of the amino acid basically “locks” the χ1 and χ2 conformation of the molecule [57,128].
The substitution in DPDPE and DPDPE-OMe resulted in the increase of potency at DOR
and MOR but the decrease of DOR selectivity because of the enhanced MOR activity.
The substituted analogs showed a significant antinociceptive activity following systemic
administration [55,57]. Another trial to utilize the SAR at the MOR resulted in the discovery
of a molecule with a highly balanced MOR agonist/DOR antagonist property, DIPP[ψ]-
NH2 [100,176,177]. The substitution in DALDA resulted in the discovery of [Dmt1]-DALDA
showing the drug-like property, long duration of antinociceptive effects in vivo after i.th. or
s.c. injections, high resistance to enzymatic degradation, and slow clearance along with oral
delivery potential [61,295–297]. Studies on the binding mode indicated that the two methyl
groups on the aromatic ring of Dmt1 in opioid peptides participated in additional lipophilic
contacts with MOR residue as well as steric influence [298]. Other constrained aromatic
amino acids, Dmp, Tmp, and Emp, were introduced to the EM scaffold to lead distinct
bifunctional activities such as MOR/DOR agonists or MOR agonists/DOR antagonists [97].
The alteration of EM-2 activity by Dmt1 and alkylated Phe3 residues produced a dual
MOR/DOR agonist activity in Dmt-Pro-Emp-Phe-NH2 and a mixed MOR agonist/DOR
antagonist in Dmt-Pro-Tmp-Phe-NH2 [97]. Substitution of a cyclic EM, Dmt-c[Lys-Phe-Phe-
Asp]-NH2, with 2′,3′, or 4′-MePhe4 improved the activity slightly at DOR and dramatically
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at MOR, and exhibited remarkable antinociceptive effects after i.c.v. administration through
potent MOR and KOR agonist activities [107].

Naphtylalanine (Nal) analogs contain a more extended aromatic ring system, like a Trp
residue, and possess higher π-electron density. These bulkier residues have been success-
fully substituted for a Phe residue in ENKs, cyclic ENK analogs, and other opioid peptides
to afford potent mixed-efficacy for opioid receptors [229,299,300]. Tyr-c[DOrn-2-Nal-DPro-
Gly] was the first potent analog with mixed MOR agonist/DOR antagonist property after
less potent TIPP-NH2 [300]. Structural analysis indicated that the enhanced MOR activities
in ENK analogs came from the relatively extended structure [299,301]. A variety of p-
substituted phenylalanine analogs were also introduced to multiple opioid peptides includ-
ing ENKs, DPDPE, and DSLET as a surrogate of Tyr1, and (S)-4-carboxamidophenylalanine
(Cpa) and (S)-4-carboxamido-2,6-dimethylphenylalanine (Cdp) exhibited the equivalent
affinity for DOR compared to parent compounds [302]. The Cdp with 2.6-dimethyl group
enhanced affinity for the MOR more than Cpa analog.

In most opioid peptides, the substitution of halogenated Phe residues, Phe(p-X),
produced an enhanced opioid activity unlike other derivatives such as Phe(p-NH2), Phe(p-
NCS), Phe(p-NHCOCH2Br) [93,303–305]. However, the substitution of 4-bis(2-chloroethyl)
amino-L-phenylalanine (Mel) in Met-ENK-Arg-Phe was not tolerated at MOR and DOR,
whereas C-terminal substitution was well tolerated at KOR [306]. The fifth residue in the
address region of Leu-ENK has been modified by various analogs, including branched
alkyl, cycloalkyl, or Nα-Cα cyclized moiety to result in a small effect on biological ac-
tivity due to the lack of role in the receptor interaction (Figure 10). Interestingly, aza-
β-homoleucine or cycloleucine substituted ENK turned out to be biased with lower β-
arrestin recruitment, suggesting the potential role of the 5th position in producing G-protein
biased signaling [123].
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Besides the modification of a backbone and the replacement of amino acid residue,
a combinatorial library has also been used to identify new privileged peptidomimetic
structures for opioid receptors. Acetalins (AC-RFMWMT/R/K-NH2) was the first potent
MOR antagonists identified through the peptide library, and Tyr-DNve-Gly-Nal-NH2
(Ki = 0.4 nM), Trp-DTyr-Aba-Arg-NH2 (Ki = 7 nM), and DPhe-DPhe-DNle-DArg-NH2
(Ki = 1 nM) were the most potent MOR, DOR, and KOR agonists, respectively [192,307,308].
First peptidomimetic library using nonnatural oligo-N-substituted glycines identified a
MOR ligand CHIR4531 (Ki = 6 nM) [214].

