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Abstract: Platinum chemotherapy remains the cornerstone of treatment for epithelial ovarian
cancer (OC) and Poly (ADP-ribose) polymerase inhibitors (PARPi) now have an established role as
maintenance therapy. The mechanisms of action of these agents is, in many ways, complementary,
and crucially reliant on the intracellular DNA Damage Repair (DDR) response. Here, we review
mechanisms of primary and acquired resistance to treatment with platinum and PARPi, examining
the interplay between both classes of agents. A key resistance mechanism appears to be the restoration
of the Homologous Recombination (HR) repair pathway, through BRCA reversion mutations and
epigenetic upregulation of BRCA1. Alterations in non-homologous end-joint (NHEJ) repair, replication
fork protection, upregulation of cellular drug efflux pumps, reduction in PARP1 activity and alterations
to the tumour microenvironment have also been described. These resistance mechanisms reveal
molecular vulnerabilities, which may be targeted to re-sensitise OC to platinum or PARPi treatment.
Promising therapeutic strategies include ATR inhibition, epigenetic re-sensitisation through DNMT
inhibition, cell cycle checkpoint inhibition, combination with anti-angiogenic therapy, BET inhibition
and G-quadruplex stabilisation. Translational studies to elucidate mechanisms of treatment resistance
should be incorporated into future clinical trials, as understanding these biologic mechanisms is
crucial to developing new and effective therapeutic approaches in advanced OC.
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1. Introduction

Epithelial Ovarian Cancer (EOC) is the seventh most common cancer in women and the leading
cause of gynecologic cancer death worldwide [1]. For the last three decades, platinum-based
chemotherapy has been the cornerstone of systemic treatment for EOC [2–4]. Standard front-line
treatment for advanced EOC consists of cytoreductive surgery, with the goal of no residual disease (R0),
and platinum-based chemotherapy [5]. At the time of relapse, if the time interval since the last dose of
platinum chemotherapy (Treatment Free Interval-Platinum; TFIp) is more than six months, the disease
is considered platinum sensitive, and standard treatment consists of re-challenge with platinum [5].
The majority of high-grade serous ovarian cancers (HGSC) are initially platinum sensitive. However,
even with optimal treatment, HGSC will typically follow a frequent relapse-response pattern, before
eventually becoming platinum resistant [5]. Maintenance treatment has emerged as an important
strategy to prolong the period between treatment responses and disease relapse [6]. The Poly-ADP
Ribose Polymerase inhibitors (PARPi) have demonstrated impressive activity in the first [7–9] and
second-line [10,11] maintenance settings. This benefit does is not limited to patients with germline
or somatic BRCA mutation (BRCAm), or patients with other forms of Homologous Recombination
Deficiency (HRD) [12]. Unfortunately, as with platinum chemotherapy, many if not most patients
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will eventually acquire resistance to PARPi treatment. Outcomes in platinum resistant EOC are
extremely poor, with median survival of only 12 months [5]. There is consequently an urgent need to
elucidate the mechanisms of platinum and PARPi resistance in EOC to improve patient stratification for
therapeutic strategies that target molecular vulnerabilities to overcome treatment resistance. In both
cases, mechanisms appear to be complex and inter-related. Resistance to platinum chemotherapy is
strongly predictive of resistance to PARPi treatment. Cross resistance between two different therapeutic
classes points to overlap in biologic mechanisms of susceptibility and resistance [13]. This article will
review the literature regarding mechanisms of treatment resistance to platinum and PARPi in EOC and
highlight planned strategies and clinical trials that may effectively re-sensitise tumours to these agents.

2. Alterations in DNA Damage Repair Can Drive Treatment Resistance

The DNA Damage Repair (DDR) response is designed to detect DNA damage, and initiate
cell repair in order to maintain genomic integrity within the cell [14]. It consists of a complex
network of inter-related signalling pathways. The “master sensors” (ATM, ATR, and DNA-PKs) are
large serine/threonine kinases, which sense DNA damage and initiate repair signalling cascades by
phosphorylating key proteins such as BRCA1, CHK1, CHK2, p53 and RAD17 [15]. The activation of
signalling-transduction pathways promotes activation of DNA-damage-dependent cell checkpoints
that slow or halt cell cycle progression, allowing more time for DNA repair [14]. To date, six main DDR
pathways have been described; Homologous Recombination (HR), Non-Homologous End Joining
(NHEJ), Base Excision Repair (BER), Nucleotide Excision Repair (NER), and Fanconi Anaemia (FA)
pathway, and Mismatch Repair (MMR) [14].

