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Purpose: To establish a non-invasive diagnostic model based on convolutional neural
networks (CNNs) to distinguish benign from malignant lesions manifesting as a solid,
indeterminate solitary pulmonary nodule (SPN) ormass (SPM) on computed tomography (CT).

Method: A total of 459 patients with solid indeterminate SPNs/SPMs on CT were
ultimately included in this retrospective study and assigned to the train (n=366),
validation (n=46), and test (n=47) sets. Histopathologic analysis was available for each
patient. An end-to-end CNN model was proposed to predict the natural history of solid
indeterminate SPN/SPMs on CT. Receiver operating characteristic curves were plotted to
evaluate the predictive performance of the proposed CNN model. The accuracy,
sensitivity, and specificity of diagnoses by radiologists alone were compared with those
of diagnoses by radiologists by using the CNN model to assess its clinical utility.

Results: For the CNNmodel, the AUCwas 91% (95% confidence interval [CI]: 0.83–0.99)
in the test set. The diagnostic accuracy of radiologists with the CNN model was
significantly higher than that without the model (89 vs. 66%, P<0.01; 87 vs. 61%,
P<0.01; 85 vs. 66%, P=0.03, in the train, validation, and test sets, respectively). In
addition, while there was a slight increase in sensitivity, the specificity improved
significantly by an average of 42% (the corresponding improvements in the three sets
ranged from 43, 33, and 42% to 82, 78, and 84%, respectively; P<0.01 for all).

Conclusion: The CNN model could be a valuable tool in non-invasively differentiating
benign from malignant lesions manifesting as solid, indeterminate SPNs/SPMs on CT.

Keywords: neural network model, computed tomography, differential diagnosis, solid, indeterminate solitary
pulmonary nodule, lung adenocarcinoma
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1 INTRODUCTION

With the use of thoracic low-dose computed tomography (CT)
for lung cancer screening, an increasing number of solitary
pulmonary nodules (SPNs) or masses (SPMs) are deliberately
or incidentally discovered. Solid SPNs are extremely common,
and malignancy account for approximately 60% (range: 55–66%)
(1, 2). Data from the Prostate, Lung, Colorectal, Ovarian Cancer
Screening Trial indicated that SPMs were highly predictive of
malignancy (odds ratio, 10.3; 95% confidence interval [CI], 2.46–
43.38) (3). Solid malignant lesions are related to rapid cancer
growth and high risks of recurrence and metastasis, despite their
small size (4, 5). Therefore, the most crucial task for radiologists
and clinicians is to accurately determine the natural history of
the lesions. Surgery is the diagnostic gold standard and definitive
treatment for malignant cases. However, 25–46% of patients with
SPNs have benign disease despite a preoperative suspicion of
cancer, and an incorrect diagnosis results in unnecessary invasive
resection and monetary and time costs (6, 7).

High-resolution computed tomography (HRCT) can non-
invasively provide specific information about pulmonary lesions
(8). However, there are challenges associated with the visual
assessment of CT images. First, a series of CT images consist of
hundreds of slices; radiologists have to browse through these
slices and carefully consider them, which is time-consuming,
tedious, and subjective. Second, visual evaluations are inadequate
to distinguish benign from malignant lesions manifesting as
solid, indeterminate SPNs or SPMs because of the considerable
overlap in the radiographic characteristics of these lesion types
(Figure 1). For example, 21–58% of malignant lesions have
smooth edges, and approximately 25% of benign nodules are
irregularly shaped with spiculated or lobulated margins (9–12).
In this study, a solid, indeterminate lesion was defined as a non-
calcified lesion or a lesion without features strongly suggestive of
a benign etiology, usually greater than 8 mm in size (13).

