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pH-induced morphological changes 
of proteinaceous viral shells
D. Roshal  1, o. Konevtsova1, A. Lošdorfer Božič  2, R. podgornik2,3,4,5 & s. Rochal  1

Changes in environmental pH can induce morphological changes in empty proteinaceous shells 
of bacteriophages in vitro that are very similar to changes occurring in viral capsids in vivo after 
encapsidation of DNA. these changes in capsid shape and size cannot be explained with a simple elastic 
model alone. We propose a new theoretical framework that combines the elasticity of thin icosahedral 
shells with the pH dependence of capsid charge distribution. Minimization of the sum of elastic and 
electrostatic free energies leads to equilibrium shapes of viral shells that depend on a single elastic 
parameter and the detailed configuration of the imbedded protein charges. Based on the in vitro 
shell reconstructions of bacteriophage HK97 we elucidate the details of how the reversible transition 
between Prohead II and Expansion Intermediate II states of the HK97 procapsid is induced by pH 
changes, as well as some other features of the bacteriophage maturation.

Understanding the physicochemical phenomena that occur in viruses during their maturation is extremely 
important, since only the mature virus particles are able to infect host cells. Formation of the majority of bacte-
riophages, the most common viruses on Earth, begins in an infected bacterium with a self-assembly of empty, 
almost spherical proteinaceous shells, called procapsids1. When the DNA is subsequently packed into a pro-
capsid to form the mature virion, this represents a thermodynamically unfavorable process2 that can only be 
accomplished via an ATP-driven molecular motor3, also involving electrostatic interactions between the DNA 
phosphate backbone and the positively charged internal molecular motor wall4. After DNA has been packaged, 
the genome-containing capsids exhibit pronounced icosahedral faceting5 with symmetric capsid hexamers6–8. It 
is quite surprising then that the same morphological changes that occur in procapsids of bacteriophages during 
their maturation in vivo can be experimentally reproduced in vitro even in the absence of DNA9, solely by chang-
ing the pH of the bathing medium which strongly implicates the role of electrostatic interactions involved10–12.

A particularly useful experimental system for the study of the process of virus maturation and the concurrent 
morphological changes of its capsid is the bacteriophage HK9713. Its (pro)capsid assembles from 420 identical 
proteins and exhibits large-scale conformational changes during its maturation process13,14. The immature empty 
spherical procapsid that is formed at the very beginning of the maturation process is termed Prohead II. In vivo 
genome packaging into Prohead II results in the formation of the mature Head II, which has an increased average 
capsid diameter of more than 20% compared to Prohead II. This process is in addition accompanied by a thinning 
of the Head II protein shell and a transformation of its shape from spherical to icosahedral7,9,15.

Similar conformational changes to the ones that occur during the maturation process of HK97 can be achieved 
in vitro by transferring Prohead II from a neutral bathing solution with pH = 7 to an acidic one with pH = 416,17. 
Oxidation of Prohead II results in the formation of four intermediate states that are not observed in vivo, termed 
the Expansion Intermediates (EI): EI-I, EI-II, EI-III, and EI-IV13. EI-I and EI-II are fairly similar in structure, 
have icosahedral shape, and are approximately 10% larger than Prohead II. The EI-I state, unlike EI-II, does not 
yet form cross-links and can therefore return, in a neutral environment, to the Prohead II state18. EI-III is further 
obtained by oxidation lasting about a week. Similarly to the mature capsid formed in vivo, EI-III is expanded by 
20%, but has a spherical shape rather than an icosahedral one, characteristic of both preceding states, EI-I and 
EI-II. The last distinct in vitro state, EI-IV, is very similar to EI-III and differs only in the number of cross-links. 
After neutralizing the acidity level of the system, the spherical states EI-III and EI-IV transform back into the ico-
sahedral Head II without any change in volume. Due to the appearance of cross-links, the final steps of the HK97 
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transformation are irreversible. However, the crosslink-defective K169Y mutant virus particles follow a similar 
maturation pathway, but the absence of cross-links allows the process to be reversible at the very last stage6,19.

Several in vitro maturation stages of HK97 can thus reversibly transform into each other due to reversible 
changes in the acidity of the surrounding medium. These reversible transformations manifest themselves as 
changes in the shape and size of the viral shell. Moreover, depending on the shell state, placing the shell from a 
neutral into an acidic environment can either increase or decrease the degree of its faceting. This behavior of viral 
shells is hard to explain merely by invoking a change in their mechanical properties, which are—for ideal, thin 
shells—characterized solely by its Föppl-von Kármán (FvK) number20. In addition, experimental results indicate 
that changes in the morphology of other capsids can be driven both by the changes in pH as well as salt concen-
tration of the bathing medium21,22 that strongly influence the charge on the capsid proteins due to the presence of 
ionizable amino acid residues on the solvent-exposed surfaces of the proteins10,11.