Alterations in these DDR pathways have dual significance in OC. In oncogenesis, alterations in DDR
leading to genomic instability are a hallmark of cancer development [16]. Germline mutations in HR
pathway genes (BRCA 1/2) result in a 14–44% cumulative lifetime risk of EOC [17], with the contribution
of other genes becoming increasingly apparent [18]. However, these same alterations in DDR pathways
present molecular vulnerabilities, which are targetable by anti-cancer therapy (Table 1). Both platinum
chemotherapy and PARPi are genotoxic agents, which exploit defects in DDR pathways to affect cancer
cell death [19]. Alterations in DDR (including upregulation or downregulation of key effectors) can
drive sensitivity or resistance to these agents (Table 2) [20].

Table 1. Examples of current active trials that target DNA Damage Repair pathways to overcome
resistance to PARPi and Platinum.

Study Name/NCT Target Study Treatment Study Population Study Phase

DUETTE
NCT04239014 ATR/PARP

Ceralasertib (AZD6738) +
Olaparib, or Olaparib

monotherapy, or Placebo

Relapsed
platinum-sensitive OC,

who have acquired
resistance from prior

PARPi treatment

II, RCT

NCT02723864 ATR/PARP VX-970 + Veliparib and
Cisplatin

Advanced refractory solid
tumours I

NCT02901899 DNMT/PD-1 Guadecitabine +
pembrolizumab

Recurrent Platinum
Resistant OC II, open-label

NCT03924245 HDAC/PARP Entinostat + Olaparib
Recurrent platinum

refractory and resistant
EOC

I/II

NCT02915523 PD-L1/HDAC Avelumab ± Entinostat

Advanced OC Which Has
Progressed or Recurred

After First-line
Platinum-based

Chemotherapy and at
Least Two Subsequent

Lines of Treatment

Ib/II, RCT
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Table 1. Cont.

Study Name/NCT Target Study Treatment Study Population Study Phase

NCT02797977 CHK1
SRA737 + gemcitabine +
cisplatin, or gemcitabine

monotherapy

Advanced solid tumours,
including HGSOC which

is BRCA1 and BRCA2 wild
type.

I/II,
non-randomised

NCT03057145 CHK1/PARP (Prexasertib) LY2606368 +
Olaparib Advanced solid tumours I

NCT03579316 WEE-1/PARP
Adavosertib (AZD1775) +
Olaparib, or adavosertib

monotherapy

Recurrent OC with
progression on prior

PARPi therapy
II, RCT

NCT02502266 Angiogenesis/PARP Cediranib + Olaparib, or
chemotherapy

Platinum resistant or
Refractory OC III, RCT

Abbreviations; ATR, ataxia telangiectasia and Rad3-related protein; PARP, Poly (ADP-ribose) polymerase; DNMT,
DNA methyltransferase, PD-1, Programmed cell death protein 1; PD-L1, Programmed death-ligand 1; HDAC,
Histone deacetylases; CHK1, Checkpoint kinase 1; RCT, Randomised Control Trial.

Table 2. Contribution of DNA Damage Repair pathway alterations to Platinum and PARPi resistance.

DNA Damage Repair
Pathway Key Pathway Functions Key Genes Effect of Pathway Alterations on

Therapeutic Resistance

Homologous
Recombination (HR)

Repair of DSBs or stalled
replication forks during
S and G2 phases of cell

cycle

BRCA1, BRCA2, RAD51,
HSP90

Reactivation of HR pathway enables
repair of DSBs and resolves replisome

blocks, promoting cancer cell
progression through the cell cycle

despite the presence of cytotoxic DNA
damage.

