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Complex Bayesian Modeling Workflows Encoding and
Execution Made Easy With a Novel WinBUGS Plugin of
the Drug Disease Model Resources Interoperability
Framework

Cristiana Larizza1, Elisa Borella1, Lorenzo Pasotti1, Palma Tartaglione1, Mike Smith2, Stuart Moodie3,4 and Paolo Magni1,4*

The Drug Disease Model Resources (DDMoRe) Interoperability Framework (IOF) enables pharmacometric model encoding and
execution via Model Description Language (MDL) and R language, through the ddmore package. Through its components and
converter plugins, the IOF can execute pharmacometric tasks using different target tools, starting from a single MDL-encoded
model. In this article, we present the WinBUGS plugin and show how its integration in the IOF enables an easy implementation
of complex Bayesian workflows. We selected a published diabetes-linked study as a real-world example, in which two inter-
related models are used to estimate insulin secretion rate in response to a glucose stimulus from intravenous glucose
tolerance test (IVGTT) data. This model was implemented following different approaches to propagate uncertainty, via diverse
IOF target tools (NONMEM, WinBUGS, PsN, and Xpose). The developed software supports a plethora of pharmacokinetic/
pharmacodynamic (PK/PD) modeling features. It provides solutions to reproducibility and interoperability issues in Bayesian
modeling, and facilitates the difficult encoding of complex PK/PD models in WinBUGS.
CPT Pharmacometrics Syst. Pharmacol. (2018) 7, 298–308; doi:10.1002/psp4.12285; published online 25 March 2018.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
� The standard languages and IOF developed within

the DDMoRe project facilitate the model encoding and

execution tasks using different target tools. Bayesian

modeling enables proper prior knowledge integration,

uncertainty propagation, and full conditional distribution

computation. Complex PK/PD models, such as those

described here, are difficult to encode in WinBUGS.
WHAT QUESTION DID THIS STUDY ADDRESS?
� We aim to integrate WinBUGS into the DDMoRe IOF,

using its interoperable standard languages, and demon-

strate its application in an advanced real-world case study.

WHAT DOES THIS STUDY ADD TO OUR
KNOWLEDGE?
� The MDL and R can now be easily used to encode
and execute complex Bayesian models and workflows
in the DDMoRe IOF. We show a variety of reproducible
pharmacometric workflows, including Bayesian estima-
tion with propagation of uncertainty and variability
through prior specification.
HOW MIGHT THIS CHANGE DRUG DISCOVERY,
DEVELOPMENT, AND/OR THERAPEUTICS?
� We are lowering the barrier to using WinBUGS and
Bayesian methods in pharmacometric workflows.

Bayesian modeling is commonly used to exploit prior knowl-

edge in the parameter estimation process by integrating

prior information with experimental data in the posterior dis-

tributions of all the parameters of interest.1–3 This approach

also allows the propagation of uncertainty through the dif-

ferent hierarchical levels of a model or among different

models and enables direct probabilistic inferences on the

posterior distributions.4,5 Different software tools, such as

WinBUGS,6,7 OpenBUGS,8,9 Stan,10,11 JAGS,12,13 and

NONMEM,14,15 can be used to encode Bayesian models

and to carry out parameter estimation via Markov Chain

Monte Carlo (MCMC) algorithms.16 WinBUGS enables flexi-

ble statistical model specification and relies on additional

tools, such as the WinBUGS Development Interface

(WBDev)17 with BUGSModelLibrary,18,19 to cover many fea-

tures required in pharmacometric modeling, such as cus-

tom ordinary differential equations (ODEs), IF-THEN-ELSE

statements, definition of custom pharmacokinetic (PK) mod-

els, and dosing schedules, which are not directly available

in the BUGS language.8,20 The described add-ons can be

integrated within WinBUGS and enable the encoding of

customized functions in Component Pascal language,21

including ODE specification, and support the use of

NONMEM-formatted data items.
Considering the other popular or emerging modeling tools

mentioned above, although enabling to run several kind of

mathematical models, the efficient implementation of phar-

macokinetic/pharmacodynamic (PK/PD) models with ODEs
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and dosing schedules is limited (or missing) in JAGS, Stan,
and OpenBUGS,22 even if Stan is currently in further devel-
opment, and it seems to be a promising tool. The latest ver-
sions of NONMEM, the most widely used software for
population analysis traditionally done via maximum likelihood
approaches, also enable Bayesian analysis via MCMC meth-
ods (Gibbs/Metropolis-Hastings and Hamiltonian/No U-Turn
Sampling). Despite that NONMEM has unique advantages
for Bayesian analysis (e.g., parallel computation enabling
within-chain parallelization), and more flexibility has also
been given to users with the last release (version 7.4) in
terms of prior distribution choices, WinBUGS is recom-
mended when more than two levels of variability or an
expanded choice of prior distributions are desired.20,22–25

