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A B S T R A C T   

Learning which of our behaviors benefit others contributes to forming social relationships. An important period 
for the development of (pro)social behavior is adolescence, which is characterized by transitions in social con-
nections. It is, however, unknown how learning to benefit others develops across adolescence and what the 
underlying cognitive and neural mechanisms are. In this functional neuroimaging study, we assessed learning for 
self and others (i.e., prosocial learning) and the concurring neural tracking of prediction errors across adoles-
cence (ages 9–21, N = 74). Participants performed a two-choice probabilistic reinforcement learning task in 
which outcomes resulted in monetary consequences for themselves, an unknown other, or no one. Participants 
from all ages were able to learn for themselves and others, but learning for others showed a more protracted 
developmental trajectory. Prediction errors for self were observed in the ventral striatum and showed no age- 
related differences. However, prediction error coding for others showed an age-related increase in the ventro-
medial prefrontal cortex. These results reveal insights into the computational mechanisms of learning for others 
across adolescence, and highlight that learning for self and others show different age-related patterns.   

1. Introduction 

Adolescence is a developmental phase that is characterized by 
transitions in social connections, and moreover, a phase during which 
social cognitive skills are acquired and/or improved (Blakemore and 
Mills, 2014; Casey et al., 2008; Crone and Dahl, 2012; Sawyer et al., 
2018). As social acceptance and approval from peers often result from 
displaying prosocial behaviors, for adolescents establishing their social 
network it is key that they learn to help or benefit others (Steinberg and 
Morris, 2001). That is, to be able to behave in a prosocial manner, in-
dividuals need to learn which actions would result in positive outcomes 
for others. This type of learning is also referred to as prosocial learning 
(Lockwood et al., 2016; Sul et al., 2015). Generally speaking, learning 
from actions and outcomes is an important part of cognitive develop-
ment and continues to improve in adolescence (Bolenz et al., 2017; 
Nussenbaum and Hartley, 2019; Peters et al., 2014a, 2016). For ado-
lescents, an especially salient environment that requires learning about 

the consequences of their actions is the interpersonal context (Blake-
more and Mills, 2014; Nelson et al., 2005; Sawyer et al., 2018). There-
fore, it is expected that especially prosocial learning shows 
improvements in adolescence. The goal of the current study was to un-
ravel age-related differences in learning to benefit others using a pro-
social learning context across adolescence. 

The vast majority of recent neuroscientific studies investigating 
learning make use of formal reinforcement learning (RL) models. These 
models calculate individuals’ prediction errors (PEs) – the difference 
between expected and actual outcomes - over the course of learning. 
These PEs drive learning via a learning rate, which quantifies to what 
extent these PEs affect subsequent actions. Consequently, RL models and 
the resulting PEs enable studies to examine the neural tracking of value- 
guided decision-making. Neuroscientific studies demonstrated that PE 
coding in a probabilistic reinforcement task context is associated with 
activation in the ventral striatum, as well as the medial prefrontal cortex 
(mPFC) (see for reviews e.g., Cheong et al., 2017; Joiner et al., 2017; 
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Lockwood and Klein-Flügge, 2020; Olsson et al., 2020; Ruff and Fehr, 
2014). Developmental studies using RL models found that adolescents 
show similar neural tracking of PEs as adults when learning 
stimulus-outcome associations. However, the developmental patterns 
are inconsistent: some studies have reported elevated or lowered PE 
activity in the ventral striatum and connected structures in 
mid-adolescents relative to children and adults (Cohen et al., 2010; 
Davidow et al., 2016; Hauser et al., 2015; Jones et al., 2014), but this is 
not replicated in all studies (Christakou et al., 2013; van den Bos et al., 
2012). Furthermore, age-related differences have been found in func-
tional connectivity between the ventral striatum and mPFC, here 
referred to as ventromedial PFC (vmPFC), in relation to learning (van 
den Bos et al., 2012), suggesting that age-related improvements in 
learning are associated with stronger neural coupling between subcor-
tical and cortical brain regions (van Duijvenvoorde et al., 2016, 2019). 
Taken together, previous studies point to the ventral striatum and 
medial prefrontal cortex as important brain areas for learning in 
non-social environments. 

Previous studies investigating the neurocomputational mechanisms 
of prosocial learning have investigated whether the same neural 
signaling occurs for PEs for others as for self. Recently, in adults, it was 
found that PE tracking for both learning for others as for self occurred in 
the ventral striatum (Lockwood et al., 2016). However, the subgenual 
anterior cingulate cortex (sgACC) specifically coded PE tracking for 
learning for others, and these prosocial learning signals were predicted 
by cognitive empathy. That is, more empathic people showed more 
activity in the sgACC when learning to benefit others. Cognitive 
empathy – the ability to understand the emotional states of others 
(Netten et al., 2015; Pouw et al., 2013) - shows pronounced changes in 
adolescent development and relates positively to prosocial behaviors 
such as trust and reciprocity (Dumontheil et al., 2010; Eisenberg et al., 
1995; van de Groep et al., 2018). Therefore, we aimed to extend prior 
work by Lockwood et al. (2016) by investigating the neural tracking of 
PEs for others, and its relation with individual differences in cognitive 
empathy, in an adolescents sample with participants aged between 9 and 
21 years. 