In this work, we introduce a novel theoretical framework based on a coupling between electrostatic interac-
tions, arising from point charges and specifically-oriented dipole moments on individual capsid proteins, and 
elastic deformations of viral shells. In this way, we are able to pinpoint how the electrostatic forces acting between 
polarized proteins lead to morphological changes observed in the (pro)capsid stages of the bacteriophage HK97 
as a direct consequence of changes in pH. In particular, we demonstrate that both the increase in faceting as well 
as the capsid expansion during the reversible transition from Prohead II to EI-II can be explained in this way. 
Lastly, we show that our model predicts that dipole moments of capsid proteins can drive not only the expansion 
and faceting, but also contraction of otherwise electrostatically neutral shells, which should be of relevance also 
for virus-like particles and nanoshells of non-viral origin.

Results
Capsids as elastic, charged shells. About 15 years ago, Nelson et al.20,23 applied the thin-shell elasticity 
theory to elastic shells with spherical topology and icosahedral symmetry, consisting of identical finite elements 
of a regular triangular shape (as shown in Fig. 1). These shells, which can easily change their form from almost 
spherical to icosahedrally faceted, are often used to approximate the shape of viral capsids with different facet-
ing20,23–27. In the thin-shell model20,23 the shell shape is controlled by a single dimensionless parameter, the Föppl-
von Kármán (FvK) number γ =

κ
YR2

, where Y is the two-dimensional Young’s modulus of the shell, κ is its 
bending rigidity, and R is the average radius of the shell. The degree of shell faceting is characterized by the asphe-
ricity = < ∆ >As

R
R

2

2 , where the averaging takes place over all the triangulation nodes and ∆R is the difference 
between the average value of R and the shell radius directed to the node. For small FvK numbers, γ ≤ 102, shells 
with more than 180 triangles have essentially a spherical shape, whereas for large FvK numbers, γ ≥ 103, they 
become icosahedrally faceted. (For more details, see Methods). If the capsid walls become thinner (which is often 
the case when the virus matures) then the FvK number grows and the shell faceting increases.

In our more complex—as well as more realistic—approach that takes into account also the electrostatic inter-
action between proteins, we analyze how the shape of the viral shell is controlled not only by its size and elastic 
properties, but in addition by the positions and magnitudes of the protein-embedded charges. We express the 
coordinates of these charges via the coordinates of the shell vertices (Ri, Rj, Rk), forming N triangular finite ele-
ments with which the charge is associated. If the indices t and q run over the charges within one triangle and all 
the triangles carrying the charges, respectively, then the charge coordinates can be defined as:
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where nijk is the unit normal vector of a triangle. The average radius R in the last term makes the coefficient µt
q 

dimensionless, akin to the other coordinate coefficients in Eq. (1). These coefficients furthermore obey the condi-
tion α β γ+ + = 1t

q
t
q

t
q , implying that the charges with µ = 0t

q  lie in the plane of the triangle. As a consequence, 
µt

q becomes nonzero if the shell has a finite thickness and charges can be located not only at points on the shell 
surface, but also above it. During the shell deformation its triangular faces also deform. Since the face strain is 
assumed to be linear and the charges are always attached to the same points of the shell face, the coefficients in Eq. (1) 
are thus fixed during the shell deformation. Note also that in the symmetry-equivalent triangles, the coordinate 
coefficients are the same. For example, for an icosahedral triangulation of the sphere formed by N = 420 triangles 
(the triangulation in Fig. 1) containing one charge per triangle, it is necessary to specify only 7 sets of coefficients 
{ , , , },q q q q

1 1 1 1α β γ µ  where q = 1, 2, …, 7.
If the charges attached to the shell are identical and their arrangement is fixed, then the model is controlled by 

only two dimensionless and non-negative scale-invariant parameters (for more details, see Methods). The first of 
them is the classical FvK number that characterizes the mechanical properties of the shell, while the second one, 
equal to the normalized charge describing the coupling between the electrostatics and elasticity, has the form:



ζ
κ

=
Q

R
, (2)

2

where Q is the magnitude of the charge, κ κ=


2 / 3  (for more details, see Methods), while R denotes the average 
shell radius at Q = 0 (the same average radius as in Eq. (1) and in the expression for the FvK number).