4. Summary and Prospective Aspects

Opioid analgesics such as morphine have been the most commonly used for severe
pain despite serious side effects with long-term administration, and there are still unmet
needs to solve the problems. Because the efforts to develop a new molecular entity for
a therapeutic purpose have not been successful, and there are currently a decreasing
number of approved drugs, it is likely important to find an alternative for the increase of
productivity. In general, the lack of efficacy, toxicity, and clinical safety are the most common
causes of failure in the drug discovery process. Therefore, utilization of natural opioid
peptides, including EMs, DER, DLTs, ENKs, DYNs, and END, which do not possess intrinsic



Biomolecules 2022, 12, 1241 27 of 40

toxicity in the body, may provide an efficient model for novel analgesics with enhanced
therapeutic advantages. In this light, opioid peptidomimetics have been studied deeply to
afford applications in the therapeutic field, although the results are still insignificant: one
in medical use.

Undesirable physicochemical properties and the resulting low metabolic stability and
BBB permeability are the main drawbacks of opioid peptides as a drug candidate. The
strategy of opioid peptidomimetic serving as a bridge between the respective characters of
peptides and small molecules has solved the problems and enhanced the biological activi-
ties of natural opioid peptides as well in many cases. Mimicking natural opioid peptides
is still dynamic, and there remains much room for a simplified and synthetically straight-
forward structure while maintaining the key structural features for the receptors. For the
rational design of an opioid peptidomimetic, a full understanding of metabolic degrada-
tion pathways and SAR, and its application for pharmacokinetic and pharmacodynamic
properties are significant.

Over the decades, various synthetic strategies have been developed for the preparation
of non-natural amino acid derivatives or isosteres of which the substitution can modulate
the intrinsic flexibility of peptide backbone. As discussed in numerous cases, opioid
peptidomimetics have successfully advanced the research in opioid and pain treatment
along with the advances of new technologies in structural analysis, molecular mechanics,
and synthetic methodology. Systemic administrations of a few opioid peptidomimetics,
including oral administration, have been shown to produce central analgesic effects through
enhanced metabolic stability and BBB permeability. On the other hand, a few studies have
also proven that peripherally acting opioid peptidomimetics are safe analgesic drugs with
minimal side effects in the CNS. Further efforts, however, in transforming the molecules
to opioid peptide-based drugs with improved safety profiles are still critical, and new
formulations or routes of administration may quicken the process. Taken together, the
small size of opioid peptidomimetics is likely to have a high potential of being a potent
systemic and oral drug and also to provide unanticipated opportunities for the development
of a novel analgesic drug that is free from opioid side effects.
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240. Adamska-Bartłomiejczyk, A.; Lipiński, P.F.; Piekielna-Ciesielska, J.; Kluczyk, A.; Janecka, A. Pharmacological profile and
molecular modeling of cyclic opioid analogs incorporating various phenylalanine derivatives. ChemMedChem 2020, 15, 1322–1329.
[CrossRef]

241. Przydzial, M.; Pogozheva, I.; Ho, J.; Bosse, K.; Sawyer, E.; Traynor, J.R.; Mosberg, H.I. Design of high affinity cyclic pentapeptide
ligands for κ-opioid receptors. J. Peptide Res. 2005, 66, 255–262. [CrossRef]

242. Piekielna, J.; Gentilucci, L.; De Marco, R.; Perlikowska, R.; Adamska, A.; Olczak, J.; Mazur, M.; Artali, R.; Modranka, J.; Janecki,
T. Cyclic side-chain-linked opioid analogs utilizing cis-and trans-4-aminocyclohexyl-D-alanine. Bioorg. Med. Chem. 2014, 22,
6545–6551. [CrossRef]