Recently, machine learning has shown outstanding
capabilities as one of the most promising tools for the
detection, diagnosis, and differentiation of lung lesions. Over
the years, two computational strategies have been developed to
predict the malignancy of lung lesions on CT images: radiomics
based on quantitative radiological image features and deep
learning methods such as those based on cascade convolutional
neural networks (CNNs). The extraction of radiomics features
relies heavily on accurate lesions boundary outline, and
predictive models are built based on a prior knowledge of
which features are significant. Whereas CNNs could
automatically extract potential features beyond human
perception from medical images to predict whether a lesion is
benign or malignant by amplifying aspects of the input images
that are important for discrimination and suppressing irrelevant
Abbreviations: CT, computed tomography; SPNs, solitary pulmonary nodules;
SPMs, solitary pulmonary masses; CI, confidence interval; HRCT, high-resolution
computed tomography; CNN, cascade convolutional neural network; ROI, region
of interest; HU, Hounsfield unit; 3D, three-dimensional; CAM, class activation
map; SD, standard deviations; ROC, receiver operating characteristic; AUC, area
under the ROC; PSPs, pulmonary sclerosing pneumocytomas; FOP, focal
organizing pneumonia.
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variations (14). When successfully applied, it is expected to
improve diagnostic accuracy and reduce unnecessary invasive
procedures and costs and anxiety of patients. Several studies have
revealed the predictive value of CNNs and the promising
prospects they afford for lung lesion differentiation (15–18).
However, (1) these models lack interpretability and are often
referred to as “black boxes”, which renders them difficult for the
users to understand; (2) no specific emphasis has been given to
distinguishing benign from malignant lesions manifesting as
solid, indeterminate pulmonary lesions. Therefore, this study
aimed to develop an interpretable CNN-based non-invasive
diagnostic model for solid, indeterminate SPNs or SPMs on
CT and to evaluate its clinical utility.
2 MATERIALS AND METHODS

The retrospective study was approved by the ethics committee of
“Shanghai Pulmonary” Hospital. The informed consent
requirement was waived.

2.1 Study Population
We retrospectively included 459 consecutive patients with solid,
indeterminate SPNs or SPMs on CT between January 2018 and
December 2018. Patients who met the following criteria were
included: (1) presence of a primary intrapulmonary lesion;
(2) the diameter of an existing lesion of >8 mm [because pure-
solid nodules measuring <8 mm has the relatively low prevalence
of malignancy, and the risks of surgical diagnosis usually
outweigh the benefits (13); thus, the Fleischner Society
guidelines recommend routine follow-up for management (19),
and additionally, in our hospital, one of the criteria for surgical
excision is a diameter greater than 8 mm (20)]; (3) histologically
confirmed diagnosis after surgical resection; and (4) preoperative
CT slice thickness of 1–1.25 mm. The exclusion criteria were as
follows: (1) a clearly benign diagnosis based on the initial CT
reports; (2) a history of malignancy; (3) lesions with calcification
regardless of type; (4) obvious artefacts on CT images. Eligible
patients were sorted randomly, and the benign and malignant
groups were divided into the training (n=366), validation (n=46),
and test (n=47) sets according to the 8:1:1 ratio for model
learning, respectively, shown in Figure 2.

2.2 CT Parameter Acquisition and Image
Annotation and Interpretation
All patients underwent Chest CT examinations before surgery in
our institution, and the detailed scanning parameters are shown
in Supplement Table 1. Two thoracic radiologists (with 3 and 7
years of work experience) detected the location of pulmonary
lesions, marked their coordinates (X, Y, and Z axes), and
measured their diameters on the section that displayed the
longest diameter of the lesion. When annotations differed,
radiologists discussed them until consensus was achieved.