Changes in shape and size of charged elastic shells. Before we focus on the pH-induced morpholog-
ical changes of capsid shells during different stages of the maturation pathway of HK97, we study the general 
behavior of our model in more detail. To this purpose, we place identical charges symmetrically along the edges 
of a triangulated sphere with N = 420, as shown in Fig. 1. The resulting spherical triangulation indices28 are h = 4 
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and k = 1, while the corresponding triangulation number = + +T h k hk2 2  equals 21. The 420 triangles of the 
triangulation can be further combined into 60 hexamers and 12 pentamers (see the coloring in Fig. 1). Thus, in 
the framework of the Caspar-Klug (CK) theory28, this triangulation corresponds to a model of viral capsid with 

= = =h k T2, 1, 7CK CK CK  which are the geometric characteristics of the HK97 capsid. Furthermore, if the first 
vertex of triangles in Eq. (1) (with the coefficient α q

1 ) is chosen to be located at the capsomere centers, then for the 
shells shown in Fig. 1, all 7 sets of coefficients (determining the charge coordinates through the coordinates of the 
vertices in Eq. (1)) coincide and can be written as α β γ µ= = = =; 0q q q q

1 1
1
2 1 1 . Note that for each CK viral shell 

with a triangulation number TCK there exists also a dual spherical triangulation (with =T T3 CK) in which the 
number of triangles N is equal to the number of proteins (equal to T60 CK) in the considered shell.

Since identical charges repel, the average radius of the shell always increases when a shell is charged up (see 
Fig. 1). There is, however, no analogous universality for shell faceting that can respond to electrostatic interactions 
in different ways, depending on the initial asphericity (or the FvK number γ) of the uncharged shell. Panels A and 
C of Fig. 1 show two shells with zero charge, the same average radius, and asphericities equal to 1.2 × 10−5 and 
10−3, respectively. Asphericity of an initially almost spherical shell (Fig. 1A) with γ = 120 increases to 5.9 × 10−5 
after the shell expands by 40% due to added charge (ζ = 0.05; Fig. 1B). Such a growth in asphericity is mainly due 
to the increase in the average shell radius R (note that the FvK number is proportional to R2). An initially faceted 
shell, shown in Fig. 1C (γ = 600), expands by 15% when charge is added (ζ = 0.05; Fig. 1D), while in addition the 
expansion of the shell leads to a strong loss of asphericity (all the way to 1.5 × 10−4) on account of which the shell 
becomes visually rounder. This effect is similar to the one observed when inflating a ball, which consequently 
becomes rounder. In addition, we note that if the coefficients µ q

1  are nonzero, shell faceting becomes much more 
sensitive to variation in the capsid charge, a property that will turn out to be important in the discussion of HK97 

Figure 1. Change in shell asphericity due to addition of normalized charge. This change is determined by the 
shape (dependent, in turn, on the FvK number) of the initial, uncharged shell. Shells in panels (A) and (C) are 
uncharged (ζ = 0) and have different FvK numbers (120 and 600, respectively), while the ones in panels (B) and 
(D) have identical normalized charge (ζ = 0.05), with 420 equivalent point charges located at positions shown 
by black points. The increase in ζ from 0 to 0.05 for an initially almost spherical shell (A) leads to weak faceting, 
shown in panel (B). On the other hand, the same increase in ζ for an initially highly faceted structure (C) leads 
to a sharp reduction in its faceting (D). All the shells shown have the same bending rigidity, while the Young 
modulus in panel (A) is smaller than the one in panel (C), and consequently the expansion of the first shell at 
the same value of normalized charge is greater. Coloring of the triangular lattice drawn on the shell highlights 
the icosahedral symmetry and the relationship between the lattice and the CK model of capsids28.
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procapsid states later on. Also note that with an increasing value of ζ, the model can lose its stability at sufficiently 
large values of coefficients µ q

1 . However, in the region of the stability of the model, a gradual and continuous 
variation in the positions and magnitudes of the charges leads to a gradual change in the faceting and size of the shell, 
while a reverse variation follows the same path without hysteresis.

pH-driven transition between prohead II and eI-II. We can now apply our model to the specific case 
of the morphological transformation that occurs between Prohead II and EI-II states of the HK97 procapsid, 
induced by a change in bathing solution acidity. Using structural information deposited in the Protein Data 
Bank (PDB)29 and the approach detailed in ref.10 (see also Methods), we have calculated the centers of positive 
and negative charges for seven symmetry-nonequivalent types of proteins that form the structures of Prohead 
II (PDB:2GP1) and EI-II (PDB:3DDX), which are observed at pH = 77and pH = 419, respectively. The obtained 
positions of the centers of positive and negative charges as well as their magnitudes (listed in Table 1) rely on the 
assumption that the dielectric constant of the medium is independent of the pH value, and that the same elastic 
shell (N = 420, γ = 250) is used to model both charged procapsid states.