243. Touati-Jallabe, Y.; Bojnik, E.; Legrand, B.; Mauchauffée, E.; Chung, N.N.; Schiller, P.W.; Benyhe, S.; Averlant-Petit, M.-C.; Martinez,
J.; Hernandez, J.-F.o. Cyclic enkephalins with a diversely substituted guanidine bridge or a thiourea bridge: Synthesis, biological
and structural evaluations. J. Med. Chem. 2013, 56, 5964–5973. [CrossRef]

244. Lu, Y.; Lum, T.K.; Leow Augustine, Y.W.; Weltrowska, G.; Nguyen, T.M.-D.; Lemieux, C.; Chung, N.N.; Schiller, P.W. Replacement
of the N-terminal tyrosine residue in opioid peptides with 3-(2, 6-dimethyl-4-carbamoylphenyl) propanoic acid (Dcp) results in
novel opioid antagonists. J. Med. Chem. 2006, 49, 5382–5385. [CrossRef]

245. Lee, Y.S.; Petrov, R.; Park, C.K.; Ma, S.-w.; Davis, P.; Lai, J.; Porreca, F.; Vardanyan, R.; Hruby, V.J. Development of novel enkephalin
analogues that have enhanced opioid activities at both µ and δ opioid receptors. J. Med. Chem. 2007, 50, 5528–5532. [CrossRef]

246. Wiszniewska, A.; Kunce, D.; Chung, N.N.; Schiller, P.W.; Izdebski, J. p-Nitrophenoxycarbonyl derivatives of Boc-protected
diaminoalkanes in the synthesis of enkephalin peptidomimetics. J. Pept. Sci. 2005, 11, 579–583. [CrossRef]

247. Sharma, K.K.; Cassell, R.J.; Meqbil, Y.J.; Su, H.; Blaine, A.T.; Cummins, B.R.; Mores, K.L.; Johnson, D.K.; van Rijn, R.M.; Altman,
R.A. Modulating β-arrestin 2 recruitment at the δ-and µ-opioid receptors using peptidomimetic ligands. RSC Med. Chem. 2021,
12, 1958–1967. [CrossRef]

248. Bankowski, K.; Michalak, O.M.; Lesniak, A.; Filip, K.E.; Cmoch, P.; Szewczuk, Z.; Stefanowicz, P.; Izdebski, J. N-terminal
guanidinylation of the cyclic 1,4-ureido-deltorphin analogues: The synthesis, receptor binding studies, and resistance to
proteolytic digestion. J. Pept. Sci. 2015, 21, 467–475. [CrossRef]

249. Hazum, E.; Chang, K.-J.; Leighton, H.; Lever, O.W., Jr.; Cuatrecasas, P. Increased biological activity of dimers of oxymorphone
and enkephalin: Possible role of receptor crosslinking. Biochem. Biophys. Res. Commun. 1982, 104, 347–353. [CrossRef]

250. Dyniewicz, J.; Lipinski, P.F.; Kosson, P.; Lesniak, A.; Bochynska-Czyz, M.; Muchowska, A.; Tourwe, D.; Ballet, S.; Misicka, A.;
Lipkowski, A.W. Hydrazone Linker as a Useful Tool for Preparing Chimeric Peptide/Nonpeptide Bifunctional Compounds. ACS
Med. Chem. Lett. 2017, 8, 73–77. [CrossRef]

