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Pharmacogenomic implications of the evolutionary history of
infectious diseases in Africa
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As the common birthplace of all human populations, modern humans have lived longer on the African continent than in any other
geographical region of the world. This long history, along with the evolutionary need to adapt to environmental challenges such as
exposure to infectious agents, has led to greater genetic variation in Africans. The vast genetic variation in Africans also extends to
genes involved in the absorption, distribution, metabolism and excretion of pharmaceuticals. Ongoing cataloging of these clinically
relevant variants reveals huge allele-frequency differences within and between African populations. Here, we examine Africa’s large
burden of infectious disease, discuss key examples of known genetic variation modulating disease risk, and provide examples of
clinically relevant variants critical for establishing dosing guidelines. We propose that a more systematic characterization of the
genetic diversity of African ancestry populations is required if the current benefits of precision medicine are to be extended to
these populations.
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INTRODUCTION
Modern humans evolved in Africa ~ 200 000 years ago and,
although some groups first migrated out roughly 100 000 years
ago to populate the world,1 others remained and eventually
inhabited the entire continent.2 As groups migrated out of Africa
they underwent bottlenecks leading to sharp reductions in
population size and genetic diversity.3–5 To this day, African
populations retain the most genetic diversity globally.6 In order to
survive both within and out of Africa, early human populations
had to adapt to their novel environments including new food
resources, colder climates, higher altitudes and, especially,
infectious diseases.7,8 These adaptive requirements, facilitated by
natural selection, led to an increased frequency of alleles that were
beneficial in that environment. Owing to the fact that these
adaptive requirements were driven by local environmental
pressures, some of these evolutionarily advantageous alleles
display geographic and ancestral specificity as observed in the
genomes of present-day humans.8

Finding genetic signals of natural selection is becoming
increasingly possible as high-throughput biotechnology and novel
computational methods are developed.9,10 The ability to perform
genome-wide association studies and large-scale genetic-variation
surveys have led to an exponential increase in the amount of
publicly available genetic data,11 and an accompanying explosion
in genomic comparisons both within and among populations.12–14

These data support the clinical significance of identifying genetic
outcomes of natural selection such as pinpointing susceptibility
loci for infectious diseases plaguing human populations15 or
identifying responses to xenobiotic challenges.16 These advances
have opened the field of genomic medicine, which takes an
individual’s genetic data into account when planning clinical
care17,18 and is indispensable in the push for personalized, or

precision, medicine. In this capacity, genomics has the potential to
inform clinicians and contribute to precision medicine on
numerous fronts, such as disease prediction, treatment response
and avoidance of adverse drug reactions (ADR) or off-target
effects.19

Unfortunately, most clinical studies remain overwhelmingly
European-centered19–24 and the majority of current drug recom-
mendations were established using data from clinical trials
performed in Caucasian or Asian populations and may be
inappropriate for African populations.19,25 This sampling bias is
not trivial, as estimates for both disease risk and allele frequencies
vary significantly between worldwide populations, as well as
between African populations.26–30 In fact, population-specific
studies have established that Africa has the highest genetic
diversity in the world,31 as is reflected culturally in the over 2000
languages spoken on the continent,32 and genetically in regional
allele-frequency differences among African genomes29,33 and in
drug-metabolizing and -transporting genes in particular.34 As a
result of this genetic heterogeneity, it is unsafe to extrapolate
results from one African ancestral group to another, as a drug
which is found to be in the correct plasma concentration in one
group can cause reduced effectiveness or, more troublesome,
complete drug toxicity in another.35,36 The differential metabolism
of codeine resulting from genetic variability in CYP2D6 provides an
example. Owing to multiple gene-duplication events, some
individuals have several copies of CYP2D6, leading to ultra-rapid
metabolizing activity.37 These individuals quickly convert codeine
into morphine, a dangerous outcome that can lead to severe ADR,
including death. The global distribution of carriers varies widely,
from very low rates reported in West Africa, to 3% of Northern
Europeans, 5–10% of Southern Europeans, to a high of about 30%
of Ethiopians.37–40 These data, along with a strong warning from
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the US Food and Drug Administration against the use of codeine
for the management of pain in children,41 and the current lack of
infrastructure to genotype individuals, led the Ethiopian Food,
Medicine and Health Care Administration and Control Authority to
ban its use entirely.42