Additionally, these lesions were evaluated for shape (regular
or irregular), the presence of spiculation, lobulation, and pleural
retraction. The mean CT density was calculated by measuring
December 2021 | Volume 11 | Article 792062
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the average CT value of the region of interest (ROI) that carefully
placed in an area away from vessels, bronchi, and necrosis. The
readings were interpreted using Radiant software (http://
radiantviewer.com) with the lung window setting (window
level, −450 Hounsfield unit [HU]; width, 1,500 HU) and
mediastinal window setting (window level, 40 HU; width, 400
HU). Based on the experienced evaluation, the other two
radiologists (with 4 and 9 years of experience in reading
thoracic CT scans, respectively), uninformed of the
pathological results, made a diagnosis. In case of a discrepancy
between the two radiologists, a third radiologist with an
experience of more than 29 years in thoracic CT made the
final decision.

2.3 CNN Model Construction
2.3.1 Image and Data Preprocessing
The voxel spatial resolution of all patients’ raw CT were
standardized on all three axes, to 0.6 × 0.6 × 0.6 mm3 each
voxel. Then small three-dimensional (3D) tensor with size of
128×128×128 voxels centered at each nodule is extracted using
Frontiers in Oncology | www.frontiersin.org 3
corresponding coordinates annotation. The size ensured that
each nodule was entirely covered. In the training phase, it was
necessary to randomly rotate the tensor at arbitrary angle in the
3D space, as a data augmentation method. Then we selected
three orthogonal slices passing through the center point and
stacked them, resulting in a 3×128×128 tensor. Furthermore, we
cropped a 3×104×104 sub-region that could completely cover all
lesions, and resized it to the voxels of 3×224×224, as a data
augmentation method also. Finally, the CT value interval was
clipped to [−1,100 HU, 100 HU], and the result was further
linearly mapped to the value interval [0, 1]. Each 3×224×224
tensor represented one patient in the network pipeline. The
preprocessing was shown in Figure 3.

2.3.2 The Structure of the CNN Model
Figure 4 shows the pipeline of benign and malignant prediction
for solid, indeterminate SPNs or SPMs on CT. ResNet was used
as the basis of the deep learning model (21). Specifically, the
selected network was ResNet-101. As a transfer learning method,
ResNet’s weights parameter pre-trained on the ImageNet image
FIGURE 2 | Flow chart of inclusion and exclusion criteria for eligible patients and specific allocations in the train, validation, and test sets.
FIGURE 1 | Examples of solid, indeterminate SPN/SPMs without features strongly suggestive of a benign etiology. (A1) Invasive adenocarcinoma (IAC); (B1) granuloma;
(C1) pulmonary sclerosing pneumocytoma (PSP); (D1) focal organizing pneumonia (FOP). (A2–D2) paraffin section (hematoxylin and eosin [H&E], 100 ×) of IAC,
granuloma, PSP, and FOP, respectively.
December 2021 | Volume 11 | Article 792062
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FIGURE 3 | The process of data preprocessing. (A) Three-dimensional (3D) tensor was obtained from the original CT sequence according to nodule coordinates labeled
by radiologist. (B) The tensor is rotated at arbitrary angle around its center point. (C, D) Three orthogonal slices spanning center point were extracted and stacked to
form a pseudo-RGB map (3×128×128 tensor). (E) Random cropping with 3×104×104 subregion. (F) Nodule images were resized to voxels of 3×224×224.
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dataset was loaded to initialize sub-network 1 of our model (22).
In sub-network 2, the last two layers in the original network were
replaced by two fully connectied layers with 512 and 2 output
nodes, respectively, and their weight parameters were initialized
randomly. We chose to use 2D-CNN rather 3D-CNN for the
following reasons: (1) the number of CT cases is small and
training CNNs from scratch on top of this would lead to
overfitting, and there are currently no pre-trained 3D-CNN
model weights available on large publicly available 3D CT
datasets; (2) the data augmentation method used in the paper
that rotated in 3D space could also help 2D-CNN capture the 3D
features of nodules, and better prediction results could be
achieved using 2D-CNN model with transfer learning.
Furthermore, to increase the generalizability of the model and
avoid overfitting, mix-up algorithm was adopted (23).