251. Weltrowska, G.; Lemieux, C.; Chung, N.; Schiller, P. A chimeric opioid peptide with mixed µ agonist/δ antagonist properties. J.
Peptide Res. 2004, 63, 63–68. [CrossRef]

http://doi.org/10.1021/jm9007483
http://doi.org/10.1016/j.bmc.2011.10.040
http://doi.org/10.1111/jphp.12335
http://doi.org/10.1016/S0960-894X(01)00706-5
http://doi.org/10.1021/jm970861r
http://doi.org/10.1016/j.npep.2009.03.003
http://doi.org/10.1021/acsmedchemlett.7b00210
http://doi.org/10.1016/j.bmcl.2005.09.080
http://doi.org/10.1016/j.bmc.2018.05.045
http://doi.org/10.1021/jm0256023
http://doi.org/10.1021/jm900577k
http://doi.org/10.1002/cmdc.202000248
http://doi.org/10.1111/j.1399-3011.2005.00295.x
http://doi.org/10.1016/j.bmc.2014.10.022
http://doi.org/10.1021/jm4008592
http://doi.org/10.1021/jm060369k
http://doi.org/10.1021/jm061465o
http://doi.org/10.1002/psc.650
http://doi.org/10.1039/D1MD00025J
http://doi.org/10.1002/psc.2762
http://doi.org/10.1016/0006-291X(82)91981-7
http://doi.org/10.1021/acsmedchemlett.6b00381
http://doi.org/10.1111/j.1399-3011.2003.00108.x


Biomolecules 2022, 12, 1241 38 of 40

252. Gomes, I.; IJzerman, A.P.; Ye, K.; Maillet, E.L.; Devi, L.A. G protein-coupled receptor heteromerization: A role in allosteric
modulation of ligand binding. Mol. Pharmacol. 2011, 79, 1044–1052. [CrossRef]

253. Wiszniewska, A.; Kunce, D.; Chung, N.N.; Schiller, P.W.; Izdebski, J. Synthesis of peptidomimetics: An evaluation of p-nitrophenyl
carbamate of ethylenediamine. Lett. Peptide Sci. 2003, 10, 33–39. [CrossRef]

254. Sinisi, R.; Ghilardi, A.; Ruiu, S.; Lazzari, P.; Malpezzi, L.; Sani, M.; Pani, L.; Zanda, M. Synthesis and in vitro evaluation of
trifluoroethylamine analogues of enkephalins. ChemMedChem 2009, 4, 1416–1420. [CrossRef] [PubMed]

255. Blomberg, D.; Kreye, P.; Fowler, C.; Brickmann, K.; Kihlberg, J. Synthesis and biological evaluation of leucine enkephalin turn
mimetics. Organ. Biomol. Chem. 2006, 4, 416–423. [CrossRef] [PubMed]

256. Altman, R.A.; Sharma, K.K.; Rajewski, L.G.; Toren, P.C.; Baltezor, M.J.; Pal, M.; Karad, S.N. Tyr1-ψ [(Z) CF= CH]-Gly2 Fluorinated
Peptidomimetic Improves Distribution and Metabolism Properties of Leu-Enkephalin. ACS Chem. Neurosci. 2018, 9, 1735–1742.
[CrossRef]

257. Chingle, R.; Mulumba, M.; Chung, N.N.; Nguyen, T.M.-D.; Ong, H.; Ballet, S.; Schiller, P.W.; Lubell, W.D. Solid-Phase Azopeptide
Diels–Alder Chemistry for Aza-pipecolyl Residue Synthesis To Study Peptide Conformation. J. Organ. Chem. 2019, 84, 6006–6016.
[CrossRef]

258. Cabrele, C.; Martinek, T.s.A.; Reiser, O.; Berlicki, Ł. Peptides containing β-amino acid patterns: Challenges and successes in
medicinal chemistry. J. Med. Chem. 2014, 57, 9718–9739. [CrossRef]

259. Cardillo, G.; Gentilucci, L.; Qasem, A.R.; Sgarzi, F.; Spampinato, S. Endomorphin-1 analogues containing beta-proline are
mu-opioid receptor agonists and display enhanced enzymatic hydrolysis resistance. J. Med. Chem. 2002, 45, 2571–2578. [CrossRef]

260. Cardillo, G.; Gentilucci, L.; Melchiorre, P.; Spampinato, S. Synthesis and binding activity of endomorphin-1 analogues containing
beta-amino acids. Bioorg. Med. Chem. Lett. 2000, 10, 2755–2758. [CrossRef]