In the current study, we adopted a prosocial learning task (Lockwood 
et al., 2016) in which participants could learn to obtain rewards for 
themselves, others, or no one. We administered this task to 74 adoles-
cents between ages 9–21 years to examine age-related differences in 
learning for self and others, combined with functional neuroimaging 
(fMRI) for neural tracking of PEs. We use the term adolescence for this 
broad age range, based on definitions that mark adolescence from the 
onset of puberty to the age when one reaches independence from parents 
(i.e., approximately 9–24 years; e.g., Sawyer et al., 2018). Based on prior 
studies, we performed regions-of-interest analyses for the ventral stria-
tum, sgACC, and vmPFC. We expected that adolescents, similar to 
adults, would show PE related neural activity when learning both for self 
and others in the ventral striatum (Lockwood et al., 2016), and in the 
sgACC and possibly vmPFC when learning for others more than when 
learning for self (Christopoulos and King-Casas, 2015; Lockwood et al., 
2016). For learning for self, research has remained inconclusive whether 
this activity peaks in mid-adolescence (Cohen et al., 2010; Davidow 
et al., 2016) or shows no age-related differences (van den Bos et al., 
2012). Therefore we explored linear as well as non-linear (quadratic) 
age effects. We predicted that sgACC and vmPFC activity for prosocial 
learning would increase with age, based on prior studies showing 
age-related improvements in social-cognitive perspective-taking 
(Dumontheil et al., 2010). Finally, consistent with (Lockwood et al., 
2016), we expected that individual differences in cognitive empathy 
would relate to neural tracking of PEs for others. 

2. Methods and materials 

2.1. Participants 

A total of 76 participants between ages 9 and 21 took part in this 
study. Participants were recruited through schools and local advertise-
ments, as well as from participation in a previous study. Two partici-
pants were excluded from analyses because they were either diagnosed 
with a psychiatric disorder at the time of testing (n = 1) or because the 
session was stopped early due to discomfort in the scanner (n = 1). We 
did not exclude participants based on task performance; there were no 
significant outliers in task performance (i.e., > 3 SD) in any of the 
conditions. Four participants missed one run of the task, due to technical 
issues (n = 2), or discomfort in the scanner (n = 2). These four partici-
pants were maintained with the available data in all analyses. The final 
sample included 74 healthy participants (39 female, Mage = 15.64, SDage 
= 4.18, range = 9.03–21.77 years, see Fig. S1 for an overview of the 
number of participants across ages). The IQ scores, estimated with the 
Similarities and Block Design subtests of the WISC-III and WAIS-III, fell 
within the normal range (MIQ = 110.24, SDIQ = 10.37, range =
87.50–135.00), and did not correlate with age (r(72) = − 0.11, p =
.353). 

The local institutional review board approved this study (reference: 
NL56438.058.16). Adult participants and parents of minors provided 
written informed consent, and minors provided written assent. All 
anatomical scans were cleared by a radiologist and no abnormalities 
were reported. Participants were screened for MRI contraindications 
and psychiatric or neurological disorders, and had normal or corrected- 
to-normal vision. 

2.2. Prosocial learning task 

Participants played a two-choice probabilistic reinforcement 
learning task (prosocial learning task) in the MRI scanner (see Fig. 1A). 
Participants were instructed to make a series of decisions between two 
pictures. One picture was associated with a high probability of winning 
1 point, the other picture with a high probability of losing 1 point. The 
exact probabilities were 75% and 25% but were unknown to the 
participant. After the decision, participants were presented with the 
outcome to enable them to learn the reward contingencies. 

The participants played the task in three different conditions: for 
themselves (Self), for an unknown other participant (Other), or for No 
One. The latter condition was added as a control condition based on 
Lockwood et al. (2016). Participants did not meet the other person, but 
were told that the other person was a peer also participating in the 
experiment who i) would not play the same game for them, ii) did not 
know who played for them (see Participant instructions in the Supple-
mentary Information). Each block started with an instruction screen that 
indicated who would receive the outcomes (Self, Other, or No One) for 
2000 ms. This was followed by the presentation of two stimuli for 
2500 ms during which participants were required to select one of these. 
The stimuli were common objects, such as chairs, apples, and shoes (see 
also (van den Bos, 2009)). If no response was given within the time 
frame, the text “Too late” appeared in the middle of the screen, and these 
trials were excluded from analyses. 

A selection frame around the chosen picture confirmed the response 
and remained visible for the duration of the interval and an additional 
500 ms. A fixation screen (duration randomly jittered between 1000 and 
2000 ms) preceded the outcome of their choice (+1 point or − 1 point; 
1000 ms). A randomly jittered fixation screen (1000–8000 ms) was 
shown after the outcome before the two pictures were presented again. 
The screen position of the stimulus (left or right) was counterbalanced 
across trials. Participants were instructed that the position of the stim-
ulus did not matter, to encourage them to learn the reward contingencies 
regardless of stimulus position. 

There were 144 trials in total, 48 for Self, 48 for Other, and 48 for No 
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One, presented in three blocks of 16 trials. Each block began with a new 
pair of pictures. Participants completed three separate fMRI runs with a 
short break in between, each with one block of 16 trials per condition. 
The order of the conditions was counterbalanced across runs and be-
tween participants. 