2.3.3 Experiment Parameter Setting
The train dataset was used to train the deep learning algorithm, a
separate validation dataset to tune parameter, and the test dataset
to assess the final model. During the training stage, only weight
parameters in the last two fully connected layers and all batch
normalization layers in the network were trained for 1 epoch,
and others remained unchanged. This can be considered as a
warm-up training. Then the entire model was trained for
additional 60 epochs. This process simultaneously optimized
all network layers, making the lower convolutional layer more
suitable for edge and corner features in CT data, as well as for the
specific data distribution resulting from our combination of
orthogonal slices. The weights corresponding to the epoch with
the lowest validation loss were chosen as the optimal model and
saved. The model used Adam as weights optimizer and cross-
entropy as loss function (24). The learning rate was 1e-2, and
weight decay was 5e-5. One cycle strategy was used to adjust the
Frontiers in Oncology | www.frontiersin.org 5
learning rate during model training (25). The dropout
probabilities of the last two fully connected layers in the model
were set 0.25 and 0.5, respectively. A batch size of 64 was used. It
took about 5 s to train the neural network on all 366 training
samples (tensor size: 366×3×224×244) for one epoch. See the
code for the detailed procedure. Code implementation was based
on the fastai framework (26) and available online https://github.
com/DrIsDr/TJU_Chen_SK.

2.3.4 Visualization of the CNN Model
The CNN models were often referred to “black-box” technology
due to lack of interpretability, making it difficult for users to
understand the inference procedure. We used the class activation
map (CAM) to visualize the discriminative process of the neural
network (27), and the results are shown in Figure 5. The CAM
could generate the response heatmaps to reversely deduce the
process of the model making diagnosis. Red areas had the highest
activation value, which suggested that the model mainly
extracted diagnostic characteristics from the region, whereas
the blue areas had the lowest activation value, meaning that
less discriminative features were found in this region.

As can be seen in the Figure 5, the CNN model produced
high activation value (red areas) in the regions where the nodule
was located and adjacent to the nodule only when the nodule was
correctly classified. In other words, the model captured the
internal and external features of nodules to make a diagnosis.
More examples are shown in the Supplementary Figure 1.

2.5 Statistical Analysis
Baseline characteristics and image information of the
participants were summarized as mean ± standard deviations
(SD) values for continuous variables, and as frequency and
percentage for categorical variables. Statistical significance was
FIGURE 4 | End-to-end CNN model illustration. For the input nodule images (from the left side), the neural network made the prediction (right side) and outputted
two values, representing benign and malignant probabilities (summed to 1). The final diagnosis of each nodule by the model depended on which class was predicted
with a probability greater than 50%. The architecture was composed of convolution, batch normalization, max pooling, fully connection, global average pooling, and
residual building block. Sub-net 1 was pretrained on ImageNet dataset with ~15 million neutral images, while sub-net 2 was trained from scratch. The 56x56@256
(x3) below the first residual building block meant the spatial size and number of channels of the output feature map in this block were 56x56 and 256 respectively,
while x3 meant the block contained 3 residual units.
December 2021 | Volume 11 | Article 792062
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tested using Student’s t-test, Welch’s t-test, Mann-Whitney U-
test, and Kruskal-Wallis for continuous variables as appropriate,
and Chi-square test for categorical variables. A p-value < 0.05
was considered to be statistically significant. The predictive
results of CNN model were compared with the pathological
gold standard. The diagnostic performance of the CNN model
was described using the area under the receiver operating
characteristic (ROC) curve (AUC) with 95% CI. The mean
value of accuracy, sensitivity, and specificity of diagnoses by
radiologists alone were compared with those of diagnoses by
radiologists with the assistance of the CNN model to evaluate its
clinical utility. All statistical analyses are based on SPSS 20.0
software (SPSS Inc., Chicago, IL, USA) and R version 3.6.3 (R
foundation for Statistical Computing).
3 RESULTS

3.1 Baseline Characteristics
A total of 459 patients with solid, indeterminate SPNs or SPMs
were included. Of the 459 patients, 183 had benign disease (83
males and 100 females; mean age, 53.67 ± 12.33) and 276 had
malignant disease (151 males and 125 females; mean age, 60.53 ±
9.30). Among the 183 benign cases, there were 124, 55, and 4
granulomas, pulmonary sclerosing pneumocytomas (PSPs), and
focal organizing pneumonia (FOP), respectively. The subtype of
malignancy only included lung adenocarcinomas.