Genetic variations in genes involved in the ADME (absorption,
distribution, metabolism and excretion) of pharmaceuticals
influence drug safety and efficacy, and are the foundation of
pharmacogenomic research and development.43,44 Because
genetic variation in ADME genes varies significantly between
populations,29,45 determining allele frequencies of genetic variants
associated with known ADR in specific populations is critical for
dosing guidelines and avoiding therapeutic failure. If the current
benefits of personalized medicine are to be extended to African
populations, a more thorough characterization of the diversity of
African ancestries will be necessary33,46–49 and is the motivation
for this review. In particular, we will examine Africa’s burden of
infectious disease, discuss known genetic adaptations to five
selected diseases that are prevalent in Africa, and present
examples of clinically relevant population-specific variants.

Malaria
Transmitted to humans by infected female mosquitos, human
malaria is caused by four species of the protozoan parasite
Plasmodium: P. vivax, P. malariae, P. ovale and, the parasite that
causes the most severe cases of malaria, P. falciparum.50 Malaria is
endemic throughout most of the tropics, with P. falciparum
producing the major burden of disease globally, followed by
P. vivax.51 Owing to concerted global efforts, the number of
deaths from malaria declined considerably between 2000 and
2015.50 Despite these significant gains, malaria still poses a
significant worldwide public health problem, causing ~ 438 000
fatalities a year, with 292 000 deaths occurring in African
children50 (Figure 1).
P. falciparum is the leading cause of malaria in Africa, whereas

P. vivax is the dominant pathogen outside of Africa.52,53 The Duffy
antigen receptor for chemokines (ACKR1), commonly known as
DARC, is the red blood cell receptor for the malaria-causing
P. vivax.54 A Duffy-negative phenotype associated with rs2814778
abrogates DARC surface expression on red blood cells and confers
resistance to P. vivax.55 This genetic variant is found extensively in
malaria-endemic regions of sub-Saharan Africa, especially in West
African populations (Supplementary Table 1).53–57 However, DARC-
independent host cell invasion is apparently possible, as studies in
Madagascar58 and Brazil59 have identified P. vivax parasites that
successfully invaded Duffy-negative erythrocytes.

Upon infection, the parasite incubates in the liver and enters
the blood stream infecting red blood cells and causing high fever,
sweats, chills and frequently death.50,60 However, the parasites do
not thrive in the presence of sickle-shaped blood cells. Thus, one
of the consequences of thousands of years of human co-existence
with the malaria pathogen is that inherited red blood cell
disorders known as sickle cell disease are maintained as a result
of balancing selection.61 Sickle cell disease is a painful disease
caused by abnormal hemoglobin alleles called hemoglobin S
(HbS, ‘sickle’) at rs334 (Supplementary Table 1). Individuals with
two sickle alleles (HbSS) produce red blood cells which take the
sickle shape, thus severely restricting their oxygen-carrying
capacity and interrupting healthy blood flow. Despite the
debilitating effects of the homozygous condition, HbS is main-
tained owing to protection against malaria, as P. falciparum cannot
thrive in sickled red blood cells.61–64 In fact, carriers of the sickle
allele have 60% protection against overall mortality,65 resulting in
a close geographical overlap of a high sickle allele frequency and
malarial endemicity.66

G6PD (glucose-6-phosphate dehydrogenase) deficiency is an
inherited enzyme abnormality and, similar to other red blood cell
disorders, is prevalent in countries where malaria is historically
endemic,67 signifying that the deficiency may confer some
protection.68–70 Primaquine is the only drug licensed for the
prevention and, in combination with other drugs, treatment of
P. vivax. Unfortunately, the drug can cause severe hemolytic
anemia in G6PD-deficient patients.71,72

Malaria prophylaxis and treatment is challenging because the
Plasmodium parasite is capable of generating drug resistance in a
relatively short time.73 Therefore, an increasing number of African
countries are heeding the recommendations of the World Health
Organization for treating malaria by administering artemisinin-
based combined treatments, which combines a form of artemi-
sinin (either artemether or artesunate) with a longer-acting drug
such as lumefantrine, amodiaquine, mefloquine or sulfadoxine-
pyrimethamine.74,75 Artemisinins work by quickly removing
parasites from the blood, leaving fewer numbers upon which
the partner drug must act.76 The implementation of combination
therapy is intended to reduce parasite resistance, as it should be
more difficult for P. falciparum to become resistant to two drugs
with unrelated modes of action.77 However, resistance against the
limited number of effective drugs is the foremost impediment to
successfully treating malaria.78,79