Non-Homologous End
Joining (NHEJ)

Repair of DSBs during
interphase 53BP1

Loss of 53BP1 re-wires NHEJ pathway,
reactivating HR independent of

BRCA1

Base Excision Repair
(BER)

Repair of SSBs and DNA
base lesions PARP-1, XRCC1, Pol β

Functional BER pathway leads to loss
of synthetic lethality and PARPi

resistance

Nucleotide Excision
Repair (NER)

Removes “bulky lesions”
which distort the DNA
double helix, including
intra-strand crosslinks
formed by platinum

adducts.

ERCC1, XPF

Upregulation of ERCC1 and XPF
potentially restores NER function.

NER pathway alteration potentially
confers sensitivity to platinum, and

not PARPi.

Fanconi Anemia (FA)

Removes intra-strand
DNA crosslinks,

coordinates DNA
replication by fine-tuning
mitotic checkpoints and

replication fork
stabilisation

FANCC, FANCD2,
FANCA

Mutations in FA pathway genes may
have a similar effect to BRCA1 and

BRCA2 mutation, in promoting
progression of cancer cell through

the cell cycle, even in setting of DNA
damage and replication stress

Mismatch Repair (MMR)
Deficiency

Recognise, excise and
resynthesise mismatched
or unmatched DNA base

pairs or
insertion-deletion loops.

MLH1, MSH2

MMR deficiency results in
microsatellite instability, interfering

with detection of cytotoxic DNA
damage, allowing cancer cells to
proliferate despite DNA damage.

DSBs; Double Strand DNA breaks, SSBs; Single Strand DNA breaks, PARPi; PARP inhibitor.

2.1. HRD Conveys Sensitivity to Platinum and PARPi

Platinum chemotherapy exerts its cytotoxic effect by binding with DNA to form mono-adducts.
These mono-adducts then evolve through second covalent binding to a DNA crosslink (commonly
intra-strand, but also inter-strand), resulting in structural change to the DNA double helix. Platinum
treatment leads to an accumulation of DNA double-strand breaks (DSBs) [21]. Tumours with HRD
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demonstrate a higher degree of chromosomal instability and are fatally unable to repair DSBs, enhancing
sensitivity to platinum agents [21].

The PARP family of proteins (especially PARP1) are essential for sensing single-strand DNA breaks
(SSBs), initiating repair via predominantly the BER pathway [22]. PARPi are able to block the activity
of PARP1 for the repair of SSBs, and trap PARP1 on damaged DNA, posing an insurmountable block
to the replisome [22]. The accumulation of SSBs leads to the development of fatal DSBs. Cells require
a functional HR repair pathway to resolve these replisome blocks and resume cell-cycle progression,
and to repair DSBs [23]. Consequently, PARPi exploit the concept of synthetic lethality in HR-deficient
tumours, in order to effect cancer cell death [23].

Some form of HRD is likely to be present at baseline in more than 50% of HGSC potentially
underlying the initial sensitivity of this type of tumour to DNA damaging drugs, such as platinum
chemotherapy [24]. HR functions to repair DSBs or stalled replication forks during the S and G2 phases
of the cell cycle [25]. The pathway is initiated by BRCA1, and uses a sister chromatid as a template
for DNA repair, via recruitment of the MRN complex, BRCA2 and RAD51 [19]. Deregulation of HR
repair pathway results in chromosomal instability—a phenotype referred to as ‘BRCAness’—which
increases the sensitivity of the tumour to DNA damaging drugs [23]. HRD may be the most clinically
relevant molecular stratification in OC, and it is an important predictive biomarker for response to both
platinum chemotherapy and PARPi [26]. However, the definitive classification of HRD has proven to be
elusive. A number of HR assays are undergoing validation (i.e., BROCA, Myriad, Foundation Medicine,
HRD detect) [27]. These assays are necessarily limited in their capacity to consider clinically relevant
changes such as epigenetic alterations, or to characterise for spatial or temporal tumour heterogeneity
within an individual patient. The complexity of defining HRD is increased by the fact that a small
subset of patients with HRD never demonstrate a response to platinum and PARPi treatment, whilst
some patients without HRD respond well to these same treatments. Any discussion of the key role of
HRD in platinum and PARPi mechanisms of action must also consider that multiple and overlapping
DDR pathways are likely involved in determining the response, and HRD alone is probably insufficient
to predict response to treatment.