The clinical baseline characteristics and image features are listed
in Table 1. Between the benign and malignant groups, clinical
variables, such as age (P<0.01) and gender (P=0.05), demonstrated
statistical difference. However, no statistically significant
association was observed in terms of radiological features.

3.2 Performance of the CNN Model
The model demonstrated superior performance in the train set
(AUC: 0.94, 95% CI: 0.92–0.96); the results in the validation and test
sets showed slightly lower but still satisfactory differentiation
performance (validation set: AUC 0.88, 95% CI: 0.78–0.99; test
set: AUC 0.91, 95% CI: 0.83–0.99) (Figure 6). The total
Frontiers in Oncology | www.frontiersin.org 6
concordance rates between the CNN model and final pathological
assessments generated by the final paraffin section in the train,
validation, test cohorts were 87% (318/366), 83% (38/46), and 83%
(39/47), respectively (Supplement Table 1). The sensitivity and
specificity were 89% (95% CI: 0.85–0.92) and 84% (95% CI:0.80–
0.87) in the train set, 86% (95% CI: 0.73–0.93) and 78% (95% CI:
0.64–0.88) in the validation set, and 86% (95% CI: 0.73–0.93) and
79% (95% CI: 0.65–0.88) in the test set (Table 2).

3.3 Clinical Utility of the CNN Model
Three radiologists blinded to the pathological results twice assessed
the benignity or malignancy of each patient and made a final
decision in consensus. The average time required for diagnosing
each patient was 3 min. The diagnostic accuracy of radiologists
alone was lower than that of the CNN model in all patients (train
set: 66 vs. 87%, P<0.01; validation set: 61 vs. 83%, P=0.02; test set: 66
vs. 83%, P=0.06). When radiologists used the CNN model, their
diagnostic accuracy was higher than that achieved by radiologists
alone (train set: 89 vs. 66%, P<0.01; validation set: 87 vs. 61%,
P<0.01; test set: 85 vs. 66%, P=0.03) (Supplement Table 2).
Additionally, specificities increased significantly, by an average of
42% (train set: from 43 to 82%; validation set: from 33 to 78%; test
set: from 42 to 84%; all P-values < 0.01); and sensitivities improved
slightly (train set: 81 vs. 95%, P<0.01; validation set: 79 vs. 93%,
P=0.04; test set: 82 vs. 89%, P=0.37) (Table 3). Thus, the CNN
model could help radiologists to enhance the capability of
distinguishing benign from malignant lesions with radiographic
solid, indeterminate SPN or SPM characteristics at all three levels of
CT expertise, effectively preventing misdiagnosis.
4 DISCUSSION

Deep CNN is a type of deep learning approach in which
computers are not explicitly programmed but can perform
tasks by analyzing relationships of existing data. In this
retrospective study, our CNN model achieved better accuracy
than three radiologists in differentiation between benignity and
A B

FIGURE 5 | Class activation map (CAM) for two example nodules (nodule A and B) in the test set. For each nodule, the first row (nodule images input to neural
network) represented the three views of each nodule, the second (the benign probability) and third row (the malignant probability) represented the corresponding
response heatmaps when the model classifies the nodule as benign and malignant, respectively (red regions are of highest interest and blue lowest).
December 2021 | Volume 11 | Article 792062
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malignancy for solid, indeterminate SPNs or SPMs. When
radiologists used the CNN model, the mean accuracy was 87%,
and the specificity improved by 42%, which would have
Frontiers in Oncology | www.frontiersin.org 7
facilitated timely diagnosis and treatment for lung cancer and
avoided unnecessary excision for benign cases by a non-invasive,
highly efficient, and reproducible method. Furthermore, to
enhance interpretability, we used visualization techniques to
analyze the process of the CNN model classification. To the
best of our knowledge, this is the first attempt to differentiate
radiographically solid, indeterminate lesions using interpretable
CNN technology based on thin-section CT scans.