The artemisinin-based combined treatments presently recom-
mended for treatment of uncomplicated malaria are substrates of
CYP enzymes. These highly polymorphic enzymes metabolize
480% of the commonly used therapeutic drugs80 and influence
individual variability in drug efficacy.34 It is well-known that allele
frequencies in the corresponding CYP genes differ between
African populations, translating into differences in drug
response.81 For example, amodiaquine is regularly used in
conjunction with artesunate, and, to a lesser extent, with
sulfadoxine-pyrimethamine.82 The enzyme CYP2C8 metabolizes
amodiaquine, as well as another malaria medication,
chloroquine.83,84 A variant of this enzyme, CYP2C8*2, results in
the poor metabolizer phenotype, where individuals with at least
one copy of CYP2C8*2 experience a longer drug half-life and
increased adverse side effects.85 Allele frequencies of CYP2C8*2
differ between East and West Africa.84 Establishing an individual’s
pharmacogenetic profile with respect to these artemisinin-based
combined treatment combinations will allow practitioners to
better tailor treatment outcomes and improve rational drug use. A
comprehensive list of the known CYP450 enzymes involved in the
metabolism of antimalarial drugs includes: Artemether: CYP2A6,
CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP3A4 and CYP3A5;
Lumefantrine: CYP2D6, CYP3A4 and CYP3A5; Amodiaquine;
CYP1A1, CYP1B1 and CYP2C8; Mefloquine: CYP3A4 and CYP3A5;
Chloroquine: CYP2C8, CYP2D6, CYP3A4 and CYP3A5; Sulfadoxine-

Figure 1. The global burden of the diseases discussed in this review
as of 2012. HAT, human African trypanosomiasis.
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pyrimethamine: CYP2C9 and CYP2D6; Primaquine: CYP1A1,
CYP1A2, CYP3A4 and CYP3A5; and Quinine: CYP1A1, CYP1A2 and
CYP3A5.81

Human african trypanosomiasis
Human African trypanosomiasis (HAT), also known as African
sleeping sickness, is spread by blood-feeding tsetse flies infected
with one of two protozoans, Trypanosoma brucei (TB) rhodesiense
and T.b. gambiense.86,87 T.b. rhodesiense causes East African (or
Rhodesian) trypanosomiasis and accounts for 3% of cases
annually, whereas two types of T.b. gambiense, termed groups 1
and 2, cause West African (or Gambian) trypanosomiasis and
account for 97% of cases annually.87,88 Primarily confined to
remote rural areas of Sub-Saharan Africa,89,90 incidences of the
two illnesses generally map respectively to the east and west
side of the African Rift Valley,91 although this historically
defined boundary is shifting in Uganda as infected cattle move
northwards, taking T.b. rhodesiense with them.92 Fortunately,
disease prevalence has been steadily dropping since
systematic global data collection began in 1940, reaching an
all-time low of 3796 diagnosed cases in 2015,93 down from
30 000 diagnosed and an estimated 300 000 undiagnosed cases
in 1995.94,95

T.b. gambiense causes a prolonged chronic disease that can take
decades before becoming fatal, whereas T.b. rhodesiense causes a
more acute illness that progresses rapidly and can lead to death
within weeks or months after infection.96–98 Regardless of the
infecting agent, clinical progression of the illness is divided into
two stages,96 (1) the early or hemolymphatic stage, characterized
by nonspecific inflammatory symptoms similar to those associated

with malaria or enteric fever, making diagnosis and treatment a
challenge,99 and (2) the late meningoencephalitic stage, char-
acterized by weight loss, behavioral changes, stupor and
coma.96,100 If left untreated, both can be fatal.98

There is an unequal incidence of HAT cases among people
living in close geographical proximity to each other, suggesting a
genetic component to HAT susceptibility.89 Thus far, genes
associated with the susceptibility and severity of HAT include
FAS and FASLG,101,102 IL23R,103 SIGLEC6 and SIGLEC12,104 RNASEL,
CXCR6 and IFIH1,105 APOL1,106 and OAS2/3.33