For these reasons, the WinBUGS suite described above rep-
resents a key option for Bayesian modeling in the PK/PD
context.25–28

It is worth noting that the WinBUGS suite enables the encoding

of complex models, but a significant encoding effort is required,

including model and functions definitions via BUGS and Compo-

nent Pascal languages. Other packages, such as PKBugs,29,30

Pharmaco,31 and BUGSModelLibrary,18,19 have been proposed

to facilitate pharmacometric models encoding, but they are limited

to a set of predefined compartmental models, and the devel-

opment of more complex ones still requires significant

encoding efforts, as described above.25

The Drug Disease Model Resources (DDMoRe) Interop-

erability Framework (IOF; see Figure 1)32,33 is a software

infrastructure developed by the DDMoRe consortium34 and
now supported by the DDMoRe Foundation,35 aimed to
facilitate the exchange and integration of models across dif-
ferent languages or tools. The IOF has two key system-to-
system target tool-independent interchange standards:
Pharmacometrics Markup Language (PharmML), an XML-
based computer language for model representation,36 and
standard output (SO), an XML-based format for storage of
pharmacometric analysis results.37 The IOF can be
accessed via a graphical user interface, the Modeling
Description Language Integrated Development Environment
(MDL-IDE),32 where the user can encode models in MDL,38

and script workflows in R programming language.39 The
MDL is a declarative human-readable/writeable language,
characterized by a modular object-based structure that is
used to represent the information required to describe mod-
els.38 The MDL facilitates model definition and, in Bayesian
estimation, definition of prior distributions for parameters.
Specific R functions, available in the ddmore R package,33

support model definition by composing different MDL objects
and enabling the execution of the desired modeling tasks.

A set of converters and connectors, described in Figure 1,
perform the MDL-to-PharmML and the PharmML-to-target
tool automatic translation, and the execution of a desired
task, respectively. Finally, results are provided back to
users via SO.

The standardized nature of languages, functions, and
outputs in the IOF can significantly alleviate the burden of
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Figure 1 Information flow of the Drug Disease Model Resource (DDMoRe) interoperability framework (IOF). The DDMoRe IOF is an
integrated set of converters and connectors for many common programming tools and languages. Together with the IOF, the translation
of models to different software tools is provided by the integration of two standard languages: Model Description Language (MDL) and
Pharmacometric Markup Language (PharmML). A user-interface, called MDL-Integrated Development Environment (IDE), allows the
user to create and edit files containing MDL code. Alternatively, the user can retrieve and use PharmML and MDL model codes of a
variety of state-of-the-art models in key therapeutic areas freely and publicly available in the DDMoRe Model Repository. Once the
MDL model code is available, the user can run a specific task (estimation/simulation) in one of the programming tools integrated in the
IOF (e.g., WinBUGS) via R code, also specifying the settings that will be passed on to the target tool (variables to be monitored, num-
ber of chains, number of updates in the Markov Chain, etc.). Then, three automatic translations are performed in the background: (1)
MDL to PharmML model translation; (2) NONMEM-formatted to BUGS data file translation; and (3) PharmML to WinBUGS model
translation, which generates all the necessary model files, including BUGS and Component Pascal files. Then, a connector runs the
execution, retrieves the BUGS output (in the form of CODA files), which is then automatically converted into the Standard Output (SO)
format by a BUGS to SO output converter. Finally, the connector retrieves the SO file, which becomes available for the user to perform
graphical convergence diagnostics and posterior inference.
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model/dataset encoding or recoding in different target lan-

guages for allowing the exploitation of the different features

made available from the different software tools.36 It can

support the reproducibility of results and the interoperability

among modeling tools, which are long-standing problems

in pharmacometrics, to eventually streamline complex

workflows.36,40,41

In this work, we aim to present a novel WinBUGS plugin

for the IOF and demonstrate its usefulness, power, and

flexibility in the programming and execution of a previously

published diabetes-linked Bayesian modeling workflow used

as showcase. The developed software framework will pro-

vide a solution to interoperability issues in Bayesian model-

ing and to the currently difficult encoding of complex PK/PD

models in WinBUGS. The IOF now supports a wide range

of tools for estimation (Monolix, NONMEM, and WinBUGS),

diagnostics (PsN and Xpose), simulation (Simulx and Sim-

Cyp), and optimization (PopED and PFIM).33

METHODS
Software
The main software modules developed in this work are rep-

resented in Figure 1 (with red boxes), and a detailed

description of each of them is reported in Supplementary

Methods. The version of IOF, including the WinBUGS plu-

gin (version 2.0), used in this article, is freely available at

http://aimed11.unipv.it/DDMoReIOF1WinBUGSplugin2.0/,

whereas a previous version of the plugin (version 1.0) is

integrated into the official IOF public release.33

Implemented example workflow overview
A complex workflow, involving two diabetes-related pub-

lished models, has been executed within the IOF and is

here proposed as an advanced real-world case study.
In the diabetic research area, it is of crucial importance