The solid SPN is an extremely common type of tumor, and
approximately 60% of solid SPNs are malignant (1, 2). Published
studies have reported that nodal metastasis and intrapulmonary
and extrapulmonary diffusion could be found in malignant solid
lesions, even in subcentimeter small nodules (4). Thus,
differentiation of benign and malignant lesions is the most
critical step for patient management.

Chest CT examinations can provide specific information about
morphological and density characteristics and are helpful to
estimate the probability of malignancy for pulmonary solid
lesions. Multiple studies have revealed that spiculation, lobulation,
irregular shape, and pleural retraction are associated with
malignancy, whereas lesions with a regular shape and the smooth
margin are more likely to be benign (28, 29). However, in our
dataset, no radiologically available features were observed (Table 1),
which means that trained radiologists have difficulty distinguishing
the nature history of solid, indeterminate solitary pulmonary by
visual assessment alone. The overlap of radiographic characteristics
does not seem too unusual. As noted previously, for pulmonary
lesions with smooth edges, the risk of malignancy was
FIGURE 6 | The receiver operating characteristic curves of the CNN model
used in this study.
TABLE 1 | The baseline characteristics and imaging information of patients included in the study.

Variables Total (n=459) Benign (n=183) Malignant (n=276) P-value

Age, mean ± SD, y 57.80 ± 11.12 53.67 ± 12.33 60.53 ± 9.30 <0.01
Gender, n (%) 0.05
Male 234 (51) 83 (45) 151 (55)
Female 225 (49) 100 (55) 125 (45)
Image information
Diameter, n (%) 0.14
≤30 mm 379 (83) 157 (86) 222 (80)
>30 mm 80 (17) 26 (14) 54 (20)
Tumors location, n (%) 0.07
RUL 123 (27) 40 (22) 83 (30)
RML 45 (10) 19 (10) 26 (9)
RLL 97 (21) 50 (27) 47 (17)
LUL 111 (24) 41 (22) 70 (25)
LLL 83 (18) 33 (18) 50 (18)
Shape, n (%) 0.50
Regular 103 (22) 44 (24) 59 (21)
Irregular 356 (78) 139 (76) 217 (79)
Lobulation, n (%) 0.59
Presence 290 (63) 117 (64) 173 (63)
Absence 168 (37) 66 (36) 102 (37)
Spiculation, n (%)
Presence 244 (53) 94 (51) 150 (54) 0.53
Absence 215 (47) 89 (49) 126 (46)
Pleural retraction, n (%) 0.92
Presence 232 (51) 93 (51) 139 (50)
Absence 227 (49) 90 (49) 137 (50)
CT value, mean ± SD, HU 31.24 ± 24.86 33.07 ± 27.22 30.03 ± 23.14 0.20
December 2021 | Volume 11 | Article
The data are expressesed as mean ± standard deviations for continuous variables, and the frequency and percentage for categorical variables.
A p-value < 0.05 was supported to be statistically significant.
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approximately 35% (range: 21–58%) (9–12). Chu et al. reported that
95% (214/225) of solid cancerous nodule had a regular shape (30).
Also, Zerhouni et al. recorded that 25% of benign nodules showed
irregular margins with lobulation or spiculation, and only 18% of
these lesions were correctly assessed on CT (9). In addition, in the
study by Xu et at., lung cancer risk was absent in solid indeterminate
nodules attached to the pleural or a fissure during 1 year of follow-
up (31).