Although the burden of HAT on the African continent has
plummeted in recent years, evolutionary signatures of the arms
race between humans and trypanosomes are still evident in their
genomes.86,107,108 For example, humans have a trypanosome lytic
factor, which includes the key component APOL1. When trypano-
some lytic factor is taken up by trypanosomes, APOL1 localizes to
the lysosome and forms a pore that leads to osmotic swelling and
rupture of the trypanosome. However, T.b. rhodesiense has evolved
a serum resistance-associated virulence factor which, when
expressed as a protein in trypanosome lytic factor-resistant lines,
binds and inactivates APOL1.86 Variants in the APOL1 gene evade
serum resistance-associated inactivation, restoring protection
from HAT.109 In fact, the frequency of the HAT-protective G allele
at rs73885319 is 26% among the 1000 Genomes AFR populations
and as high as nearly 50% among the Esan in Nigeria (Table 1),
whereas this variant is absent among non-African ancestry
populations.6 Furthermore, using a different resistance mechan-
ism, group 2 T.b. gambiense can also overcome APOL1, an
adaptive strategy that reflects the ability of T.b. to continually
evolve and infect new hosts.86 Curiously, the protective G allele at

Table 1. Frequency of G allele at rs73885319

Population Sample size Frequency Reference Population Sample size Frequency Reference

Western Africa Eastern Africa
Esan 99 0.495 6 Sena 51 0.122 199

Ibo 411 0.488 200 Malawi 50 0.120 199

Edo 14 0.464 200 Baganda 100 0.080 33

Akan 361 0.436 200 Barundi 97 0.077 33

Asante 35 0.409 199 Banyarwanda 100 0.075 33

Yoruba 563 0.342 200 Kikuyu 55 0.064 200

Ga-Adangbe 158 0.247 200 Luhya 99 0.056 6

Mandinka 113 0.243 6 Sandawe 19 0.050 201

Jola 79 0.234 33 Iraqw 19 0.050 201

Ewe 45 0.189 200 Hadza 19 0.050 201

Mende 85 0.124 6 Bantu Kenya 12 0.045 112

Wolof 78 0.122 33 Sudanese 24 0.042 202

Fula 73 0.116 33 Kalenjin 99 0.020 200

Bulsa 22 0.114 199 Anuak 76 0.020 199

Wolayta 24 0 33

Southern Africa Tygray 21 0 202

Zulu 100 0.130 33 Somali 38 0 33

Sotho 86 0.081 33 Sengwer 19 0 201

Bantu South Africa 8 0.070 112 Oromo 26 0 33

San 7 0 112 Maale 76 0 199

Gumuz 24 0 33

Central Africa Borana 18 0 201

Somie 65 0.164 199 Ari Cultivator 24 0 202

Congo 55 0.109 199 Ari Blacksmith 17 0 202

Bakola 19 0.050 201 Amhara 42 0 33

Biaka Pygmy 36 0.042 112 Afar 76 0 199

Mada 19 0.030 201

Cameroon 64 0.008 199 Northern Africa
Mbuti Pygmy 15 0 112 Mozabite 30 0.018 112

Lemande 18 0 201 Kordofan 30 0 199

Fulani 19 0 201
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rs73885319 is common in Western Africa and rare to absent in
Eastern Africa; the advantages conferred by APOL1 variants are not
fully explained, although it has been suggested that protection
may be conferred against other pathogens besides
trypanosomes.109

Importantly, however, the protection from infectious disease
that APOL1 variants confer appear to come at the cost of
chronic disease risk. HAT-protective APOL1 variants have been
strongly associated with kidney disease and, to a lesser degree,
cardiovascular disease.110,111 This association has been
confirmed for nephropathies including focal segmental
glomerulosclerosis,106,112 HIV-associated nephropathy,112,113

hypertension-attributed end-stage kidney disease,106 severe lupus
nephritis114 and chronic kidney disease progression.115 Analyses
of APOL1 HAT-protective/kidney disease risk variants have yielded
some of the highest recorded odds ratios for a common variant:
29 and 89 for risk of HIV-associated nephropathy in African
Americans112 and South African Blacks,113 respectively, and 17 for
focal segmental glomerulosclerosis.112 The magnitude of effect
suggested by these associations coupled with the relatively high
prevalence of the risk alleles have been suggested to underlie the
huge public health burden of kidney diseases among African
ancestry individuals. The APOL1 story is a notable example of how
the shaping of the genome in response to infectious disease can
have an impact on chronic disease risk.
According to the CDC, four drugs are currently prescribed for