To apply our model, the charge coordinates from Table 1 have to be converted into sets of coefficients 
α β γ µ{ , , , }t

q
t
q

t
q

t
q  [see Eq. (1)] for both procapsid structural states, Prohead II and EI-II. For this recalculation, we 

need the values of Ri vectors which can be obtained by triangulating the outer surface of the procapsid states 
under consideration. The desired triangulations, which allow us to replace the real protein structure with a 
zero-thickness phantom shell of the same asphericity, can be constructed in several different ways. We obtain the 
triangulations by simply varying the FvK numbers at zero charge. The average radii and the asphericities (5.5 × 10−4 
and 10−3 for Prohead II and EI-II, respectively) of the resulting phantom shells are fitted in such a way that they 
optimally correspond to the surfaces of the procapsid states in question (Fig. 2A,B).

After the phantom shells are obtained, we use Eq. (1) and the data in Table 1 to get the coordinate coefficients 
of the model. Their values—especially those of t

qµ —depend on the magnitude of R [see Eq. (1)], which in this 
model does not necessarily coincide with the average external radius of the capsid. If we calculate R as the average 
distance Rm from the capsid center to the mass centers of proteins and stick to the assumption that the elastic 
properties during the pH-driven transition remain unchanged, then it is not possible to fit the change in shape 
between the Prohead II and EI-II states. The most successful fit is obtained if the value of R is about 10% less than Rm; 
thus, the charges are effectively positioned above the elastic shell, and in this way the nonzero thickness of the 
capsid wall is also taken into account even in the thin-shell elastic model. This fitting procedure, which allows us 
to express the coordinates of charges (given in Table 1) in the local coordinate systems of triangular finite ele-
ments, thus supports our assumption that during the reversible pH-driven transition any change in the elastic 
properties of the shell is inessential and the shell varies its shape and size principally due to the shift of charges’ 
positions and the change in their magnitudes.

While we have initially calculated the change between the Prohead II and the EI-II states by placing the centers 
of positive and negative charges at different positions above the same elastic shell, it turns out that in this par-
ticular case, the two-charge (or bipolar) approximation can be simplified and reduced to an equivalent monop-
olar one. Inspecting Table 1, we discern that the distance between the centers of positive and negative charge in 
all proteins is much smaller than the thickness of the proteinaceous layer itself, while the total protein charge 
remains significant. Therefore, we can preserve the accuracy of the model by positioning an equivalent total 
charge Qtot = Q+ + Q− at the center of charge, rtot = (r+Q+ + r−Q−)/Qtot, where r+ and r− are the coordinates of 
positive and negative charges, respectively. This monopolar model still explains well the procapsid transformation 
in question, and the equivalence of both models is ensured by the fact that the dipolar moment vanishes if it is 
calculated with respect to rtot.

Panels C and D of Fig. 2 show how the shape of the model Prohead II state transforms to the model EI-II state 
due to the pH-driven change of the positions and magnitudes of total charges on the two shells (as presented in 
Table 1). These two states have the same mechanical properties (γ = 250) but display quite different shapes due to 
different charge arrangements and electrostatic energies. The Prohead II state is characterized by As = 1.6 × 10−4 

Protein

Prohead II (pH = 7) Expansion Intermediate II (pH = 4)

Q+ = 23.393424 [e0] Q− = −29.977607 [e0] Q+ = 28.963847 [e0] Q− = −18.776508 [e0]

x [nm] y [nm] z [nm] x [nm] y [nm] z [nm] x [nm] y [nm] z [nm] x [nm] y [nm] z [nm]