Participants were instructed that the total number of points in the 
Self condition was converted to money (each point valued €0.25), which 
they would get paid out on top of their flat participation rate (€20 for 
9–11 y.o., €25 for 13–17 y.o., and €30 for 19–21 y.o.). The minimum of 
this extra amount of money was €1 to avoid null scores, and the 
maximum was €12. Additionally, participants were instructed that their 
choices in the Other condition were paid out to a participant entering the 
experiment after them. Consequently, participants received an addi-
tional fee from a participant before them in the experiment (minimum 
€1 and maximum €12), but only at the end of the experiment. Finally, it 
was instructed that choices in the No One condition had no financial 
consequences. 

2.3. Cognitive empathy 

To assess cognitive empathy, participants completed the Interper-
sonal Reactivity Index (IRI; (Davis, 1983)). This widely used self-report 
questionnaire consists of 4 subscales (Perspective-Taking and Fantasy as 
cognitive empathy subscales; and Personal Distress and Empathic 
Concern as affective empathy subscales) with 6 items each. To create a 
measure of cognitive empathy, two subscales were combined (Pulos 

et al., 2004): the Perspective-Taking subscale (e.g., “I sometimes try to 
understand my friends better by imagining how things look from their 
perspective”, Cronbach’s alpha = 0.710) and the Fantasy subscale (e.g., 
“I really get involved with the feelings of the characters in a novel”, 
Cronbach’s alpha = 0.786). All items can be answered on a five-point 
Likert scale ranging from (0) not true at all to (4) completely true, and 
higher scores indicate higher levels of empathy. Cognitive empathy 
scores increased across age (r = 0.309, p = .008, see Fig. S8). One per-
son did not fill in this questionnaire. This person was excluded from 
further analyses concerning measures of (cognitive) empathy. We used a 
Dutch adolescent version for all ages in our study, with items adapted for 
the youngest ages in the study (Hawk et al., 2013). 

2.4. Procedure 

Participants were accustomed to the MRI environment using a mock 
scanner, and received instructions on the prosocial learning task in a 
quiet laboratory room. Instructions for the task were displayed on a 
screen and read out loud by an experimenter. Participants completed 8 
practice trials in each condition. In the scanner, participants responded 
with their right hand using a button box. Head movements were 
restricted with foam padding. The fMRI scan was accompanied by a 
high-definition structural scan. Questionnaires were filled out at their 
home prior to the scanning session, via Qualtrics (www.qualtrics.com). 

Fig. 1. Prosocial learning task and behavioral data. (A) Participants played a two-choice probabilistic reinforcement learning task in which outcomes resulted in 
monetary consequences for themselves (Self condition), for an unknown other participant in the experiment who could not reciprocate (Other condition), or for No 
One. (B) Group-level performance across trials (learning curves) per condition, averaged across blocks. Performance represents the fraction of selecting the stimulus 
with a high reward contingency. The dashed line indicates performance at chance level (0.5). (C) Performance per condition per age cohort, averaged across the 
entire task. In all conditions, performance improved across trials, but an age-related increase was only observed when learning for others. Note that age is used as a 
continuous variable in all analyses but is visualized as age cohorts for illustrative purposes. The age-related increase was greater for the Other than for the Self and No 
One condition. (D) Learning rates per condition per age cohort. Age-related decreases in learning rates are only observed in the Self and Other condition. The age- 
related decrease in learning rate was greater in the Other compared to the Self and No One condition. Asterisks indicate significant effects. Error bars represent 
standard error of the mean (s.e.m.). 
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2.5. Computational modeling of behavioral data 

2.5.1. Model fitting 
We used MATLAB 2015b (The MathWorks Inc) for all model fitting 

and comparison. We modeled learning behavior in the Self, Other, and 
No One conditions separately, using a standard Rescorla-Wagner rein-
forcement learning (RL) model (similar to Lockwood et al., 2016) to 
obtain PEs and learning rates, which were subsequently used in 
behavioral and fMRI analyses. Simple RL models state that the expected 
value of a future action (Qt+1(i)) should be a function of current ex-
pectations (Qt(i)) and the difference between the actual reward that has 
been experienced on this trial (Rt). The learning rate α, bounded be-
tween 0 and 1, determines how much the value of the chosen stimulus is 
updated based on the new outcome. In particular, the learning rate 
parameter speeds up or slows down the acquisition and updating of 
associations. Optimal learning rates differ between contexts and rein-
forcement structures (Nussenbaum and Hartley, 2019). 

Qt+1(i) = Qt(i)+α ∗ [Rt − Qt(i)]
⏟̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅ ⏟
prediction error 

To select an action based on the computed values, we used a standard 
softmax choice function. For a given set of parameters, this equation 
allows us to compute the probability of the next choice being “i”: 

Pt(i) =
e(β ∗ Qi,t)

∑

j
e(β ∗ Qj,t)

Beta (β) determines how strongly action probabilities are guided by 
their expected values (Q). Here, with larger β, actions are more deter-
ministic and driven by expected values, resulting in selecting the option 
with the highest value. With lower β, actions are more random or 
exploratory. This parameter thus affects errors, where a decrease will 
lead to more random (i.e., less driven by expected values) choices. β did 
not differ between conditions, although with age, people were more 
strongly driven by expected values (see Fig. S2 for the β across age co-
horts for each condition). 