the treatment of HAT, namely: pentamidine, suramin, melarsoprol
and eflornithine,116 and some of the pharmacogenomics proper-
ties of some of these drugs have been described. For example,
pentamidine is transported within the body by human OCT1, a
broad selectivity transporter encoded by the highly polymorphic
SCL22A1 gene,117,118 variants of which affect the efficiency of
uptake, distribution, and excretion of clinically relevant
drugs.117,119,120 Furthermore, CYP450 enzymes with roles in the
metabolism of pentamidine include CYP1A1, CYP1A2, CYP2C8,
CYP2C19, CYP2B6, CYP3A4, CYP3A5 and CYP4A11.81

Human immunodeficiency virus
Sub-Saharan Africa accounts for 70% of the global burden of HIV,
with nearly one out of every twenty-five adults infected with the
virus121 (Figure 1). HIV is a retrovirus that causes the immune
system to become weaker as infection progresses, eventually
leading to the most advanced stage of infection, AIDS. There are
two types of HIV, HIV-1 and HIV-2, of which the former is the
predominant virus worldwide and is highly pathogenic.122

Because the virus affects the immune system, an HIV-positive
individual is more susceptible to infections and complications
from other illnesses, especially tuberculosis (TB), which are often
the ultimate cause of death.123

Early research suggested that host genetic polymorphisms
affect individual susceptibility to HIV-1, viral load (indicative of
infectiousness), and the speed of disease progression.124–126

Although HIV-1 is not believed to have been in the human
population long enough to have shaped the human genome,
susceptibility to HIV-1 does depend in part on an individual’s
genetic architecture shaped by the evolutionary history of
exposure to other infectious diseases.
A fully functioning receptor called CCR5 is required for HIV-1

virus entry.127,128 A 32-base-pair deletion termed CCR5 Δ32 (rs333)
leads to a frameshift in the coding sequence, resulting in a non-
functional protein that is not expressed in the cell
membrane.129–131 Individuals homozygous for CCR5 Δ32 do not
express functional receptors and are resistant to HIV-1
infection.132,133 In addition, heterozygosity for the deletion
provides a reduction in functional CCR5, thereby conveying partial
resistance to HIV-1 infection; when an infection does occur, the
viral loads are lower, slowing the progression to AIDS.134

Data suggest that the CCR5 Δ32 deletion arose ~ 2900 years ago
from a single mutation event135 and was subsequently subjected
to positive selection,136,137 resulting in a geographical distri-
bution where it is more prevalent in Europeans and largely
absent from Asian and African populations (Supplementary
Table 1).129,130,136,138–140 A twentieth century disease, HIV-1 has
not been around long enough for selection pressure to drive CCR5
Δ32 from 0 to 10% in European populations.141 Another pathogen,
Yersinia pestis, the cause of the bubonic plague, was proposed as
an agent of positive selection for CCR5 Δ32.137 However, the
variola virus, which causes smallpox, generates a stronger
selective pressure than plague on pre-reproductive members of
a population and therefore appears to be a more plausible
candidate.142 In addition, both the variola virus and HIV-1 use
chemokine receptors to enter white blood cells,143 whereas the
plague bacterium has an entirely different mode of entry.
Selection pressure from two infectious agents, both flaviviruses,

provides the best evidence thus far to explain why this deletion is
not observed in Africa. First, individuals homozygous for CCR5 Δ32
are at higher risk for tick-borne encephalitis.144 Second, fully
functional CCR5 reduces symptoms from infection with West Nile
virus,145 named for the West Nile district of Uganda where it was
first isolated in 1937.146 These data suggest that infectious agents
had a role in shaping the genome. Whether CCR5 Δ32 is beneficial
or deleterious in the context of a given infection (for example,
HIV-1 infection versus West Nile virus) is contingent upon complex
interactions between an infecting pathogen and the host immune
system.
For those who have access to healthcare in Africa, treatment of