2.2. Reactivation of HR Is a Mechanism of Acquired Resistance

Restoration of the function HR pathway in HRD tumours is a key mechanism of acquired platinum
and PARPi resistance, which has been demonstrated in vitro and in vivo (Table 3). Restoration of HR
may be achieved by secondary mutations, which restore the open reading frame of the BRCA gene,
functionally restoring protein activity (BRCA reversion) [28–30]. BRCA reversion mutations have
been described in both progression biopsies and cell-free DNA (cfDNA), in patients with acquired
resistance to PARPi [31–35]. Some cfDNA studies have been able to demonstrate a polyclonality
of multiple reversion mutations within a single patient, illustrating that treatment exerts profound
selective pressure to restore BRCA1/2 protein activity and overcome PARPi sensitivity [31]. Reversion
mutations in HR genes have also been described as acquired resistance mechanisms to platinum
chemotherapy [33]. Reversion mutations in BRCA and other HR genes have also been observed in
PARPi resistant tumours, including RAD51C/RAD51D reversion mutation in patients with acquired
resistance to rucaparib [36]. Other mechanisms that restore BRCA function have been reported in
platinum and PARPi resistant cancers, including the loss of BRCA1 promoter methylation [28,37].
Additionally, functional restoration of mutant BRCA1 protein may be achieved through interaction
with HSP90, which can promote RAD51 loading onto DNA following DNA damage [38]. Interestingly,
in the absence of BRCA reversion mutation, an increase in BRCA1 protein expression has been observed
in patients with BRCA1 C-terminal domain mutations [39], suggesting alternative mechanisms to
BRCA reversion mutation for reactivating HR. The OC genome appears to display a significant degree
of adaptability in response to selective pressure of treatment, with reactivation of HR occurring
by multiple different mechanisms, to enable cancer cell survival in the presence of Platinum and
PARPi treatments.
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Table 3. Mechanisms of reactivation of Homologous Recombination repair.

Resistance Mechanism Function

BRCA (or HR gene) reversion mutation Restores open reading frame of gene, resulting in functional protein expression

Loss of BRCA1 promoter methylation Restores BRCA1 function

Upregulated HSP90 Promotes BRCA-independent RAD51 loading onto damaged DNA

BRCA1 C-terminal domain mutation Upregulation of BRCA1, in absence of BRCA1 reversion mutation

Loss 53BP1 Recruits Shieldin complex to inhibit DNA resection, initiating HR in
a BRCA-independent manner.

Abbreviations; HR, Homologous Recombination; HSP90, Heat Shock Protein 90.

2.3. Non-Homologous End Joining (NHEJ)

NHEJ is the second important DDR pathway involved in the repair of DSBs. In contrast to HR,
which initiates repair during S and G2 phases of the cell cycle, NHEJ occurs throughout interphase [19].
Multiple regulatory mechanisms dictate whether DSBs are repaired via the NHEJ or HR pathway. A key
mechanism appears to be the antagonism between HRR-promoting factor BRCA1 and NHEJ-promoting
factor 53BP1 [40] (Figure 1). 53BP1 promotes DSB repair by NHEJ in G1 phase cells, by forming
53BP1-RIF1 complexes that protect DSB ends from exonuclease processing [40]. The loss of BRCA1 in
HRD tumours can be overcome by concomitant loss of 53BP1, resulting in HR reactivation, rendering
cells resistant to the synthetically lethal approach of PARPi (Figure 1) [40]. This re-wiring of DDR
pathways via loss of 53BP1 has been described in numerous in vitro studies [41–43]. This was first
reported by three landmark papers, in which it was observed from mouse models that HRD caused
by BRCA1m could be reversed by concomitant loss of 53BP1 (TP53BP1), a protein involved in NHEJ
repair [44–46]. Interestingly, loss of 53BP1 does not seem to restore HR function in BRCA2m cells,
a finding which may be relevant when considering predictive biomarkers and patient stratification.
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Figure 1. DNA Double Strand Break repair by Homologous Recombination or Non-Homologous
End-Joining pathway. Figure: In the absence of functional BRCA1, DNA Double strand breaks (DSBs)
may be repaired by the Non-Homologous End Joining (NHEJ) pathway. Loss of 53BP1 is an acquired
resistance mechanism in BRCA1 mutant tumours. 53Bp1 normally promotes DSB repair by NHEJ,
by forming a 53Bp1-RIF1 complex that protects DSB ends from endonuclease processing. Loss of 53BP1
prohibits a recruitment of Shieldin (SHLD) complex to DSB, allowing 5′ end resection, and reactivation
of HR in a BRCA1 independent manner.