A 5.51 8.94 20.4 5.16 8.75 20.73 5.52 10.24 23.84 5.56 10.06 23.7

B 8.49 9.12 19.17 8.17 9.49 19.33 9.24 10.16 22.16 9.17 9.97 22.16

C 9.86 5.8 19.35 9.99 6.28 19.3 11.35 6.7 21.97 11.12 6.7 21.96

D 7.97 2.92 20.66 8.44 3.13 20.56 9.58 3.33 23.25 9.45 3.48 23.21

E 5.08 2.75 21.98 5.46 2.42 22.02 5.78 3.34 24.65 5.85 3.5 24.49

F 3.77 6.08 21.8 3.72 5.62 22.01 3.91 6.95 25.1 4.1 6.92 24.91

G 1.53 10.40 21.30 1.97 10.66 21.24 1.72 12.43 24.75 1.66 12.54 24.54

Table 1. Positions and magnitudes of the centers of positive and negative protein charges of the Prohead II 
(pH = 7) and EI-II (pH = 4) states of HK97 procapsid (obtained from PDB:2GP1 and PDB:3DDX, respectively). 
The following notation is used: type G proteins form pentamers, and the remaining protein types form 
hexamers. Type A proteins are in contact with those of type G; proteins A–F are located counter-clockwise in 
the hexamers.
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and ζc = 0.43, while the EI-II state is characterized by As = 3.5 × 10−4 and ζd = 1.04. The ratio ζ

ζd

c  is equal to the 
squared ratio of total charge of the two states [see Eq. (2)], and this difference in total charge explains the increased 
average radius of the EI-II state (by about 9.5%) compared to the Prohead II. Interestingly, in the Prohead II state 
the presence of charge leads mainly to an expansion of the shell (with respect to the uncharged phantom shell 
with the same mechanical properties), while in the EI-II state, the different positions of charge centers result also 
in an increase of the shell asphericity. Additionally, we note that the hexamers in Prohead II are flattened (Fig. 2A), 
which is reflected also in the positions of the charge centers, shown in Fig. 2C. After the transition to the EI-II 
state (Fig. 2B), the hexamers become more regular, while a weak asymmetry still exists at the positions of charge 
centers (Fig. 2D).

pH-driven transition between Balloon particle and Head II. The same framework can also be used 
to briefly discuss the transition that occurs at the last stage of the HK97 capsid formation between the Balloon 
particle (EI-III/EI-IV) and the Head II state. During prolonged oxidation, which results in the transformation 
from EI-II to EI-III, the mechanical properties of the procapsid shell change. Because of the reduction of the cap-
sid wall thickness d, both the Young’s modulus (which is proportional to d for a homogeneous material) and the 
bending rigidity (proportional to d3) simultaneously decrease. Within the confines of the thin shell elasticity20,23, 
under such conditions the resulting FvK number should increase and the shell should become more faceted. 
However, despite the increase in the FvK number, the observed Balloon state becomes more spherical. This can 
be straightforwardly understood within our framework as the (uncharged) shell with smaller elastic constants has 

Figure 2. Reversible transformation from Prohead II to EI-II state of the HK97 procapsid due to a change in 
acidity from pH = 7 to pH = 4. Panels (A) and (B) demonstrate the two procapsid structures (PDB:2GP1 and 
PDB:3DDX) drawn using UCSF Chimera35 and superimposed with their icosahedral triangulations (uncharged 
phantom shells) characterized by As = 5.5 × 10−4 and As = 10−3, respectively. Upon the change in acidity, both 
positions and magnitudes of charges on the procapsid proteins change concurrently. In panels (C) and (D), 
these charges are shown as small balls fixed at different positions above the elastic shells, which have identical 
mechanical properties (γ = 250). The left halves of these two panels show only the charge projections above the 
shell surfaces. The pH-induced variation in protein charges changes both the shape and the size of the shells 
(panels (C) and (D)), making them similar to experimentally-observed procapsid structures (panels (A) and 
(B)). In our coarse grained approach, the change in asphericity between the two model shells (panels (C) and 
(D)) is slightly smaller than the one observed experimentally between the procapsid states (panels (A) and (B)).
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mechanical properties similar to those of an actual balloon, while the inclusion of charges leads to its expansion, 
just as compressed air inside the balloon makes the balloon rounder12.