HIV/AIDS with highly active antiretroviral therapy has drastically
increased life expectancy for infected individuals,147–149 trans-
forming a once certain fatal disease into a chronic condition.
Because patients are now receiving continuing treatment, much of
African pharmacogenetic research is focused on optimizing
therapeutic responses and preventing ADRs150 by identifying
clinically relevant genetic variants.151–156

Drug efficacy disparities between African populations treated
with same active antiretroviral therapy regimen have been
reported. For example, efavirenz is metabolized to 8-
hydroxyefavirenz mainly by CYP2B6.157 A specific variant of this
enzyme, CYP2B6*6, is associated with a higher plasma efavirenz
concentration. The frequency distribution of the CYP2B6*6 variant
allele is significantly higher in Tanzanians (41.9%) than Ethiopians
(31.4%)151 and has also been shown to vary between Zimbab-
weans (49%) and Ugandans (35%).158,159

As we observed in the malaria discussion, many CYP450
enzymes are involved in the metabolism of drugs used to fight
HIV. A comprehensive list includes: Efavirenz: CYP2B6, CYP3A4,
and CYP3A5; Saquinavir: CYP3A4 and CYP3A5; Maraviroc: CYP3A4
and CYP3A5; Nevirapine: CYP2B6; Indinavir: CYP3A4 and CYP3A5;
Nelfinavir: CYP3A4 and CYP3A5; Ritonavir: CYP3A4 and CYP3A5;
and Lopinavir: CYP3A4 and CYP3A5.
Another example is the HLA-B*5701 allele, which is strongly

associated with abacavir hypersensitivity syndrome.160 Abacavir
causes serious ADR in 4–8% of patients.160 Screening for the HLA-
B*5701 allele has been shown to greatly reduce the frequency of
abacavir hypersensitivity syndrome.161,162 There are clear fre-
quency differences of the HLA-B*5701 allele between African
populations, ranging from 0% in the Nigerian Yoruba to 3.3% in
the Kenyan Luhya and 13.6% in the Kenyan Maasai.163 Such
differences for a clinically relevant variant validates the impor-
tance of individual screening and demonstrates the inadequacy of
group identity such as ‘African’ in medical decision making at the
individual level. In fact, the U.S. Food and Drug Administration
currently recommends that screening for HLA-B*5701 be com-
pleted prior to administration of abacavir for all patients.163

Increasingly, genomic data can help predict immunological
response to HIV/AIDS therapeutic medicine, as was observed in
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HIV infected women in Kenya164 and Zimbabwe165 taking
nevirapine-based antiretroviral therapy.

Lassa fever
Lassa fever is a severe viral hemorrhagic fever caused by the Lassa
virus. This RNA virus of the Arenaviridae family resides in the
rodent vector Mastomys natalensis that lives in close contact with
humans and sheds the virus in urine.166,167 First described in 1969
in the town of Lassa, Nigeria,168,169 Lassa fever is endemic in the
West African countries of Guinea, Liberia, Nigeria and Sierra
Leone,170,171 although it does occur in other countries as well,
such as Mali and Côte d’Ivoire.172,173 The virus infects an estimated
300 000–500 000 people annually, resulting in thousands of
deaths in the region.174,175

The virus enters the cell via its cell-surface receptor, alpha-
dystroglycan (DAG1), replicating in a wide variety of cell types.176

The glycosyltransferase LARGE is required for viral entry as it post-
translationally modifies DAG1174 by producing a protein the virus
needs to infect an individual.177 A genome-wide screen for recent
selective sweeps identified a signal for positive selection at a
300 kb region exclusively within the LARGE gene in populations
with West African ancestry.178 Further data supporting the
hypothesis of this virus as a driver of selection was subsequently
reported for LARGE as well for another gene biologically
connected to Lassa fever, IL21.174,179 For both genes, the signal
has been localized to putative regulatory regions,174 a potentially
important fact in the development of future therapies.
Although there are no approved vaccines for Lassa virus

infection, the antiviral therapeutic ribavirin increases survival if
given early in infection.180 The pharmacogenomics of ribavirin are
well-known in relation to another infectious disease, as pegylated
interferon-a and ribavirin-based regimens are the mainstay for
treatment of patients with chronic hepatitis C virus genotype 1
infection. In this case in point, a patient’s interleukin 28B (IL28B)
genotype predicts drug response;181–184 the same genotype is
predicted to affect drug response when given to patients with
Lassa Fever, although to date the literature is devoid of any Lassa
Fever pharmacogenomic studies.