PARPi-resistance CRISPR/Cas9 screens have identified that the Shieldin (SHLD) complex is actively
involved in inhibiting DNA resection [40,42]. Here, SHLD proteins (Rev7, SHLD1, SHLD2, SHLD3)
are recruited to DSBs via SHLD3 in a 53BP1 and RIF1-dependent manner. SHLD then blocks nucleases
at DSBs, thereby inhibiting 5′ end resection. Resection at 5′ends of DSBs is essential for initiation of
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repair by the HR pathway. When resection is lost, HR can be re-initiated in a BRCA-independent
fashion, via recruitment of PALB2. CRISPR/Cas9 screens have also identified DYNLL1 and HELB as,
respectively, 53BP1-dependent and 53BP1-independent, mediators of PARPi resistance [40].

2.4. Nucleotide Excision Repair

The Nucleotide Excision Repair (NER) pathway is a highly conserved mechanism to remove
“bulky lesions”, which distort the DNA double helix, including the intra-strand crosslinks formed by
platinum adducts [19]. The NER pathway is altered in about 8% of EOC at baseline [47]. The NER
pathway defect has been associated with improved Overall Survival (OS) and Progression Free Survival
(PFS), suggesting that NER pathway inactivation could confer platinum sensitivity [47]. Interestingly,
however, in vitro data demonstrates that NER alteration does not confer sensitivity to PARPi, suggesting
that PARP and platinum sensitivity do not always occur in parallel [48]. ERCC1 and XPF are the two
components of NER that are potentially most important for removal of platinum-DNA adducts [49].
ERCC1 complexed with XPF is involved in the 5′ cleavage of DNA strands that carry platinum adduct.
This complex also plays a role in the HR pathway, repairing intra-strand crosslink. There is conflicting
data regarding the validity of ERCC1 as a predictive biomarker of platinum resistance [47,49–57].
Polymorphisms in other NER components (i.e., XPA, XPB, XPF, XPD) have shown no correlation with
platinum resistance [58].

2.5. Replication Fork Protection

In a normal cell cycle, replication forks may stall in response to replication stress, prolonging
S-phase arrest so that DNA repair can occur [59]. In addition to their role in HR, BRCA1 and BRCA2
bind to stalled replication forks, prohibiting the recruitment of MRE11 nuclease, protecting forks from
excessive nuclease degradation and stabilising the replication fork [60].

Loss of replication fork protection elicits genomic instability, which initially promotes
tumourigenesis. However, replication fork stabilisation by BRCA-independent mechanisms has
been described as a mechanism of acquired treatment resistance, promoting cancer cell progression
through the cell cycle even in the presence of DNA damage and replication stress. For example,
overexpression of RAD51 has been reported in BRCAm cells, restoring RAD51 loading and replication
fork protection [59,61–63]. SLFN11 is another regulator of S-phase, recruited to stressed replication forks,
and able to open chromatin and block replication, prolonging S-phase arrest in the presence of DNA
damage. Loss of SLFN11 has been described as a mechanism of acquired platinum resistance [64,65].
Pax2 transactivation domain-interacting protein (PTIP) and Chromodomain Helicase DNA Binding
Protein 4 (CHD4) promote recruitment of MRE11 nuclease to replication forks [59]. Lower PTIP
expression and CHD4, prohibiting MRE11-dependent onceolytic degradation of nascent DNA, have also
been associated with replication fork stabilisation and platinum resistance [59].

The Fanconi Anaemia (FA) repair pathway is important for removing intra-strand DNA crosslinks,
formed by platinum adducts [66]. Additionally, this pathway coordinates DNA replication, fine-tuning
mitotic checkpoints to ensure error-free chromosomal segregation [66]. The FA pathway is important
for replication fork stabilisation, and mutations in FA pathway genes may have similar effects to
BRCA1 and BRCA2 mutation, in promoting progression of cancer cells through the cell cycle, even in
a setting of DNA damage and replication stress [59].