We used the maximum a posteriori (MAP) approach (Daw, 2011) for 
fitting the RL model to participants’ choices per condition. To facilitate 
stable estimation across subjects, we used weakly informative priors to 
regularize the estimated priors toward realistic ones. These weakly 
informative priors and estimation procedures were based on previous 
research (den Ouden et al., 2013), and included a Beta (1.2, 1.2) dis-
tribution for the estimated α (learning rate) parameter (0 < α < 1) and a 
Gaussian distribution (0, 10) for the estimated β parameter 
(− ∞ ≤ β ≤ ∞). Mean and confidence intervals for each of the fitted 
parameters across all subjects are displayed in Supplementary Table S1. 

2.5.2. Model comparison 
Based on previous developmental findings (e.g., van den Bos et al., 

2012) we compared an alternative model with two learning parameters 
(i.e., separate learning rates for gains and losses) in order to benchmark 
the performance of the one-learning parameter model (i.e., one learning 
rate). Model comparisons revealed that the one-learning parameter 
model had a superior fit to the behavioral data for each condition, ac-
cording to the Bayesian Information Criterion (BIC) (see Fig. S3). This 
was the case in each condition for the majority of the participants 
(81.1% Self, 74.3% Other, 76.7% No One), in all age cohorts, see Fig. S3. 
In none of the conditions, the BIC difference scores (Fig. S3) were 
correlated with age (rs, all p values > 0.14). 

2.5.3. Simulations and parameter recovery 
To assess whether computational model parameters could be suc-

cessfully recovered, we simulated choice behavior for the range of 
learning rates and beta’s that we encountered in our dataset. That is, we 
simulated a new participant dataset based on the α and β values from our 
participants as input parameters. This resulted in a simulated dataset 

with 74 participants. Parameter recovery, as indicated with correlations 
between simulated and recovered learning rates and beta values per 
conditions, is presented in Fig. S4. 

2.6. Behavioral analyses 

To assess learning for Self, Other, and No One, and their develop-
mental patterns in the prosocial learning task, we fitted logistic gener-
alized linear mixed models (GLMMs) to decisions (correct coded as 1, 
incorrect as 0) for each condition separately. These analyses were con-
ducted in R version 4.0.1 (R Core Team. 2020), using the lme4 package 
(Bates et al., 2014). Our GLMMs included fixed effects of Age in years 
(linear and quadratic), Condition, Trial, and all interactions. Since no 
significant main or interaction effects of age-quadratic were observed in 
the choice data, this term was dropped in the final presented behavioral 
models for model parsimony. In all models, participant ID entered the 
regression as a random effect to handle the repeated nature of the data. 
Where applicable, Trial was additionally included as a random slope per 
subject. We performed post hoc tests using the emmeans package (Lenth 
et al., 2021), as well as tests per condition to delineate Age x Trial x 
Condition effects. 

Next we examined the estimated learning rates per condition. These 
parameters indicate how people updated the value of stimuli based on 
outcomes for Self, Others, and No One. Since learning rates were not 
normally distributed, we used a robust linear mixed effects model 
(RLMM, rlmer function, robustlmm package (Koller, 2016)) in R (see 
also Cutler et al., 2021), with Condition and Age linear as fixed main 
effects and interaction effects. We performed post-hoc tests per condi-
tion and pair-wise contrasts per Condition. In all GLMM and RLMM 
models, continuous independent variables were mean-centered and 
scaled, and categorical predictor variables were specified by a 
sum-to-zero contrast (e.g., sex: − 1 = boy, 1 = girl). P-values for the 
GLMM were generated by using the Anova log-likelihood ratio tables 
from the afex package (Singmann et al., 2020). For the RLMM models, 
the Satterthwaite-approximated degrees of freedom generated by the 
lme4 model in combination with the output of the RLMM, was used to 
generate P-values. 

Finally, we assessed whether cognitive empathy related to learning 
performance, learning rate, and PE activation when learning for others. 
We ran (partial) spearman correlational analyses with learning for self 
and cognitive empathy as predictors using the package ‘ppcor’ (Kim, 
2015). 

2.7. fMRI acquisition 

For acquiring (functional) MRI data, we used a 3T Philips scanner 
(Philips Achieva TX) with a standard eight-channel whole-head coil. The 
learning task was projected on a screen that was viewed through a 
mirror on the head coil. Functional scans were acquired during three 
runs of 200 dynamics each, using T2* echo-planar imaging (EPI). The 
volumes covered the entire brain (repetition time (TR) = 2.2 s; echo 
time (TE) = 30 ms; sequential acquisition, 38 slices; voxel size 
2.75 × 2.75 × 2.75 mm; field of view (FOV) = 220 (ap) x 220 (rl) 
x 114.68 (fh) mm). The first two volumes were discarded to allow for 
equilibration of T1 saturation effects. After the learning task, a high- 
resolution 3D T1 scan for anatomical reference was obtained 
(TR = 9.76 msec, TE = 4.95 msec, 140 slices, voxel 
size = 0.875 × 0.875 × 0.875 mm, FOV = 224 (ap) x 177 (rl) x 168 
(fh) mm). 

2.7.1. Preprocessing 
Data were analyzed using SPM8 (Wellcome Department of Cognitive 

Neurology, London). Images were corrected for slice timing acquisition 
and rigid body motion. We spatially normalized functional volumes to 
T1 templates. Occasional framewise displacement > 3 mm occurred for 
3 participants in 1–2 volumes. For those participants with frame-frame 
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head motion > 3 mm, an extra regressor was included corresponding to 
each volume (n = 3, for maximum 2 volumes). All other participants did 
not exceed translational head movement more than 3 mm in any of the 
scans (Mean = 0.65 mm, SD = 0.059 mm). The normalization algorithm 
used a 12 parameter affine transform with a nonlinear transformation 
involving cosine basis function, and resampled the volumes to 3 mm3 

voxels. Templates were based on MNI305 stereotaxic space. The func-
tional volumes were spatially smoothed using a 6 mm full width at half 
maximum (FWHM) isotropic Gaussian kernel. 