Tuberculosis
Africa carries the highest overall burden of TB, with 281 cases per
100 000 population in 2014, whereas the global average is 133 per
100 000 population.185 Approximately one-third of the global
population has latent, asymptomatic TB,185 and although those
individuals only have a 10% chance of developing active TB
disease,186 risk is larger in individuals with compromised immune
systems owing to conditions such as diabetes or HIV infection.
Caused by the bacteria Mycobacterium tuberculosis, TB begins with
fever, weight loss and coughing. Coughing progressively becomes
worse with sputum and bloody coughs, chest pain and ultimately
death.185,187

Human genetic variation affects susceptibility to mycobacterial
infections, and candidate gene-association studies have sug-
gested roles for several genes and pathways.188 A recent genome-
wide linkage study in Gambia and South Africa found suggestive
linkage on 15q and Xq.189 Many studies have reported associa-
tions between susceptibility and resistance to TB and several HLA
loci and/or alleles190–193 and allele frequencies of these markers
are known to vary between ethnic groups.194 One recent study
from Uganda suggests the HLA-DQB1*03:03 allele may be
associated with resistance to TB,186 but much work needs to be
done between African populations to assess population-specific
allele-frequency differences and/or corresponding pharmacoge-
nomic outcomes. Moreover, the contributions of rare variants with
potentially large effects or multiple genes of small effect warrant
systematic investigation.188

Isoniazid, rifampicin and pyrazinamide are the most commonly
used drugs to fight TB and, as we observed in previous examples,
the highly polymorphic CYP450 enzymes are involved in
metabolism of these drugs. For example, CYP1A2, CYP2C19 and
CYP2E1 affect the metabolism of isoniazid. Metabolism of rifampin
involves the actions of CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP3A4
and CYP3A5, CYP2C9, CYP2C19 and CYP2E1 affect the metabolism
of ethambutol and the metabolism of pyrazinamide is affected by
CYP1A2 and CYP3A4.81

Isoniazid, rifampicin and pyrazinamide can cause serious ADR in
some individuals.195 The most serious is anti-TB drug-induced
hepatotoxicity, which can lead to treatment failure and interrup-
tion, drug resistance, morbidity and mortality.196,197 An increased
risk of ADR is associated with SNPs rs1799929 and rs1495741 in
NAT2.197 Ethiopian populations have significantly higher frequen-
cies of these variants when compared with African ancestry 1000
Genomes populations (Supplementary Table 1),36 providing yet
another example of the genetic diversity between different
African ancestries. In a 2011 study,198 researchers examined the
distribution of the SLCO1B1 rs4149032 polymorphism that is
associated with low blood concentrations of rifampicin
(Supplementary Table 1). They found that the variant allele
occurred at a lower frequency in Caucasians or Asians than in
African populations. The presence of rs4149032, and subsequent
lower rifampicin concentration, means a higher dosage of the
drug is required for African populations to obtain the target
concentration.198 These two examples demonstrate again how
African genetic diversity extends to clinically important genetic
variants and supports the urgency of working to identify ancestry-
specific pharmacogenomic variants.

CONCLUSION
This review details the complex history of infectious diseases in
Africa and demonstrates how they have shaped African genomes.
Documenting the vast genetic variation observed among African
populations demonstrates the inadequacy of such group labels as
‘Blacks’ or ‘Africans’ in biomedical research, especially in the
context of pharmacogenomics and medicine. It also calls for the
need to engage more diverse populations across the continent to
better document the scope and extent of genetic diversity in
Africans to ensure they reap the benefits of the global efforts to
use genomics to improve the precision of medicine for individuals.
Given the extent of disease in Africa, combined with the monetary
and human costs incurred from ADRs or ineffectiveness, the
necessity for economical approaches to limit disease burden on
the continent is evident. Although individualized screening prior
to the selection of therapy is currently cost-prohibitive, compre-
hensive pharmacogenetic profiling of many African populations
will produce data that will improve patient care by identifying
populations at risk for developing drug toxicity or non-
responsiveness until such time as truly personalized medicine
can become a reality.
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