to assess the insulin response to a glucose stimulus to

understand the b-cell function in pathological states.42,43

The intravenous glucose tolerance test (IVGTT) is one of

the simplest experiments to do that. To assess insulin

response from IVGTT data, the insulin minimal model (MM)

is widely used,42–44 but it requires the knowledge of the

individual C-peptide (CP) kinetics, which is described in the

literature by a linear two-compartment model.45 This model

assumes that CP is secreted into the central compartment

(compartment 1) from which it is eliminated or it is distrib-

uted into the peripheral one (compartment 2). Therefore,

CP kinetics is fully characterized by four parameters: k01,

k21, k12, and V, where kij is the transfer rate from compart-

ment j to i, and V is the central compartment volume. The

four parameters in a given individual can be estimated from

the knowledge of age, sex, body surface area (BSA), and

health condition (normal, obese, or diabetic), using a linear

regression model and nonlinear algebraic relationships46,47

(see below).
All these steps have been implemented in this article fol-

lowing three approaches based on different ways to propa-

gate uncertainty (see Figure 2). The main steps, which are

illustrated in detail in Figure 2, include: (1) identification of

the population regression model from a large dataset of CP

kinetic model parameters (described below); (2) estimation

of the CP kinetic parameters of a new subject by using the
identified population model; and (3) estimation of insulin
secretion rate (ISR) and physiological indexes (e.g., b-cell

sensitivity) by identifying the MM, using the CP kinetic
parameters obtained above, and CP and glucose plasma

concentration data of the new subject, coming from an
IVGTT.

Approach 1 (the maximum likelihood estimation (MLE)
approach; Figure 2a) aims to obtain point-estimates of the

variables of interest, without propagating parameter uncer-
tainty throughout the steps 1–3. In this case, the point-

estimates of the CP kinetic parameters, obtained at step 2,
are used as fixed parameters of the MM at step 3.

Approach 2 (full-Bayesian approach; Figure 2b) aims to
provide a statistical framework to properly handle the

uncertainty and propagate it through all the workflow steps.
In this approach, all the model elements (i.e., data, parame-

ters, and errors) are stochastic variables described by prob-
ability distributions. Therefore, the joint distribution of the
CP kinetic parameters (obtained at step 2) is used as the

prior distribution of these parameters in the MM.
Finally, approach 3 (the mixed approach; Figure 2c)

includes the identification of the MM (step 3) via the Bayes-

ian approach, but fixing the CP kinetic parameters to the
values obtained from step 2 via approach 1.

The software tools used via IOF to carry out the
described tasks are NONMEM version 7.3, PsN version

4.4.8, Xpose version 4.5.3, and WinBUGS version 1.4 (with
BlackBox version 1.521 and BUGSModelLibrary version

1.2).

MATHEMATICAL MODELS
A population regression model to estimate CP kinetic
parameters
As reported in ref. 47, the four parameters of the compart-
ment model (i.e., k01, k21, k12, and V), can be obtained
from the following macro constants: short half-life (ts), long

half-life (tl), amplitude fraction (F), and volume of distribu-
tion (V), using the algebraic equations below:

k125ln 2ð Þ F
tl

1
12F

ts

� �
;

k015
ln 2ð Þ

ts

� �
ln 2ð Þ

tl

� �
1

k12

� �
;

k215
ln 2ð Þ

ts

� �
1

ln 2ð Þ
tl

� �
2k122k01:

The four macro constants, in turn, can be derived in
each subject via four linear regression models:

htsi 5

mtsn if HSTATUSi is normal ;

mtso if HSTATUSi is obese;

mtsd if HSTATUSi is diabetic;

8>><
>>:
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hFi 5

mFn if HSTATUSi is normal;

mFo if HSTATUSi is obese;

mFd if HSTATUSi is diabetic;

8>><
>>:

hVi 5
aVm1bVm � BSAi if SEXi is male;

aVf 1bVf � BSAi if SEXi is female;

(

htli 5atl 1btl � AGEi ;

where AGE is in years and BSA, expressed in m2, is calcu-
lated as 0.20247 3 Height (m)0.725 3 Weight (kg)0.425. For
the sake of simplicity, we will denote the four regression
models as:

hi5f ~h;U i
� �

;

where hi 5 htsi
; hFi

; hVi
; htli½ � is the vector of the predictions

of the four regressions for the i-th individual, U i 5

HSTATUSi ; SEXi ; BSAi ; AGEi½ � is the vector of individual
covariates, and ~h5 mtsn;mtso; mtsd ; mFn; mFo; mFd ; aVm;½
bVm; aVf ; bVf ; atl ; btl � is the vector of population parameters.

Interindividual variability on model parameters was
assumed to be normally distributed. The individual macro
constants /i 5 tsi ; Fi ;Vi ; tli½ � for the i-th individual are, there-
fore, calculated as:

/i5hi1gi ;

where gi 5
�
gtsi

; gFi
; gVi

; gtli

�
is the vector of random effects,

which accounts for the interindividual variability. Assuming
independent random effects with unknown variance, the
described model is equivalent to the one proposed by Van
Cauter et al.46 This model version will be referred to as M0.