2.7.2. General linear model 
We used the general linear model (GLM) in SPM8 to perform sta-

tistical analyses on individual subjects’ fMRI data. The fMRI time series 
were modeled as a series of two events: the decision phase (Expected 
Value, EV) and the outcome phase (PE), convolved with a canonical 
hemodynamic response function (HRF). The onset of the choice (EV), 
and the onset of the outcome (PE) were both modeled with zero dura-
tion. Each of these regressors was associated with a parametric modu-
lator taken from the computational model. At the time a stimulus was 
selected (decision phase) this was the chosen expected value, and at the 
time of the outcome, the PE. The PEs were estimated using each subject’s 
own alpha and beta from each condition. Trials on which participants 
did not respond were modeled separately as a regressor of no interest. 
Six motion parameters, and -if applicable- motion censoring regressors 
were included as nuisance regressors. We used the MarsBaR toolbox 
(http://marsbar.sourceforge.net) to visualize the patterns of activation, 
in clusters identified in the whole-brain results. Coordinates of local 
maxima are reported in MNI space. Our main hypotheses centered on PE 
coding. For completeness, effects of EV at choice onset are included in 
Supplemental Table S3. In addition, uncorrected T-maps of EV and PE 
effects are uploaded on Neurovault (https://neurovault.org/collections/ 
EOTSVZYT/). For condition effects, we examined contrasts of Self versus 
Other in concordance with (Lockwood et al.(2016). Contrasts were ob-
tained from a flexible factorial design with three levels (Self PE, Other 
PE, No One PE). Effects and conclusion remained the same when testing 
Self PE > Other PE + No One PE, and Other PE > Self PE + No One PE. 
In Supplemental Table S4 we include all contrasts between conditions 
within our ROIs. Whole-brain effects for main effects and between 
conditions are included in Supplemental Tables S2 and S5, respectively. 
Age effects (linear and quadratic) were tested in follow-up regressions. 

2.7.3. ROI selection and fMRI analyses 
The a priori regions of interest (ROI) in which we test our main 

hypotheses were defined anatomically and based on previous research 
on (prosocial) learning and feedback processing (Lockwood et al., 2016; 
van den Bos et al., 2012; van Duijvenvoorde et al., 2014). In concor-
dance with previous studies, masks were taken from an appropriate 
atlas. That is, the bilateral ventral striatum and vmPFC were determined 
by an anatomical mask from the Harvard-Oxford Atlas (van Duijven-
voorde et al., 2014; van den Bos et al., 2012; Braams et al., 2015; Peters 
and Crone, 2017), and the sgACC was defined as Brodmann areas (BA) 
25 and s24 (Lockwood et al., 2016). The sgACC region and the ventral 
striatum are anatomically adjacent and partly overlapping (see Fig. S5), 
but significant peak activations in either ROI were not observed in these 
overlapping voxels. Coordinates for local maxima are reported in MNI 
space. Effects in our ROIs are reported at p < .05 FWE-small volume 
corrected (SVC). Predictions were tested while correcting for multiple 
comparisons (3 ROIs) by limiting the false discovery rate (FDR; (Ben-
jamini and Hochberg, 1995)); all reported tests survived this correction. 
Explorative whole-brain analyses are reported in Supplemental 
Tables S2 and S5, and Fig. S6. 

3. Results 

3.1. Developmental differences in learning to obtain rewards for Self, 
Others, or No One 

Results showed that, at the group level, participants were able to 
learn for Self, Other, and No One, as they performed above chance level 
in all conditions (0.5; t values > 13.0, all ps < 0.001, df = 73; Fig. 1B). 
Using a generalized linear mixed model (GLMM) on participants’ choice 
behavior over trials, we assessed age-related differences in performance 
when learning for Self, Other, and No One. Performance in the learning 
task improved linearly with age (main effect of Age linear, p = .001). 
Moreover, we observed that age-related differences in learning perfor-
mance differed per condition (Age x Condition interaction, p = .005). 
Post-hoc analyses revealed that the age-related improvement in per-
formance was larger when learning for Other than when learning for Self 
(p = .009) and when learning for No One (p = .02). The age-related 
improvements were similar for learning for Self and No One (p = .92). 
Similarly, we also observed age-related differences in learning curves 
across trials, which differed per condition (Age x Condition x Trial 
interaction, p = .007). Specifically, younger children learned more 
slowly (i.e., flatter learning curves) across trials when learning for 
others, but this age effect on trial was not observed for the Self and No 
One condition (Age linear x Trial, for Other condition, p < .001; Self and 
No One conditions: ps > 0.2; see Figs. 1C and S7). Together, these 
findings suggest that across adolescence prosocial learning shows a more 
protracted improvement than when learning for Self or No One. 