Thus, it is very pivotal to differentiate benign from malignant
solid, indeterminate SPNs or SPMs by using a new approach to
overcome the naked limitation. However, some studies revealed and
exploited the massive potential of image features that may be
visually imperceptible to even very experienced thoracic
radiologists and can be extracted from CT scans by using (1)
radiomics methods or (2) deep learning approaches based on
CNNs (32–34). Both methods have been widely used to classify
and identify the natural history of sub-solid nodules including the
part-solid and pure ground glass nodules, scoring tremendous
achievements (35–39). Nevertheless, few studies have focused on
the differentiation of solid pulmonary lesions. Shen et al. established
a multiclassifier fusion based on radiomic features, including
geometric features, textures features, gray-level features, and
wavelet features to predict benign and malignant primary solid
nodules, achieving an AUC of 0.915 in the test set (40). However,
not all benign cases in this study were pathologically confirmed, a
stable 2-year follow-up period does not guarantee its benign nature.
In addition, radiomics methods that extract quantitative biological
features are limited by prior knowledge of significant characteristics,
which may be unbefitting for pulmonary lesions with considerable
Frontiers in Oncology | www.frontiersin.org 8
overlapping features. The CNN method could simplify the
redundancies and learn discriminating features directly from CT
images, facilitating greater reproducibility. In this study, our CNN
model in the test set had an AUC of 0.91, comparable with the
previously reported value, which indicated good performance. The
specificity of our model was significantly higher than that of the
three radiologists. In fact, most benign lesions in our study
mimicked the morphological characteristics of lung cancer.
Radiologists are prone to classifying these lesions as malignant in
clinical practice, yielding high sensitivity with low specificity.
However, when radiologists used the CNN model, their specificity
improved significantly by 42% while maintaining the
high sensitivity.

Additionally, the CNNmodel is highly efficient in distinguishing
benignity from malignancy for solid, indeterminate lesions.
Radiologists spent an average of 3 min to read and interpret a set
of CT images of one patient, while the CNN model could process
the 366 patient images in just 5 s. Moreover, in routine clinical
practice, radiologists usually need to review and compare prior CT
images to make a diagnosis, which would require more time despite
yielding higher accuracy. In our model, on the basis of coordinate
information, we adopted a supervised learning method, guided the
neural network model to extract features layer-by-layer from CT
images of interest, constantly enhanced the intensity of feature
abstraction, and finally output the result of the prediction. Thus, we
used an end-to-end computational method that could greatly
simplify the traditional workflow.

A limitation of our model is the overfitting issue caused by the
single-institute small data size. To compensate for this limitation, we
utilized the pretrained network on ImageNet that included millions
of natural images, in a process termed transfer learning. Although
there is no intuitive approach for using a pretrained model with
non-medical images for differentiation of medical images, some
features including the edges, corners, orientations, and textures are
generic. We compared the performance of the CNN model with or
without pretrained procedure using the same experimental
parameters, and the results showed the pretrained CNN model
performed much better than the untrained one (Supplementary
Figure 2). In addition, data augmentation was also used to resolve
this problem. Randomly rotating nodules/masses in 3D space,
TABLE 2 | Predictive performance of the CNN model.

Train set Validation set Test set

AUC 94 (0.92–0.96) 88 (0.78–0.99) 91 (0.83–0.99)
ACC 87 (0.83–0.90) 83 (0.70–0.91) 83 (0.70–0.91)
SE 89 (0.85–0.92) 86 (0.73–0.93) 86 (0.73–0.93)
SP 84 (0.80–0.87) 78 (0.64–0.88) 79 (0.65–0.88)
All values shown as % (95% confidence interval).
CNN, convolutional neural network; AUC: area under curve; ACC, accuracy; SE,
sensitivity; SP, specificity.
TABLE 3 | Comparison of the diagnostic performance of radiologists without and with the CNN model.