Following ref. 47, when correlations exist between the
elements of gi , while they are independent between differ-
ent subjects, we have:

gi � N 0;Rð Þ;

where R is the full (4 3 4) covariance matrix.
To define a Bayesian model,47 priors on ~h and on R21are

specified:

~h � N ~h0;R
21
0

� �
;

R21 � W q;Rð Þ;

where ~h0;R0, q; R are fixed prior parameters and W is the
Wishart distribution with mean q � R. The following values
were chosen according to the original publication: ~h05

5 5 5 1 1 1 30 1 1 1 1 1½ �; R0 is a diagonal matrix
with ~h0 square elements on the diagonal, q510, and

MLE approach

01 M0 identification
M4 parameters 
are es�mated via 
a Bayesian 
approach in 
WinBUGS

02 M0 simulation
The joint probability 
distribu�on of CP 
kine�c parameters for 
a new subject is 
simulated in WinBUGS
using the iden�fied 
M4 model at step 1

03 MM identification
MM parameters are 
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es�mated in 
WinBUGS, fixing the 
values of CP kine�c 
parameters to the 
values simulated at 
step 2

Probability 
distribu�ons 

of ISR and 
physiological 

indexes

Figure 2 Modeling approaches implemented in this study. The following number of chains, burn-in iterations, updates, and thin were
used. The M4 identification (full-Bayesian approach): 1 chain, 1,000 burn-in iteration, 100,000 updates, thin 5 10, repeated for three
times, each time using the last values of the chain as initial values for all the population parameters, to eventually obtain 300,000 chain
samples; insulin minimal model (MM) identification (full-Bayesian approach): 1 chain, 1,000 burn-in iterations, 20,000 updates, thin 5 1;
MM identification (mixed approach): 1 chain, 1,000 burn-in iterations, 80,000 updates, thin 5 5. CP, C-peptide; ISR, insulin secretion
rate; MLE, maximum likelihood estimate.
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R5q21 0:01 � diag 5 1 30 4½ �ð Þð Þ21. This Bayesian model

version will be referred to as M4.
The MDL code of the described models is freely available

for downloading in the DDMoRe Model Repository48 at

http://repository.ddmore.eu/model/DDMODEL00000110.

Glucose-insulin minimal model
The MM consists of two systems of differential equations,

describing CP kinetics and ISR after a glucose perturbation

(e.g., IVGTT), respectively.42,44

The first subsystem is composed by the following

equations:

dCP1 tð Þ
dt

52 k011k21ð ÞCP1 tð Þ1k12CP2 tð Þ1ISR tð Þ

dCP2 tð Þ
dt

52k12CP2 tð Þ1k21CP1 tð Þ

8>><
>>:

CP1 0ð Þ5 CP2 0ð Þ50

where CP1(t) and CP2(t) are the CP concentration

(pmol�l21) in compartment 1 and 2, respectively, and ISR(t)

(pmol�l21�min21) is the insulin (and therefore CP) secretion

rate expressed as deviation from the basal and normalized

by the volume of compartment 1 (V).
The second subsystem is composed by the following

equations:

ISR tð Þ5mX tð Þ

dX tð Þ
dt

5 2ISR tð Þ1Y tð Þ

dY tð Þ
dt

5
2a Y tð Þ2b G tð Þ2hð Þð Þ if G tð Þ > h

2aY tð Þ otherwise

(

X 0ð Þ5x0; Y 0ð Þ50

where X(t) (pmol�l21) represents the concentration of CP in

b-cells, m (min21) represents the proportionality constant

relating CP concentration in b-cells to insulin secretion rate,

and Y(t) (pmol�l21�min21) is a provisionary factor stimulated

when glucose plasma concentration is above the threshold

h (pmol�l21). The initial condition X(0) 5 x0 (pmol�l21) repre-

sents the amount of insulin secreted as an impulse in

response to the elevated glucose level after the bolus. This

first phase is followed by a slower second phase governed

by the provisionary factor Y(t), which tends to reach, with a

time constant 1/a (min), a steady-state value linearly

related, via parameter b (min21), to the glucose concentra-

tion G(t) above the threshold value h.
The MM parameters of the first subsystem are: k01

(min21), k12 (min21), and k21 (min21), illustrated above;

they can be fixed to the values obtained via M0 or esti-

mated via a Bayesian approach. The MM parameters of

the second subsystem are: h (pmol�l21), x0 (pmol�l21), b
(min21), m (min21), and a (min21). The CP and glucose

plasma concentrations are provided in the dataset; in par-

ticular, the model has CP plasma concentration as a

dependent variable and glucose concentration as time-

varying covariate.