261. Lesma, G.; Salvadori, S.; Airaghi, F.; Bojnik, E.; Borsodi, A.; Recca, T.; Sacchetti, A.; Balboni, G.; Silvani, A. Synthesis, phar-
macological evaluation and conformational investigation of endomorphin-2 hybrid analogues. Mol. Divers 2013, 17, 19–31.
[CrossRef]

262. Lesma, G.; Salvadori, S.; Airaghi, F.; Murray, T.F.; Recca, T.; Sacchetti, A.; Balboni, G.; Silvani, A. Structural and Biological
Exploration of Phe3–Phe4-Modified Endomorphin-2 Peptidomimetics. Med. Chem. Lett. 2013, 4, 795–799. [CrossRef]

263. Wang, Y.; Xing, Y.; Liu, X.; Ji, H.; Kai, M.; Chen, Z.; Yu, J.; Zhao, D.; Ren, H.; Wang, R. A new class of highly potent and selective
endomorphin-1 analogues containing alpha-methylene-beta-aminopropanoic acids (map). J. Med. Chem. 2012, 55, 6224–6236.
[CrossRef]

264. Hu, M.; Giulianotti, M.A.; McLaughlin, J.P.; Shao, J.; Debevec, G.; Maida, L.E.; Geer, P.; Cazares, M.; Misler, J.; Li, L.; et al.
Synthesis and biological evaluations of novel endomorphin analogues containing alpha-hydroxy-beta-phenylalanine (AHPBA)
displaying mixed mu/delta opioid receptor agonist and delta opioid receptor antagonist activities. Eur. J. Med. Chem. 2015, 92,
270–281. [CrossRef]

265. Bozu, B.; Fulop, F.; Toth, G.K.; Toth, G.; Szucs, M. Synthesis and opioid binding activity of dermorphin analogues containing
cyclic beta-amino acids. Neuropeptides 1997, 31, 367–372. [CrossRef]

266. Janecka, A.; Kruszynski, R. Conformationally restricted peptides as tools in opioid receptor studies. Curr. Med. Chem. 2005, 12,
471–481. [CrossRef]

267. Bryant, S.D.; Jinsmaa, Y.; Salvadori, S.; Okada, Y.; Lazarus, L.H. Dmt and opioid peptides: A potent alliance. Peptide Sci. 2003, 71,
86–102. [CrossRef]

268. Montgomery, D.; Anand, J.P.; Griggs, N.W.; Fernandez, T.J.; Hartman, J.G.; Sánchez-Santiago, A.A.; Pogozheva, I.D.; Traynor,
J.R.; Mosberg, H.I. Novel Dimethyltyrosine–Tetrahydroisoquinoline Peptidomimetics with Aromatic Tetrahydroisoquinoline
Substitutions Show in Vitro Kappa and Mu Opioid Receptor Agonism. ACS Chem. Neurosci. 2019, 10, 3682–3689. [CrossRef]

269. Wang, C.; McFadyen, I.J.; Traynor, J.R.; Mosberg, H.I. Design of a high affinity peptidomimetic opioid agonist from peptide
pharmacophore models. Bioorg. Med. Chem. Lett. 1998, 8, 2685–2688. [CrossRef]

270. Nastase, A.F.; Griggs, N.W.; Anand, J.P.; Fernandez, T.J.; Harland, A.A.; Trask, T.J.; Jutkiewicz, E.M.; Traynor, J.R.; Mosberg, H.I.
Synthesis and Pharmacological Evaluation of Novel C-8 Substituted Tetrahydroquinolines as Balanced-Affinity Mu/Delta Opioid
Ligands for the Treatment of Pain. ACS Chem. Neurosci. 2018, 9, 1840–1848. [CrossRef]

271. Bender, A.M.; Griggs, N.W.; Anand, J.P.; Traynor, J.R.; Jutkiewicz, E.M.; Mosberg, H.I. Asymmetric synthesis and in vitro and
in vivo activity of tetrahydroquinolines featuring a diverse set of polar substitutions at the 6 position as mixed-efficacy mu opioid
receptor/delta opioid receptor ligands. ACS Chem. Neurosci. 2015, 6, 1428–1435. [CrossRef]