Training set Validation set Test set

Radiologists alone Radiologists with CNN Radiologists alone Radiologists with CNN Radiologists alone Radiologists with CNN

ACC 66
(0.61–0.71)

89
(0.85–0.92)

61
(0.47–0.74)

87
(0.74–0.94)

66
(0.52–0.78)

85
(0.72–0.93)

SE 81
(0.77–0.85)

95
(0.92–0.97)

79
(0.65–0.88)

93
(0.82–0.98)

82
(0.69–0.90)

89
(0.77–0.95)

SP 43
(0.38–0.48)

82
(0.78–0.86)

33
(0.21–0.47)

78
(0.64–0.88)

42
(0.29–0.56)

84
(0.71–0.92)

FPV 57
(0.52–0.62)

19
(0.15–0.23)

67
(0.53–0.79)

22
(0.12–0.36)

58
(0.44–0.71)

16
(0.08–0.29)

FNV 19
(0.15–0.23)

6
(0.04–0.09)

21
(0.12–0.35)

7
(0.02–0.18)

18
(0.10–0.31)

11
(0.05–0.23)
December 2021 | Vo
All values shown as % (95% confidence interval).
CNN, convolutional neural network; ACC, accuracy; SE, sensitivity; SP, specificity; FPV, false positive value; FNV, false negative value.
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extracting three orthogonal slices to form pseudo-RGB map,
cropping, and resizing the input images for neural network could
help 2D-CNN capture rich 3D features. In the future, a larger
multicenter study should be used to validate this model and
improve the performance of this algorithm.

Other limitations should be mentioned. Lesions were not
automatically detected, but based on radiologist annotations,
which would lead to interobserver variability and error
propagation to CNN model because of this process. However,
to reduce this bias, all lesions were marked in consensus by two
experienced radiologists. Furthermore, we used the Grad-CAM
method to visualize the intermediate variables generated by the
trained model for the prediction process of the images. Given an
image patch, the model does focus on the nodule, demonstrating
that the region of interest used by the model for feature
recognition is correct and that such interpretable analysis is
appropriate for the form of our annotation (which includes
nodule location and class) currently provided. At present, the
design of CNN algorithms and the abundance of clinical data are
mutually reinforcing. In the future, as more data become
available and finer-level annotation information becomes more
widespread, CNNs can be more useful for clinical applications.
Considering actual clinical limitations, the design of our cohort
was restricted to allow differentiation between adenocarcinomas
and benign diseases including granulomas, PSP, and FOP.
Actually, it makes sense to use CNN model to further predict
the results of benign lesions for subclassification. However, in
our study, we did not perform this task. Understandably, the
multi-classification tasks for benign lesions are difficult due to
the disparity in sample distribution of benign subtypes (124
granulomas; 55 PSPs; 4 FOPs), as a well-performing model
requires a large number of sample data of each type of disease.
We plan to conduct a more in-depth evaluation of the
application of CNN model to multi-classification tasks based
on large samples in the upcoming studies.

In conclusion, we established a CNN model based on CT
images that can serve as a valuable tool for radiologists to
differentiate radiographic solid, indeterminate SPNs or SPMs.
Moreover, a visualization procedure was presented to enhance
interpretability of CNN model.
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Supplementary Figure 1 | The more represented results for using CAM to
visualize the discriminative process of the neural network. (nodules A–D): examples
of CNN model incorrectly predicting the benignity and malignancy of nodules.
(nodules E–J) examples of CNN model for accurate prediction of nodal benignity
and malignancy. As shown in nodule H, the ROI heat values used to determine
malignancy is low, but the ROI heat values used to determine non-benign is high,
which can be explained by the fact the CNN determines this case as malignant by
referring more to the surrounding area than to the nodal region. What is more, we
can learn from nodule I that the CT images of this case obviously have texture noise
that is not present in other cases, but the CNN still correctly detects the ROI and
makes a judgment, which reflects the robustness of the CNN model. CAM, class
activation map; CNN, convolutional neural network; ROI, region of interest; CT,
computed tomography.
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