The residual error model was supposed normally distrib-
uted with mean 0 and constant coefficient of variation (CV)
fixed to 6%.

Two physiological indexes, u1 and u2, characterizing b-
cell sensitivity to glucose, are defined as:

u15
x0

DG
;

u25b;

where DG (pmol�l21) is the maximum measured increment
of the glucose plasma concentration after an IVGTT.

When estimating the MM via Bayesian approach, MM
parameters are a priori assumed to be independent and
normally distributed. An informative prior was chosen for
the threshold h with mean equal to the basal glucose level
and a CV of 3%. Weakly to moderately informative priors
were assumed for the other MM parameters, x0, b, m, and
a, with mean 1.8, 11, 0.06, and 0.5, respectively, and a CV
of 100%.

The MDL model code is freely available for downloading
at http://repository.ddmore.eu/model/DDMODEL00000111.
The MDL file sections needed for Bayesian estimation of
this model, according to approach 2, are shown in Figure 3
as an example.

Datasets
The population regression model to estimate CP kinetic
parameters was identified using a large dataset, including
information about health status, sex, age, BSA, and corre-
sponding CP kinetics macro constants of 207 subjects.46,47

The glucose-insulin minimal model was identified on glu-
cose and CP plasma concentration data, obtained after an
IVGTT experiment on a subject not included in the previous
dataset47,49 with the following covariates: normal health
status, male, 25 years old, height 1.818 m, and weight
70.7 kg.

RESULTS

The R scripts implementing the three approaches of the
studied workflow are available as Supplementary Informa-
tion S2.

Workflow results using MLE approach
Approach 1 was executed via IOF, using NONMEM and
PsN as target tools for estimation and simulation, respec-
tively (see Figure 2a). Point estimates and corresponding
precisions of the M0 parameters are reported in Table 1.
All of them are identical to the values reported in the origi-
nal publication, in which a different target tool (MATLAB)
was used.47 Precisions of parameters obtained after boot-
strapping via PsN (see Supplementary Table S1 and
Supplementary Figure S1) were consistent with the preci-
sions reported in Table 1. Continuous or categorical visual
predictive checks (VPCs) were also performed via PsN and
Xpose (see Supplementary Figure S2).

The compartmental parameters of a new subject were
calculated via PsN by simulating M0 with all its parameters
fixed to their point estimates and using the anthropometric
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parameters of the new subject. The resulting values of k01,
k21, and k12 are reported in Table 1 and are also identical
to the ones obtained in the original work.47

The MM was identified via NONMEM from IVGTT data of
the new subject, with compartmental parameters fixed
to the values obtained above. Point estimates with their

Figure 3 The Model Description Language (MDL) code for the Bayesian estimation of the insulin minimal model (MM). Considering the
Bayesian estimation of MM in approach 2, the four essential modules of an MDL file are reported and their main sections briefly
described: Data Object (dataObj - yellow box), Prior Object (priorObj - green box), Model Object (mdlObj - blue box), and Task Property
Object (taskObj - red box). The Data Object includes the external dataset name and format (SOURCE section), and the column specifica-
tion of the NONMEM-formatted data file (DATA_INPUT_VARIABLES section), also specifying independent/dependent variables and covari-
ates. The Prior Object includes the definition of prior distributions: distribution parameters (PRIOR_PARAMETERS section), external
dataset name, and column description for the empirical/nonparametric distributions (NON_CANONICAL_DISTRIBUTION section), and def-
inition of distributions and fixed parameters (PRIOR_VARIABLE_DEFINITION section). The Model Object includes the definition of the
structural model and, when present, of the residual and interindividual variability levels: model equations (MODEL_PREDICTION section),
individual parameter definition/transformation (INDIVIDUAL_VARIABLES section), residual/interindividual variability model (VARIABILITY_-
LEVELS and RANDOM_VARIABLE_DEFINITION sections), and observation error model (OBSERVATION section). Finally, the Task Prop-
erty Object includes information on the task (ESTIMATE or SIMULATE section), target tool, and specific settings (TARGET_SETTINGS
section), such as, in case of WinBUGS: number of chains (nchains), number of burn-in and iterations (burnin and niter), ODE solver
(odesolver: “LSODA,” implementing a combination of Adams Moulton and Backward Differentiation Formulae solvers, or “RK45,” imple-
menting a Runge-Kutta fourth/fifth order solver), initial parameters of the chains (inits), and parameters to be monitored (parameters) in
addition to the ones with a prior distribution, which are monitored by default. CV, coefficient of variation; ISR, insulin secretion rate.
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precisions and sensitivity indexes are reported in Table 2.
Xpose was used to generate diagnostic plots (see Supple-
mentary Figure S3). Finally, PsN was used to simulate the
identified MM to obtain the predicted CP plasma concentra-
tion (see Figure 4a) and ISR (see Figure 4d–f) time
course plots. Sensitivity indexes and ISR are consistent
with the values obtained in the original work for this sub-
ject,44 although a direct comparison cannot be performed
because, in the mentioned work, the MM was always tested
in a Bayesian context.