Next, we examined participants’ learning rates to assess how they 
updated the value of stimuli on the basis of outcomes for Self, Others, 
and No One. That is, higher learning rates indicate that people adjusted 
behavior quickly towards recent feedback, whereas lower learning rates 
indicate a slower pace in updating in which outcomes across multiple 
trials are integrated. Using a robust linear mixed effects model, we 
assessed effects of Condition and Age (linear) in learning rates (Fig. 1D). 
We observed that learning rates for Self were lower than learning rates 
for Other ([Self vs Other], b = 0.02, p < .001) and for No One ([Self vs 
No One], b = − 0.03, p < .001). Learning rates for Other and for No One 
did not differ ([Other vs No One], p = .911). Moreover, we observed that 
learning rates decreased linearly with age (main effect of Age linear, 
b = − 0.04, p = .023), an effect that also differed across conditions. 
Specifically, learning rates decreased across age in the Other and Self 
condition, but more strongly across age for Other than for Self ([Other- 
Self]*Age, b = − 0.02, p < .001) and for Other than for No one ([Other- 
No One]*Age, b = 0.004, p = .004). Learning rates also decreased more 
strongly across age for Self than for No One ([Self-No One *Age, 
b = .019, p < .001). Learning rates did not differ across age in the No 
One condition (p = .08). Together, these findings show that for both 
learning for Self and Others, younger participants responded more to 
recent feedback, whereas older participants integrated feedback more 
over trials. Moreover, this age-related change was most pronounced in 
the Other compared to the Self and No One condition. 

3.2. Identifying common and distinct coding of prediction errors for Self 
and Others 

To formally investigate the brain regions that were responding to PEs 
for Self, Others, and No One, we conducted a conjunction analysis to 
explore whether there were regions that commonly code PEs across all 
conditions. Common activation for PEs regardless of the beneficiary was 
observed in the vmPFC (MNI coordinates [x = − 9, y = 44, z = − 11], 
Z = 5.33, k = 136, p < .001, SVC-FWE), ventral striatum ([x = − 9, 
y = 11, z = − 11], Z = 5.05, k = 23, p < .001, SVC-FWE, and [x = 12, 
y = 14, z = − 8], Z = 4.43, k = 18, p < .001, SVC-FWE), and sgACC 
([x = − 6, y = 14, z = − 8], Z = 5.47, k = 32, p < .001; and Self [x = 6, 
y = 17, z = − 8], Z = 4.60, k = 21, p = .001; and [x = 9, y = 8, 
z = − 14], Z = 3.67, k = 2, p = .029, SVC-FWE) (see Fig. 2). These 
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findings show that all regions of interest were involved in PE coding, in 
each condition. 

Next, we examined which brain regions responded more to PEs for 
Self than for Other by contrasting the Self condition against the Other 
condition (see Supplemental Table S4 for contrasts including the No One 
condition). The left ventral striatum was the only region to respond 
more strongly to PEs for Self ([x = 12, y = 11, z = − 11], Z = 4.37, 
k = 9, p < .001, SVC-FWE; Fig. 3). When examining effects of age we 
observed no linear or quadratic age-related differences in self-related PE 
coding. These findings indicate that the ventral striatum responds more 
to PEs for Self than for Others, and this effect did not differ across age. 

We next identified regions that corresponded to PEs for others 
exclusively by contrasting the Other condition against the Self condi-
tion. No voxels in our ROIs responded more strongly to prosocial PEs 
than Self PEs. When adding age (linear and quadratic) to the model to 
examine whether age-differences were related to prosocial PE coding, 

we observed that the vmPFC increasingly responded to prosocial PEs 
with age ([x = − 15, y = 50, z = 8], Z = 4.95, k = 45, p = .004, SVC- 
FWE; see Fig. 4). No effects of quadratic age were observed. This 
shows that the vmPFC is increasingly involved in prosocial PE coding 
across adolescence. 

3.3. Links between cognitive empathy and learning for Others 

Finally, we examined the link between cognitive empathy and pro-
social learning. First, we assessed whether cognitive empathy related to 
performance for Other, while controlling for performance for Self. We 
observed that individuals with higher empathy ratings, showed better 
prosocial learning (rs = 0.30, p = .01). Subsequently, we assessed 
whether cognitive empathy related to learning rate in the Other condi-
tion (controlled for learning rate in the Self condition). Results showed 
that individuals with higher empathy ratings had lower learning rates 
when learning for Others (cognitive empathy, rs = − 0.26, p = .027, see  
Fig. 5B). Together, these findings indicate that individuals with more 
empathy show better learning performance, and integrate information 
more over trials when learning to benefit others. Finally, we assessed the 
relation between cognitive empathy and the prosocial PE coding in the 
vmPFC. For this purpose, we extracted the values of the Other PE > Self 
PE contrast in vmPFC that showed age-related change (see Fig. 4). Re-
sults showed that greater Other vs Self-related PE activation in the 
vmPFC related to higher empathy scores (cognitive empathy, rs = 0.31, 
p = .007). 

To examine whether age-related differences in empathy or prosocial 
learning may influence these relations, we additionally included age in 
the partial correlation analysis. When additionally controlling for age, 
the relation between empathy and learning for others remained signif-
icant (p = .029), the relationship between empathy and learning rate 
became trend-level (p = .06), and the relation between empathy and 
prosocial PE coding was no longer significant (p = .15). 

