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Mini-Review

The adult-onset neurodegenerative disorder Huntington’s 
Disease (HD) is caused by a polyglutamine repeat expansion 
mutation near the N-terminus of the 350 kDa protein, hunting-
tin.1,2 Despite the widespread expression of huntingtin in all cells, 
neurons within the striatum and cerebral cortex are selectively 
vulnerable to the toxicity of mutant huntingtin.3 Wild-type hun-
tingtin has been implicated in a range of diverse cellular processes, 
such as vesicular transport, transcriptional regulation, synaptic 
function, actin remodeling and the cell stress response.4-9 In 
healthy neurons, huntingtin localizes primarily to the cytoplasm; 
however, particularly in response to cell stress, nuclear entry is 
also observed.10,11 Throughout the progression of HD, shuttling 
of huntingtin to and from the nuclear compartment becomes 
disrupted, leading to accumulation of mutant huntingtin in the 
nuclei of striatal and cortical neurons.12,13 The synchrony of this 
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Nuclear accumulation of the polyglutamine-expanded mutant 
huntingtin protein remains one of the most predictive cell 
biological phenotypes of Huntington’s disease (HD) progression 
in patient brain samples and mouse models of the disease. Yet, 
the relationship between huntingtin nuclear import, neuronal 
dysfunction and toxicity is not fully understood and it remains 
unclear whether nuclear accumulation is required for disease 
onset. Here, we discuss several studies that have guided 
current understanding of this subject, and highlight our recent 
data detailing the discovery of a karyopherin β1/β2-type 
nuclear localization signal near the N-terminus of huntingtin. 
This signal can function through multiple pathways of nuclear 
import, and may also be responsible for huntingtin import 
into the primary cilium. This work represents a significant step 
forward in our knowledge of the regulatory pathways that 
govern huntingtin nuclear accumulation and will allow direct 
examination of both normal and mutant huntingtin nuclear 
function. This work also suggests a re-examination of the cell 
biology of any protein that contains a multi-pathway nuclear 
localization signal. The possibility of targeting huntingtin 
nuclear import therapeutically and the potential impacts of 
such a strategy for the treatment of HD are also discussed.
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event with disease onset, and its specificity for affected cell types, 
has prompted speculation that nuclear translocation is a critical 
and a possibly causal step in disease pathogenesis.

We have recently reported the characterization of the first 
definitive nuclear localization signal (NLS) within huntingtin.14 
This non-classical, proline-tyrosine, or PY-NLS, found between 
amino acids 174–207, possesses a unique structured region that 
is required for recognition of the sequence by the import recep-
tors karyopherin β1 and β2 (also known as importin beta1 and 
transportin). We have named this structured region the “inter-
vening sequence” (IVS) due to its location between the consen-
sus epitopes of the NLS that are comprised of a basic region, a 
downstream single arginine and the proline-tyrosine.15 This type 
of NLS is not unique to huntingtin, and is seen in the mRNA 
export factor, NXF1. The NXF1 PY-NLS can function through 
four karyopherin family pathways, including karyopherin β1 and 
β2, and does have a long stretch of residues between the NLS epi-
topes.16 In isolation, the IVS is capable of localizing to the cyto-
plasm, suggesting that it may regulate the activity of the NLS 
by targeting huntingtin to an insoluble phase. Our hope is that 
this data will guide the development of genetic tools for future 
exploration and proof of principle of the pathogenic link between 
huntingtin nuclear import and toxicity.

The earliest transgenic mouse model of HD, termed R6/2, 
expresses only a short amino-terminal fragment of hunting-
tin (1–81 amino acids).17 This region contains the polyglu-
tamine tract, and produces an extremely severe pathological 
phenotype, far greater than is observed in full-length hunting-
tin mouse models. In patients, polyglutamine tract length is 
strongly correlated with disease onset, with a greater number of 
repeats being associated with earlier development of symptoms.18 
This is also true for R6/2 mice – up to a particular threshold. 
At repeat lengths beyond 200, the life expectancy of the R6/2 
mice shows a paradoxical improvement, reversing the previous 
trend.19,20 This phenomenon may be related to the way the small, 
1–81 amino acid (< 10KDa) fragment enters the nucleus. The 
diffusion limit of the nuclear pore complex (NPC) is roughly 
defined, but has been noted as approximately 50–60 kDa, with 
larger proteins requiring a nuclear localization signal to enter by 
a mechanism of facilitated diffusion.21 The 1–81 fragment falls 
far below this threshold, granting it unrestricted access to the 
nuclear compartment. If nuclear translocation of mutant hun-
tingtin is detrimental, this free and unregulated diffusion could 
be responsible for the severity of the R6/2 model. Thus, a slowed 
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import pathways are not valid drug targets, due to lack of speci-
ficity in NLS-import factor interactions; however, the hunting-
tin NLS has a unique structured IVS that could be exploited as 
a binding region for small molecules. Still, this avenue should 
be pursued with caution. It was recently reported that hunting-
tin has a role in ciliogenesis,29 and our lab has discovered that 
huntingtin is capable of entering the body of the primary cilium 
(Maiuri et al., in press).