Despite that this approach includes stochastic elements,
such as interindividual variability or residual error, all the
model parameters are considered as deterministic elements
during estimation and simulation, making it unsuitable for
uncertainty propagation among different models and hierar-
chical levels. This task will be faced in the next sections, in
which Bayesian approaches are adopted.

Workflow results using a full-Bayesian approach
Approach 2 was executed using WinBUGS as a target tool
for estimation and simulation (see Figure 2b). The poste-
rior distribution of the M4 model population parameters was
computed, and the relative point estimates and uncertain-
ties were derived (see Table 1). All of them are consistent
with the values reported using a different target tool
(MCMC implemented via MATLAB).47 Trace plots (see Sup-
plementary Figure S4), obtained via the coda R package,
were used to assess the Markov Chain convergence to
eventually set the burn-in. In this case, chains were highly
correlated. For this reason, to reduce autocorrelation and to
save disk space, a thin of 10 was chosen to give an effec-
tive number of independent samples of at least 500 for
each parameter. To check the effective number of indepen-
dent samples, the R function effectiveSize (available in the
coda R package) was used. As it was carried out for

Table 1 Final parameter estimates for M0 and M4

M0 M4

Parameter Unit Estimate %RSE Estimate %RSE

Fixed effect

mtsn min 5.000 2.088 4.991 1.942

mtso min 4.554 3.758 4.496 2.921

mtsd min 4.594 3.727 4.693 2.957

mFn – 0.764 0.546 0.766 0.562

mFo – 0.782 0.629 0.781 0.784

mFd – 0.780 0.771 0.778 0.858

atl min 27.797 4.802 26.705 3.854

btl min/years 0.177 22.728 0.209 13.197

aVm l 0.495 181.584 0.344 131.067

bVm l/m2 1.982 22.630 2.061 10.730

aVf l 1.520 48.365 0.795 59.352

bVf l/m2 1.432 28.790 1.819 13.898

Random effect

xts
b min2 – – 1.295 9.781

xF min2 – – 0.002 9.822

xtl – – – 33.044 9.847

xV l2 – – 0.713 9.796

xts,F min – – 0.006 60.110

xts,tl min2 – – 3.250 15.488

xts,V min�l – – 0.596 13.214

xF,tl min – – 0.071 26.966

xF,V l – – 20.006 49.064

xtl,V min�l – – 1.915 19.095

rADDts
c – 1.143 5.394 – –

rADDF – 0.041 5.625 – –

rADDtl – 5.778 6.167 – –

rADDV – 0.846 5.800 – –

CP-kinetic parameters

k01 min21 0.061 0.062 (0.045–0.096)a

k12 min21 0.049 0.049 (0.032–0.085)a

k21 min21 0.050 0.049 (0.027–0.110)a

CP, C-peptide; RSE, relative standard error.
aThe 95% confidence interval of the posterior distribution.
bElements of the full matrix X.
cSDs of the additive residual errors.
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approach 1, VPCs were also performed (see Supplemen-
tary Figure S5); in this case, a custom R function was
used, relying on the computed simulation profiles.

Stochastic simulations of M4 were performed to obtain
the compartmental parameters and their precisions for the
new subject. In these simulations, the priors on model
parameters were replaced with the joint posterior distribu-
tion obtained after model identification, as (sampled) empir-
ical distribution on all the model parameters. The point
estimates of the compartmental parameters (with their 95%
confidence intervals) for the new subject, reported in Sup-
plementary Figure S6 and Table 1, were highly consistent
with the values in the original work.47

The joint probability distribution of the compartmental
parameters of the new subject (500 samples) was used as
empirical prior for these parameters during MM estimation.
Posterior distributions were obtained for all the MM parame-
ters and the relative point estimates and uncertainties
were computed (see Table 2), with results consistent with
approach 1 and the original publication.44

The burn-in and thinning values were chosen via trace
plot (see Supplementary Figure S7) and effectiveSize
function, as described above. The individual predicted vs.
observed CP concentration plot is reported in Supplemen-
tary Figure S8.

Table 2 Final parameter estimates for the insulin minimal model in the three

approaches

MLE

approach

Bayesian

approach

Mixed

approach

Parameter Unit Estimate %RSEa Estimate %RSE Estimate %RSE

M min21 0.817 – 0.820 31.343 0.907 25.731

a min21 0.061 – 0.051 11.863 0.074 7.149

b min21 9.790 – 10.498 12.254 8.909 3.139

x0 pmol/l 1.384 – 1.472 8.212 1.406 3.220

h pmol/l 89.002 – 89.097 2.313 89.859 2.112

u1 – 81.966 – 87.177 – 83.314 –

u2 min21 9.790 – 10.498 – 8.909 –

MLE, maximum likelihood estimation; RSE, relative standard error.
a%RSE for MLE approach are not reported because the covariance step