Fig. 2. Common prediction error (PE) coding in three regions of interest. Shown are the responses to prediction errors for Self, Other, and No One in (A) the 
vmPFC, (B) left sgACC, and (C) ventral striatum. (D) Significant clusters of activation in the vmPFC (blue), sgACC (cyan), and ventral striatum (yellow). All images 
displayed at p < .05 FWE-SVC. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Ventral striatum response to prediction errors for Self versus 
Other. (A) Left ventral striatum [x = 12, y = 11, z = − 11] response for Self PE 
and Other PE. (B) Overlay of the response for Self PE > Other PE in the left 
ventral striatum. All images displayed at p < .05 FWE-SVC. 
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4. Discussion 

This study examined the developmental trajectories of prosocial 
learning and self-related learning in an adolescent sample spanning ages 
9–21 years. We examined the underlying mechanisms in this develop-
mental sample by assessing the neural tracking of PEs during learning 
for self and others, and how individual differences in cognitive empathy 
relate to prosocial learning performance. To this end, participants 
played a two-choice probabilistic reinforcement learning task in which 
outcomes resulted in monetary consequences for themselves (Self) or an 
unknown other (Other; prosocial). Our results show improvements in 
learning for self and others, but the developmental trajectory of proso-
cial learning is more protracted compared to learning for self. PEs for self 
were related to activation in the left ventral striatum, which did not 
show age-related differences. On the other hand, vmPFC-related PE 
activation during prosocial learning increased with age, and related to 
individual differences in cognitive empathy. Together, these findings 
highlight that learning for self and others show different age-related 
patterns. 

The main goal of this study was to examine age-related differences in 
prosocial learning. Behaviorally, we observed that it is not until mid- 
adolescence that participants learn similarly for themselves and 
others. These findings may suggest a self-bias that is stronger in younger 
ages (van der Aar et al., 2018), and that the motivation to learn for self 
and others increases with age. Neurally, we observe that a 

reward-related network including the ventral striatum, sgACC, and 
vmPFC respond significantly to PEs when learning for Self, Other, and 
No One. This conjunction presented the starting point for our interest in 
testing condition-specific learning effects. Contrary to Lockwood et al. 
(2016), who observed similar PE neural tracking values in the ventral 
striatum for learning for Self and Others in adults, we observed that PE 
neural tracking was stronger in the ventral striatum for Self than for 
Others. Recent reviews, however, suggest that the striatum is related to a 
range of computations that take place during social learning that could 
reflect both self-related and other-related learning (Joiner et al., 2017), 
or the difference between winning for self and others (Báez-Mendoza 
and Schultz, 2013). Therefore, one explanation for our findings could be 
related to the possible stronger self-focus or the greater focus on social 
comparisons reflected in the ventral striatum. 

Learning for Others, compared to learning for Self, was associated 
with stronger activation in the vmPFC with age. Previous prosocial 
reinforcement learning studies have suggested that the vmPFC is also 
responsive to processing of self-related expected values (Sul et al., 
2015), self-representation (Sui and Humphreys, 2017), or does not 
differentiate between self and other-related PEs (Lockwood et al., 2016). 
On the other hand, the vmPFC is suggested to respond to prosocial re-
wards in adults (Christopoulos and King-Casas, 2015), to others’ 
outcome PEs (Burke et al., 2010), and to simulated others’ reward PEs 
(Suzuki et al., 2012). Our findings extend these prior studies by showing 
that the ventral striatum and vmPFC code PEs both for self and others 

Fig. 4. Linear age effects in responses to Other PE > Self PE in the vmPFC. (A) scatterplot showing the relation between age and activation in the vmPFC for 
Other PE > Self PE. Scatterplot is only presented for visualization. (B) Overlay of the response for Other PE > Self PE in the vmPFC [− 15, 41, − 11]. All images 
displayed at p < .05 FWE-SVC. 

Fig. 5. Relation of cognitive empathy with performance for Others and learning rate for Others. (A) Partial correlation plot showing that individuals with 
more cognitive empathy perform better for Others (controlled for performance for Self). (B) Partial correlation plot showing that individuals with more cognitive 
empathy have lower learning rates when learning for Others (controlled for learning rate for Self). 
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(see also Joiner et al., 2017). In this first developmental sample inves-
tigating prosocial learning, we observe a specificity for Self PEs in the 
ventral striatum and an increased specificity for prosocial PE coding in 
the vmPFC, in which across age prosocial (compared to self-related) PE 
elicit more activation. Alternatively, the pattern of age-related differ-
ences we observed for Other and Self-learning in the vmPFC may also 
support the perspective of a decreasing self-focus with age. For instance, 
previous work on self-concept development highlights that perspectives 
of others and self become more merged across development (van der 
Cruijsen et al., 2019). However, longitudinal studies are more powerful 
and essential for examining the true developmental trajectories of pro-
social learning. 

Besides the age-related differences in other-related learning, we 
observed that consistent with previous findings (Lockwood et al., 2016), 
individual differences in cognitive empathy were related to prosocial 
learning. Individuals with higher levels of empathy performed better for 
Others, integrated outcomes more over time (i.e., lower learning rates), 
and their vmPFC showed greater activation during prosocial PE coding. 
However, relations on cognitive empathy and prosocial PE coding in the 
brain were not robustly observed when controlling for age. This may 
indicate that it is hard to disentangle whether empathy or age drives 
prosocial PE coding. Also, age-related differences in brain activity dur-
ing prosocial PE tracking may be explained by other social cognitive 
mechanisms than empathy. For instance, although there was no reci-
procity or competition, participants may have been influenced by social 
inequality preferences, such as disliking to getting more (i.e., advanta-
geous inequality aversion), or less (i.e., disadvantageous inequality 
aversion) than the other participant (Dawes et al., 2007; Fehr and 
Schmidt, 1999; Meuwese et al., 2015; Westhoff et al., 2020). Future 
studies could more explicitly assess several social-cognitive skills, stra-
tegies, and motivations along with a prosocial learning task to examine 
what behavioral mechanisms rely most on adolescents’ prosocial 
learning. 