We have also attempted to explain the slight increase in the faceting observed in the Head II state (PDB:2FT1) 
when compared to the Balloon state EI-IV (PDB:2FTE) using the bipolar approximation, described above, and 
under the assumption that the mechanical properties of the two states coincide. In this case, however, our model 
could not reproduce the experimentally observed increase in faceting, possibly due to several reasons. It could be 
that in the last procapsid state of HK97, the FvK number increases due to the formation of cross-links between 
proteins, resulting in a change in the elastic properties of the shell, not accounted for in our model. While a 
similar reversible transformation between two states (in the absence of cross-links) is observed in the genetically 
defective K169Y virus particles, the analogy with the defective shell may not be entirely correct, since our elec-
trostatic interactions were implemented specifically for the EI-IV state of HK97 and not for the defective particle. 
It is possible that in order to study the transformation between the EI-IV and Head II states of the normal and 
defective capsids, quadrupole terms or even additional details of the model need to be taken into account in the 
calculation of the electrostatic energy of the shell.

Discussion
Capsid proteins in all the HK97 (pro)capsid states are charged, in both neutral as well as acidic medium. While 
their particular charge configurations show that the centers of positive and negative charges are close enough so 
that the charge on the proteins can be considered as monopolar, we comment here briefly on how protein dipole 
moments can in general nevertheless affect the shape and size of an overall electrostatically neutral icosahedral 
shell.

First of all, it is important to note that contrary to the monopolar interactions, the energy of the dipole-dipole 
interaction, being dependent on the dipoles’ orientation, can in general change sign. Consequently, the shell 
can both expand as well as contract, unlike in the case of the monopole-monopole interaction, where the shell 
can only expand due to the electrostatic repulsion between identical charges. Nevertheless, radial dipoles always 
lead to an expansion of the shell and, depending on their positions, can substantially increase the faceting of 
weakly-faceted shells. Radial dipoles, if placed directly on the surface of a weakly-faceted shell with As = 1.6 × 10−4  
(the asphericity of the structure in Fig. 2C) at the same positions as the charges in Fig. 1, induce only a 10% infla-
tion of the shell (due to dipole-dipole repulsion) but can increase its asphericity by as much as 6 times. Similar 
asphericity of the procapsid surface with an icosahedral triangulation is shown in Fig. 2B.

On the other hand, tangential dipoles can affect the shape and size of the shell in fundamentally different ways, 
depending on their positions and orientation. A full discussion of this issue goes clearly beyond the scope of this 
paper and will be published elsewhere, so we only briefly note a few of the most interesting findings. First of all, 
for certain orientations the tangential dipoles can suppress faceting without inducing any concurrent change in 
the shell volume, in remarkable contrast to the cases shown in panels C and D of Fig. 1. Second, it is also inter-
esting to note that shells in a model with fixed dipoles become less stable and can collapse as the dipole moment 
increases, while immediately before the collapse, it is sometimes possible to observe something akin to a crum-
pling of the shell surface.

The model proposed in this work is essentially discrete, since point charges (or dipoles) are located on the shell 
consisting of finite elements, each of which corresponds to a single protein. On the one hand, the discreteness 
and relative simplicity of the model allow us to substantially increase the rate of the numerical calculations aimed 
at shell energy minimization, but, on the other hand, these factors also limit our approach. If necessary, the level 
of detail in the model can be increased, for example, by replacing one protein with several elastic finite elements 
corresponding to protein subunits. Namely, spherical triangulation with T = 21 and 420 triangles is not the only 
one suitable for modeling the HK97 capsid. Another triangulation with T number a multiple of 21 could be used, 
and consequently, one capsid protein would correspond not to a single triangle (as in Fig. 1), but to T/21 triangles 
of the tessellation. However, in this case the electrostatic part of the model would have to be upgraded to a similar 
level of detail and the electrostatic characteristics of the subunits utilized would need to be taken into account.

Notwithstanding, one can ask whether it is reasonable to increase the number of finite elastic elements and 
leave the electrostatic part unchanged? Or, more generally, is it reasonable to consider the model with a contin-
uous mechanical part and discrete distributions of charges or dipoles? We analyzed this situation and obtained 
a rather negative answer. First, the relatively large electrostatic forces applied to relatively small finite elements 
of the elastic shell easily lead to instabilities in the system or to highly inhomogeneous large deformations of the 
shell around elements carrying charges or dipoles. Such unreal deformations are typical of shells with tangential 
dipoles, which induce at the points of their attachment mainly tangential electrostatic forces.

The range of validity of our model is thus set by its coarse-grained nature in general, but more specifically also 
by the fact that we have not considered some of the salient features of the electrostatic interactions in the context 
of proteinaceous shells30,31, such as dielectric inhomogeneities, ionic specificity and finite electrolyte screening. 
While inclusion of these effects is of course in principle desirable, it would introduce new parameters and scaling 
functions which would make the analysis unnecessarily involved.