272. Harland, A.A.; Pogozheva, I.D.; Griggs, N.W.; Trask, T.J.; Traynor, J.R.; Mosberg, H.I. Placement of Hydroxy Moiety on Pendant of
Peptidomimetic Scaffold Modulates Mu and Kappa Opioid Receptor Efficacy. ACS Chem. Neurosci. 2017, 8, 2549–2557. [CrossRef]

273. Torino, D.; Mollica, A.; Pinnen, F.; Feliciani, F.; Lucente, G.; Fabrizi, G.; Portalone, G.; Davis, P.; Lai, J.; Ma, S.W.; et al. Synthesis
and evaluation of new endomorphin-2 analogues containing (Z)-alpha,beta-didehydrophenylalanine (Delta(Z)Phe) residues. J.
Med. Chem. 2010, 53, 4550–4554. [CrossRef]

274. Siodłak, D. α, β-Dehydroamino acids in naturally occurring peptides. Amino Acids 2015, 47, 1–17. [CrossRef]
275. Rinnova, M.; Nefzi, A.; Houghten, R.A. Opioid activity of 4-imidazolidinone positional analogues of Leu-Enkephalin. Bioorg.

Med. Chem. Lett. 2002, 12, 3175–3178. [CrossRef]

http://doi.org/10.1124/mol.110.070847
http://doi.org/10.1023/B:LIPS.0000014027.84594.e6
http://doi.org/10.1002/cmdc.200900158
http://www.ncbi.nlm.nih.gov/pubmed/19533725
http://doi.org/10.1039/b515618a
http://www.ncbi.nlm.nih.gov/pubmed/16446799
http://doi.org/10.1021/acschemneuro.8b00085
http://doi.org/10.1021/acs.joc.8b03283
http://doi.org/10.1021/jm5010896
http://doi.org/10.1021/jm011059z
http://doi.org/10.1016/S0960-894X(00)00562-X
http://doi.org/10.1007/s11030-012-9399-5
http://doi.org/10.1021/ml400189r
http://doi.org/10.1021/jm300664y
http://doi.org/10.1016/j.ejmech.2014.12.049
http://doi.org/10.1016/S0143-4179(97)90073-1
http://doi.org/10.2174/0929867053362983
http://doi.org/10.1002/bip.10399
http://doi.org/10.1021/acschemneuro.9b00250
http://doi.org/10.1016/S0960-894X(98)00472-7
http://doi.org/10.1021/acschemneuro.8b00139
http://doi.org/10.1021/acschemneuro.5b00100
http://doi.org/10.1021/acschemneuro.7b00284
http://doi.org/10.1021/jm1001343
http://doi.org/10.1007/s00726-014-1846-4
http://doi.org/10.1016/S0960-894X(02)00678-9


Biomolecules 2022, 12, 1241 39 of 40

276. Shiotani, K.; Li, T.; Miyazaki, A.; Tsuda, Y.; Yokoi, T.; Ambo, A.; Sasaki, Y.; Bryant, S.D.; Lazarus, L.H.; Okada, Y. Design and
synthesis of opioidmimetics containing 2’,6’-dimethyl-L-tyrosine and a pyrazinone-ring platform. Bioorg. Med. Chem. Lett. 2007,
17, 5768–5771. [CrossRef]

277. Okada, Y.; Tsukatani, M.; Taguchi, H.; Yokoi, T.; Bryant, S.D.; Lazarus, L.H. Amino acids and peptides. LII. Design and synthesis
of opioid mimetics containing a pyrazinone ring and examination of their opioid receptor binding activity. Chem. Pharm. Bull.
1998, 46, 1374–1382. [CrossRef]

278. Proteau-Gagné, A.; Rochon, K.; Roy, M.; Albert, P.-J.; Guérin, B.; Gendron, L.; Dory, Y.L. Systematic replacement of amides by 1,
4-disubstituted [1-3] triazoles in Leu-enkephalin and the impact on the delta opioid receptor activity. Bioorg. Med. Chem. Lett.
2013, 23, 5267–5269. [CrossRef]
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