using first order conditional estimation (FOCE) was not successful; the use

of stochastic approximation of expectation maximization (SAEM) instead of

FOCE was attempted but it did not provide reliable estimates due to conver-

gence issues (data not shown).
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Figure 4 Individual fits for the insulin minimal model (MM) and reconstructed insulin secretion rate (ISR) profile. (a–c) The panels cor-
respond to the three proposed approaches: maximum likelihood estimation (MLE) approach a, Bayesian approach b, and mixed
approach c. The triangles represent individual C-peptide (CP) concentration data, the solid line represents the model fit line, and the
shaded gray area depicts the 95% confidence interval of the MM calculated without considering residual error variability. (d–f)
Expected time course (solid line) and 95% confidence region (shaded area) of the ISR estimated via the three implemented
approaches. Panels d, e, and f correspond to time intervals [0,1], [1,5], and [5,240] minutes, respectively.
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The identified MM was simulated to obtain the predicted

CP plasma concentration (see Figure 4b) and ISR (see

Figure 4d–f) time course plots. As before, sensitivity

indexes and ISR are consistent with the values obtained in

the original work for this subject.44

Workflow results using a mixed MLE/Bayesian

approach
Approach 3 is a combination of approaches 1 and 2 (see Fig-

ure 2c). The compartmental parameters simulated with

NONMEM in approach 1 (see Table 1) were used as fixed

values during MM Bayesian estimation with WinBUGS. Point

estimates and uncertainty of the MM parameters and sensi-

tivity indexes in the new subject are reported in Table 1. As

before, all of them were consistent with the values estimated

in approaches 1 and 2, as well as the ones in the original

publication.44 As in approach 2, predicted CP and ISR were

obtained via stochastic simulations, which are reported in

Figure 4c and Figure 4d–f. The numbers of burn-in itera-

tions, update iterations, and thin were chosen as described

above (trace plots reported in Supplementary Figure S9).

Supported features of the WinBUGS plugin
Considering the models and performed tasks in approach

2, the support of a wide number of features was demon-

strated, including: estimation and simulation tasks, popula-

tion and single-subject models, algebraic and ODE

structural models, continuous and categorical covariates,

time-dependent forcing functions, multiple observations,

IF-THEN-ELSE statements, correlated random effects,

parametric and nonparametric (i.e., expressed with fre-

quency table) or empirical (i.e., expressed through a list of

samples) prior distributions. Specifically, our software plu-

gin supports all the WinBUGS-compatible probability distri-

butions included in the ProbOnto ontology (version 2.0),50

which is used as a standard knowledge-base in MDL and

PharmML.
In addition to M4 and MM, the WinBUGS plugin was

tested on a collection of about 200 additional models (list

not reported), including different features of interest in phar-

macometrics. Based on these tests, a full list of supported

features is reported in Table 3. Compared to the WinBUGS

plugin available in the IOF public release,33 the new version

Table 3 List of modeling features supported by the Interoperability Framework with the WinBUGS plugin extension

Feature Example Limitations or assumptions

Multiple variability levels UseCase1 Variability is supported on the population (prior), individual

(between-subject) and observation (residual) levels

Algebraic and ODEs models UseCase1, UseCase2 ODE models are solved via PK/PD Model Library and WBDev.

Initial time is always assumed to be zero.

IF-THEN-ELSE statements UseCase1

Univariate and multivariate distributions from

ProbOnto knowledge-base

See Supplementary

Information Appendix SB

Only the ones supported by WinBUGS*

Unary and binary operators See Supplementary

Information Appendix SA

Only the ones supported by WinBUGS*

Pairwise covariance and correlation encoding UseCase1

Additive, proportional and combined observation

error models

UseCase1 Only continuous outputs and structured expressions are sup-

ported: OBSERVATION 5 PREDICTION 1 f*EPS, with EPS

distributed as a Normal and f depending on the error model*

Single, multiple independent observations

and observations with multivariate

distribution

M4 Only univariate and multivariate Normal distributions are

supported

Multiple dosing Simeoni2004

Multiple administration routes UseCase4_1

NM-TRAN data file All models Supported columns: ID, DV, DVID, EVID, MDV, AMT, CMT, SS,

RATE, II, ADDL

Continuous and categorical covariates UseCase5 All the covariates are assumed to be time-dependent; continuous

ones are linearly interpolated; constant interpolation is per-

formed on categorical ones

Transformation of covariates, individual parame-

ters, and observation models

UseCase5

PK macros UseCase5

Univariate/multivariate empirical and nonpara-

metric prior distributions

MM Sample(s) (for empirical) and bin(s)-probability (for nonpara-

metric) values must be provided via external csv file

Structured (linear and general) expressions for

individual parameters

UseCase1

Matrices and vectors M4 They can only be used in population parameters and they

cannot be used in IF-THEN-ELSE statements or ODEs*

MM, minimal model; ODE, ordinary differential equation; PK, pharmacokinetic; PK/PD, pharmacokinetic/pharmacodynamic.