In conclusion, we report a new coarse-grained model of electrostatic-driven transformations of viral shell 
morphology due to variations in the pH level of the bathing medium. We show that such pH variations can lead 
to a significant change in the configuration of charges imbedded in the proteinaceous shells and, consequently, 
can affect their faceting and size. The charge configurations were calculated directly from the available detailed 
structural data for capsid states at different solution acidities, while the mechanical part of the model was based 
on the finite element approach to the capsid elasticity. We have applied this framework to the HK97 procapsid, 
which is a well-known model of capsid maturation that has been studied for a long time. As is well established for 
this case, the procapsid reconstruction in vitro (due to the pH decrease) is similar to that occurring during the 
maturation process in vivo. Our model, reproducing well the procapsid maturation in vitro, could be useful also 
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for elucidating the design and development of antiviral strategies, since only the mature viruses can infect the host 
cells. In addition, the results obtained in our work can be helpful to study how changes in acidity and salt concen-
tration affect the self-assembly of various protein nanostructures and possibly even more complex nano-objects, 
including various composite carbon nanomaterials with adsorbed protein or peptide molecules, since the adsorp-
tion in this case can be controlled by the pH level of environment (see some examples in32).

Methods
Coupling electrostatics and elasticity. One of the traditional ways to create a simple model of a viral shell 
is triangulation—treating the capsid as a system of nodes connected by lines with their nearest neighbors20,24,28. 
In this way, the (infinitely thin) spherical shell is divided into triangles, and their vertices—which are simultane-
ously the vertices of the polyhedron obtained from the shell—represent groups of 5 or 6 proteins, the so-called 
capsomeres. Such an approach actually forms the basis of the theory of elastic shells20,23, describing the onset of 
faceting in icosahedral capsids. In the continuum limit, the faceting of such shells was shown to be controlled by 
the FvK number, while the average shell radius R is practically independent of the degree of faceting.

Alongside the continuum model, the theory of Nelson et al.20,23 also provides a discrete model with an equiva-
lent behavior. The discrete mesoscopic elastic free energy of a triangulated shell can be written as:
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where the sum runs over all n edges of the triangulation, whose vertices are the capsomeres. In Eq. (3), k is the 
rigidity of the capsomere bonds located along the triangulation edges, l0 is the equilibrium length of these bonds, 
κ
 is the microscopic bending rigidity, li is the nonequilibrium length of the i-th link, and αi is the angle between 
the normal vectors of two triangles which have the i-th edge as their common side. The first term in the discrete 
elastic energy describes the contribution of the shell curvature, while the second term reflects the elastic extension 
of the bonds.

Since the area of the sphere is approximately equal to the area of the N triangles, it follows that π= R4Nl3
4

20
2

. 
By using the connection between the elastic constants of the continuum and discrete models, =Y k2

3
 and 
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20,33, the FvK number of the discrete model turns out to be equal to
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Nelson et al.20,23 considered numerically the faceting of very large shells, corresponding to the limit N → ∞. In 
order to demonstrate how the discrete model tends to the continuum limit, we show in Fig. 3 the dependence of 
asphericity on the FvK number for shells with N = 60, 180, 420 and 2160. According to the results of both Nelson 
et al.20,23 as well as our own, the case with N = 2160 already corresponds to the continuum limit. The next closest 
curve to the continuum limit is the triangulation consisting of 420 triangles (corresponding to the number of 
proteins in the HK97 capsid). Figure 3 in addition reveals a heretofore unacknowledged feature: in fact, in the 
limit γ → 0 the asphericity of discrete shells increases. This is especially noticeable in the case of a shell composed 
of only 60 triangles. Moreover, the asphericity in the γ → 0 limit does not possess an icosahedral but rather a 
dodecahedral character, and the shell radii lying on the 5-fold axes are smaller than those lying on the 3-fold ones 
(see also the discussion of dodecahedral viral shells in ref.34).

Figure 3. Asphericity as a function of the FvK number for several icosahedral shells. The curves labeled 1–4 
correspond to shells with the number of triangles equal to N = 60, 180, 420, and 2160, respectively. To the right 
side of the region where the function As(γ) increases rapidly (large values of the FvK number), all shell shapes 
become significantly icosahedral. For the case of N = 60 (violet curve 1), the inset shows two shells that arise 
in the limits γ → 0 (a) and γ → ∞ (b). These states correspond to weak dodecahedral and strong icosahedral 
faceting of the sphere, respectively, and the most protruding vertices of the shells are then simultaneously the 
vertices of either dodecahedron (violet) or icosahedron (red).
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In our approach we related the triangular faces of the shell with individual proteins, rather than associating 
the shell vertices with capsomers20,23. What is more, we have extended the model by positioning either protein 
charges or dipoles onto the faces of the triangulated shell. Obviously, this extension leads to the appearance of 
additional electrostatic forces and their moments applied to the shell.