Prior developmental studies on general reinforcement learning 
remained inconclusive about whether age-related differences were 
observed in PE neural tracking in the ventral striatum (Christakou et al., 
2013; Cohen et al., 2010; Hauser et al., 2015; van den Bos et al., 2012). 
Here, age-related differences in PE coding for Self were not observed in 
the ventral striatum. In contrast to other studies (Cohen et al., 2010; 
Peters and Crone, 2017) we also did not find any quadratic age effects in 
learning or PE coding. This is possibly due to our narrower age range 
(9–21 y.o. instead of 8–30 y.o.), as another developmental study on 
learning also has not observed age-related changes in ventral striatum 
activity in a similar age range (van den Bos et al., 2012). Indeed, a recent 
review recommended using samples with wider age ranges, including 
children and adults, when examining quadratic age effects across 
adolescence (Li, 2017). It should be noted, however, that although we 
did not find age-effects in the ventral striatum, the behavioral learning 
performance for Self showed linear improvements with age. This could 
also indicate that other mechanisms than simple PE coding may be 
related to behavioral learning improvement over time within the current 
age range. For example, a prior study in young adults indicated that 
besides well-known model-free learning, another more sophisticated 
and flexible learning system is model-based learning. These two distinct 
computational strategies use different error signals which are computed 
in partially distinct brain areas (Gläscher et al., 2010). Moreover, it has 
been found that people may use different learning strategies, which 
show different neural activation patterns (Peters et al., 2014b). Future 
studies are needed to assess whether age-related improvements in 
learning performance may be more strongly related to strategic learning 
differences. 

We observed that, overall, learning rates decreased with age, and 
lower learning rates were related to better performance. These findings 
indicate that, with age, adolescents increasingly integrate information 
across trials, which was beneficial to their prosocial learning perfor-
mance. Intriguingly, a recent aging study with a similar prosocial 

learning task observed that better learning performance was related to 
higher learning rates instead (Cutler et al., 2021; Lockwood et al., 2016). 
Besides the included age range in this study, a few differences in 
modeling and task structure may underlie this deviance. First, we 
allowed a wide range of beta-parameters. Since beta-parameters showed 
consistent age-related declines (see Supplementary Fig. 2), and also 
relate to performance (see Supplemental Information) this may have 
influenced our learning rate estimations. Second, the task structure 
shows differences in reinforcement structure. Most profoundly we 
included gains and losses compared to gain and no-gains in previous 
prosocial learning studies. Possibly, losses may influence the updating of 
values across trials differently, although we did not find evidence that 
gains and losses were weighted differently in learning across develop-
ment. Future studies should further examine the influence of rein-
forcement structures on observed age-related differences in 
reinforcement learning. 

The current study had several limitations that can be addressed in 
future research. First, prosocial learning was restricted to unknown 
others, and participants did not meet these others. Although we cir-
cumvented the potential effects of reputational concerns, it may have 
been more salient to include a confederate, as used in previous studies 
on prosocial learning in which participants played for a stranger who 
they met prior to the experimental task (Lockwood et al., 2016; Sul et al., 
2015). Second, it would be interesting if future research would extend 
the prosocial learning task to other beneficiaries. Previous studies have 
shown that prosocial behaviors and their neural correlates in adoles-
cence strongly depend on the beneficiary (e.g., Brandner et al., 2020; 
Schreuders et al., 2018; van de Groep et al., 2020; Westhoff et al., 2020). 
Future studies should further examine whether such differences between 
beneficiaries are also visible in prosocial learning and whether this af-
fects the concurrent neural tracking of PEs. Third, the neural results for 
the No One condition showed an intermediate pattern between learning 
for Self and Others, which is difficult to interpret. Behavioral analyses 
showed that participants generally performed well in this condition (i.e., 
not significantly different from learning for Self), even though no 
monetary reinforcers were given depending on task performance. 
Although including the No One conditions in our contrasts of interest did 
not alter our main findings, this condition was possibly interpreted by 
participants in different ways, in which some participants were inter-
nally motivated to perform well (e.g., Satterthwaite et al., 2012). 
Finally, in line with previous research we used a model with separate 
learning rates per condition (Lockwood et al., 2016). Using this estab-
lished model, our results also revealed expected differences in learning 
rate between conditions. However, other studies also included com-
parison testing whether different learning rates or beta’s are needed 
across different conditions (Cutler et al., 2021). Future studies may 
expand on these recent modeling procedure in prosocial learning in 
developmental and adult populations. 

In conclusion, we found that prosocial learning showed age-related 
improvements across adolescence, suggesting a developmental shift 
from self-focus in early adolescence to self and other-focus in late 
adolescence and early adulthood (Crone and Fuligni, 2020). This 
developmental improvement was associated with stronger recruitment 
of the vmPFC for others compared to self. This study has implications for 
learning in social settings, such as educational contexts (Altikulaç et al., 
2019), as well as for how children develop prosocial values when 
learning for unknown others. This study provides the first building 
blocks to understand age-related differences in how adolescents learn to 
benefit others. 
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