To each feature, at least one model is associated as an example. The model names are referred to Modeling Description Language (MDL) files provided as

Supplementary Information S1. For all the modeling features supported by MDL, the known limitations are listed too, specifying if they are due to the design

of the WinBUGS plugin or to the WinBUGS target language itself (marked with *). Novel features, not supported in the previous version of the WinBUGS plugin

(version 1.0, integrated into the official interoperability framework public release) are reported in bold.
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of the plugin has been robustified and now supports new
features, as highlighted in Table 3.

DISCUSSION

Reproducibility and interoperability of model codes among
different target languages and software tools have been
demonstrated with a complex workflow, which has been exe-
cuted via three different approaches combining several tools.

With approach 1, we have demonstrated how, in a single
R script (Supplementary Information 2), users can esti-
mate model parameters using NONMEM and do model
qualification using PsN and Xpose. Although all the steps
of the workflow could have been performed with the stand-
alone versions of these software tools, writing an unbroken
R script can significantly support the error-free reproducibil-
ity of the carried out analysis, because all the task-
implementing commands can be included in a single file
(e.g., fixing model parameters to the previously estimated
values, reuse the same model for estimation, simulation,
and VPC). Moreover, the output of all the performed tasks
was saved in an SO file, supporting subsequent result com-
parisons among different target tools (e.g., through the
application of standard Xpose graphic functions).

The other key advantage of the IOF features is interoper-
ability, which allows the reuse of the same data and/or model
encoding, for executing the desired tasks via different target
languages and tools. This feature has been demonstrated in
approaches 2 and 3, in which the code (model and data)
used in approach 1 has been easily reused in a Bayesian set-
ting, thanks to the modular structure of the MDL. In fact, MDL
objects can be grouped in different ways within IOF to execute
different tasks, even in different software tools.

Further, with approaches 2 and 3, we have demonstrated
the possibility of executing Bayesian estimation and sto-
chastic simulation tasks in the IOF via WinBUGS by using
only MDL and R scripts (Supplementary Information 2).
Both the estimation and simulation results were stored in
an SO file, like in approach 1. Therefore, interoperability
and standardization have also been highlighted at the level
of result management by the possibility of applying, in all
the tested approaches, “universal” functions to SO files,
without taking into account which software generated
results and which was the specific format for storing them.
That was made possible thanks to the standardized format
of the IOF outputs (SO) that promotes interoperability and
enables direct comparisons among results coming from dif-
ferent target tools and/or tasks. For instance, an easy to do
comparison between the confidence bands around the ISR
estimates (see Figure 4d–f) highlights, in this case, that
the central tendency of the reconstructed ISR time course
is comparable among the different approaches (with only a
slight overestimation of the ISR in the MLE approach),
whereas the propagated variability, represented with the
95% confidence interval around the central tendency,
increases from the mixed approach to the full-Bayesian
approach, as expected. It is worth noting that the confi-
dence region of the mixed approach is completely included
within one of the full-Bayesian approaches only after the

first 5 minutes, whereas, in the first two phases, the differ-

ences between the confidence regions are quite limited.
Finally, the integration of WinBUGS within the DDMoRe

IOF, through the WinBUGS plugin, has even reduced the

complexity of directly implementing PK/PD models, which

are normally encoded in the standalone version of Win-

BUGS by combining in a not trivial way BUGS code and

Component Pascal languages. In particular, modelers can

encode the desired MDL files by writing them from scratch,

taking advantage of the MDL-IDE and a detailed user

guide, or modifying existing model files, such as the ones

available in the DDMoRe Model Repository. The modular

structure of MDL (see example in Figure 3) facilitates such

a task, by enabling the reuse of blocks from existing model

files, which may be modified only in terms of, for example,

data or prior distribution of specific parameters. Any MDL

file can be executed via user-defined R scripts, like the

ones programmed in this work and included in the Sup-

porting Information zip files. Once executed via specific

R functions, MDL can successfully serve as a BUGS/

Pascal translation system, because every execution creates

and makes available to users all the model files in the tar-

get code. If needed, the resulting files can be integrated,

modified, and executed by users in standalone WinBUGS.
The work herein presented relied on the WinBUGS plugin

available functionality and extensibility; however, the les-

sons learned could facilitate the development of future

DDMoRe IOF plugins for other promising Bayesian tools,

such as Stan.
The plugin used in this work is publicly available and sup-

ports a plethora of pharmacometric modeling features

(Table 3). It is expected to significantly facilitate Bayesian

model encoding, execution, and results comparison among

different estimation/simulation tools by addressing repro-

ducibility and interoperability, two long-standing problems in

pharmacometric modeling, as well as by “making easy” the

encoding of PK/PD models in WinBUGS. This can substan-

tially contribute to boost the adoption of the Bayesian

approach in pharmacometrics.
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