Cilial entry and nuclear entry have a surprising amount in 
common. Proteins that form the nuclear pore complex create 
a permeability or diffusion barrier at the base of the primary 
cilium, and the import receptor karyopherin β2 has been 
found to mediate cilial entry through recognition of PY-NLS 
sequences.30,31 Like the nuclear pore complex, some nucleopo-
rins, or nups, can be found at the cilial permeability barrier,30,32 
even though the cilial barrier is not membrane-based. Thus, 
multi-pathway localization signals may exist in proteins that use 
the nucleoporin and Ran GTP/GDP gradient to traffic in and 
out of the cilium as well as the nucleus. Therefore, although dis-
rupting mutant huntingtin nuclear entry may combat the toxic 
effects that cause HD, it could also inhibit the cilial function of 
the protein.

The primary cilium is a non-motile singular organelle in 
neurons, used as an extra-synaptic antenna for soluble signaling 
through G-protein coupled receptors (GPCRs).33 While vesicles 
are not found within the cilium, vesicular motor proteins and 
complexes exist within the cilium to move internalized GPCRs 
into the cell. The function of huntingtin in the cilium may be 
similar to its role in vesicular trafficking. Huntingtin acts as a 
scaffolding protein that connects vesicles to kinesin, as well as to 
the p150 glued subunit of dynactin, an activator of dynein.34,35 
These microtubule motor proteins are also required for intrafla-
gellar transport along the axoneme of the cilium, which is com-
posed of tubulin bundles.36

Our work to date indicates that the steady-state localization 
of huntingtin is either at trafficking early endosomes, or the 
endoplasmic reticulum.24 Huntingtin only releases from the ER 
during cell stress that involves low ATP, where the soluble pro-
tein then translocates to the nucleus and cilium. When mutant 
huntingtin is present, even heterozygously, cells are unable to 
recover from stresses that involve an ATP-capping response at 
the actin cytoskeleton within the nucleus.8 ATP is also utilized 
by motor proteins in the primary cilium. We hypothesize that 
the transient localization of huntingtin to the nucleus and cilium 
may be required for an optimal cell stress response in neurons.

It is still not clearly understood why some proteins have mul-
tiple nuclear transport signals, and why some signals can use 
multiple pathways of nuclear, and now cilial entry. These karyo-
pherin/importin proteins are now known to have other impor-
tant cell biological functions aside from just carrying cargo to or 
from the nucleus.37,38 As the knowledge of the biology of these 
import factors increases, so then will the role of these multifunc-
tional, multipathway transport signals in proteins.
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or inhibited diffusion, as would be expected with the addition of 
an extremely long polyglutamine tract, could manifest as reduced 
pathogenicity in a small fragment context. Consistent with this 
hypothesis, immunohistochemistry of brain samples from mice 
bearing longer repeats show a reduction in the formation of 
nuclear aggregates, and an increase in those that form in the 
cytoplasm, indicating a potential loss of ability of the huntingtin 
fragments to traverse the nuclear pore.20 In larger fragment or 
full-length models, huntingtin is capable of nuclear entry via the 
PY-NLS sequence and not by simple diffusion alone. With this 
added regulation there is greater potential to control the timing 
of nuclear entry, thus delaying the onset of cellular pathology. 
Severe toxicity of HD mouse models is limited to the 1–81 R6/2 
or N17122 (1–171 fragment) models. Intriguingly, the huntingtin 
NLS starts at residue 174.

Consistent with its ability to shuttle from one compartment 
to the other, huntingtin is also equipped with two CRM1-
dependent nuclear export signals: one toward the carboxyl-ter-
minus of the protein,23 and one at the extreme amino-terminus 
within the N17 regulatory domain (Maiuri et al., in press). In 
addition to binding to CRM1, N17 also acts as an endoplasmic 
reticulum (ER) targeting signal that prevents huntingtin from 
accumulating in the nucleus under normal cellular conditions.24 
During cell stress, N17 becomes phosphorylated at serines 13 
and 16 causing release of huntingtin from the ER and enhanced 
nuclear entry.24,25 Thus, it is unclear if the nuclear accumula-
tion of huntingtin observed in degenerating neurons is simply a 
consequence of persistent cell stress, or a toxic process in itself. 
A bacterial artificial chromosome full-length huntingtin trans-
genic model (BACHD) has been developed that is modified at 
serines 13 and 16 to mimic constitutive phosphorylation (S-D 
mutation) or constitutive phospho-resistance (S-A mutation).26 
Although phosphorylation (or phospho-mimicry) of huntingtin 
at N17 is predicted to enhance the protein’s nuclear transloca-
tion, in this model, the S-D mutation was protective. Consistent 
with these genetic experiments, treatments that increase the 
phosphorylation of N17 in full-length mouse models, such as 
the ganglioside GM1, show striking phenotypic reversal.27 Thus, 
the relationship between nuclear import and mutant hunting-
tin toxicity remains unclear. Rather than nuclear translocation, 
the phosphoN17-status or sub-nuclear localization of hunting-
tin to discreet chromatin-dependent puncta may confer toxic-
ity. Alternatively, it may be overly simplistic to view either the 
nucleus or the cytoplasm as the sole site of toxicity. Instead, the 
primary issue may be an inability to shuttle efficiently between 
the two compartments, causing a breakdown in cellular signal-
ing. The stress response switch mediated by huntingtin may 
therefore be stuck in an on or off state, losing its ability to 
dynamically switch between the two. The appealing aspect of 
this hypothesis is that it implies that this huntingtin function 
is more important as the human brain ages, during which time 
metabolic stresses are known to increase, along with decreasing 
mitochondrial efficiency.28

Elucidation of the mechanisms of huntingtin nuclear and 
cytoplasmic shuttling will shed further light on whether limiting 
nuclear accumulation has therapeutic potential. Many nuclear 
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