In the standard elastic model20,23 the shell shape is determined by the minimization of its elastic free energy 
with respect to the coordinates of the shell vertices Ri. In our variant of the model, we retain the same approach 
and express the coordinates of the charges through the coordinates of the vertices (Ri, Rj, Rk) forming the trian-
gles to which the charge is attached (see Eq. (1) and its explanation in the text). During the free energy minimiza-
tion, the coefficients in Eq. (1) are then considered as fixed. Therefore, the electrostatic energy, like the mechanical 
one, is ultimately a function of the shell vertices Ri.

For the electrostatic part of the free energy, taking into the account the interactions between charges posi-
tioned on the shell, we assume the simple form:

∑=
>

E
Q Q

r
,

(5)
Q

i j

i j

ij

where the sum runs over all charges Qi, excluding the charges within one triangle (if index t in Eq. (1) can take 
several values). The charges are renormalized to take into account the dielectric constant, and the denominator rij 
is the distance between the i-th and the j-th charge. Note that the symmetry-equivalent charges should be iden-
tical. In Eq. (5), we have neglected the Debye-Hückel type of electrolyte screening, implying that our calculation 
is quantitative only in the case of very dilute electrolytes, but the screening and the dielectric inhomogeneities 
implied by the finite thickness of the proteinaceous shell to a large extent compensate one another. A more realis-
tic approach, based on the screened electrostatic potential and dielectric inhomogeneities30,31, would entail addi-
tional scaling parameters and functions, thus becoming cumbersome and difficult to follow.

The first step in the analysis of our model is the observation that both the total energy, which is the sum of 
Eqs (3) and (5), and consequently the shell asphericity are invariant with respect to the following simultaneous 
rescaling of the model parameters:

ζ ζ ζ ζ κ κζ ζ ζ→ → → → → → →−
 

R R r r l l k k Q QR R , , , , , , , (6)i i ij ij i i0 0
0 2 1

2

where ζ is an arbitrary change of the shell size. Therefore, we can introduce a scale-invariant shell energy 
κ


Etot  so 
that in the simplest case where all the charges on the shell are identical =Q Q( )i  our model is characterized by 
only two dimensionless, non-negative, scale-invariant parameters. The first of them is again the FvK number, 
characterizing the size and elastic properties of the shell, while the second one, describing the electro-mechanical 
coupling, is given by Eq. (2). In a more general case the number of electro-mechanical coefficients becomes equal 
to the number of non-identical charges.

Determining charge on capsid proteins. The electrostatic part of our model, introduced above, requires 
the knowledge of the positions and magnitudes of charges on the capsid shell. While different levels of detail 
are available, we have decided here to represent the charge on the capsid by calculating the centers of positive 
and negative charges on individual capsid proteins. In this way, the computational complexity of our model is 
still manageable, while on the other hand we efficiently dealt with both the electrostatic monopole and dipole 
moments of the capsid proteins.

In order to determine the positions and magnitudes of the centers of positive and negative charges on the 
capsid proteins, we have followed the general procedure outlined in detail in ref.10. We have extracted the posi-
tions of ionizable amino acids (aspartic and glutamic acid, tyrosine, arginine, histidine, and lysine) belonging 
to each different type of capsid protein from structures deposited in the Protein Data Bank29. The degree of 
dissociation and the partial charge on the amino acids at a given pH value were then obtained by virtue of the 
Henderson-Hasselbalch equation, where we have used bulk acid-base dissociation values (pKa) for each amino 
acid type. Afterwards, we have separately determined the positions of charge centers of negatively and posi-
tively charged amino acids and their magnitudes for individual capsid proteins. While this approach can be again 
extended to include more details (for instance, by including site-site interactions in obtaining the pKa values or 
charge regulation due to local electrostatic potential—see ref.10 for details), this would again increase the compu-
tational complexity of the model, and thus we have decided to omit them.

Data Availability
All data needed to evaluate the conclusions of the paper are present in the paper. Additional data related to this 
paper may be requested from the authors.
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