2.6. Reduced Cellular Availability of Drugs

Reduced cellular availability of chemotherapeutic drugs has been reported as a mechanism
of acquired resistance to both platinum chemotherapy and PARPi in ovarian cancer. The copper
transporters CTR1, CTR2, ATP7A, and ATP7B regulate intracellular concentration of platinum by
mediating its uptake and efflux in cells [67–69]. Overexpression of ABCB1, the gene that encodes
Multidrug Resistance protein 1 (MDR1), an ATP-binding cassette member involved in the cellular
efflux of chemotherapeutic drugs, has also been reported as an acquired resistance mechanism to
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PARPi [70–72]. Upregulation of MDR1 has been described in an engineered PARPi-resistant human
ovarian cancer cell line [72], as a result of chromosomal translocations involving the ABCB1 gene [73].
A Whole Genome Sequencing (WGS) study of ovarian cancer cells from matched primary and recurrent
ascites, demonstrated upregulation of ABCB1 (through promoter fusion and translocation involving
the 5′ region of the gene) in approximately 8% of recurrent HGSOC samples [28]. Most PARPi are
MDR1 substrates [74], and this data suggests that prior paclitaxel chemotherapy may precondition
tumours to be resistant to PARPi via upregulation of MDR1. The co-administration of MDR1 inhibitors
with PARPi is a strategy that has not yet been explored in clinical trials [75], but future research
may focus on targeting patients with ABCB1 mutations involved in PARPi resistance. Alteration in
intracellular proteins that are able to bind and sequester platinum (including metallothioneins and
glutathione [76,77]), and altered expression of pro-survival or anti-survival proteins have also been
described as resistance mechanisms which reduce cellular availability of drugs. Proteomic analysis
of paired primary and recurrent OC cells from ascites has revealed that RELA and STAT5 proteins
cooperate in inducing the anti-apoptotic Bcl-X promoter activity and synergistically enhance Bcl-xL
expression in chemo-resistant ovarian cancer cells [78].

3. Immunosuppressive Tumour Microenvironment

These genomic alterations in DNA damage response, must be considered in conjunction with
the tumour microenvironment when attempting to elucidate a broad mechanistic understanding
of resistance mechanisms in ovarian cancer. Detailed discussions of biomarkers of response to
immunotherapy and anti-angiogenic therapy are beyond the scope of this article. However,
broadly speaking, immunosuppressive changes within the tumour microenvironment have been
associated with resistance to chemotherapy. The increased infiltration of immunosuppressive CD163+

macrophages [79,80], and increased infiltration of regulatory FOXP3+ T cells l [81], has been shown
to favour tumour growth, in contrast to the presence of tumour infilitrating lymphocytes (TILs)
which is positively correlated with survival [82]. PD1, PD-L1 expression and Tumour Mutational
Burden have not demonstrated consistent validity as predictive biomarkers for immune checkpoint
inhibition in ovarian cancer. Retinoic acid-inducible gene-I (RIG-I) overexpression is associated with
poor-prognosis platinum resistant and refractory cancers [83]. Importantly, RIG-I overexpression
was also associated with local immunosuppressive changes such as increased interferon production,
and a distinct immune-regulatory signature involving immune checkpoint molecules (PD-L1/PD-1),
the RNA editing enzyme ADAR1 and regulatory FOXP3+ T cells [83].

Stromal activation, including extensive stromal desmoplasia, has also been reported to be
associated with acquired treatment resistance [28]. It appears to be a key phenotypic characteristic of
the chemo-resistant “mesenchymal” molecular subgroup defined in The Cancer Genome Atlas (TCGA)
network study [84].

4. Targeting Molecular Vulnerabilities to Overcome Treatment Resistance

4.1. Targeting ATR

Ataxia telangiectasia and Rad3-related (ATR) protein is a key kinase at the heart of the DDR,
responsible for sensing replication stress and signalling to S and G2/M checkpoints to initiate repair [15].
ATR inhibitors may be able to reduce the rate of DNA repair in cells, thereby increasing DNA
damage and causing cell death [85]. However, single agent ATR inhibition appears to be less
effective than synergistic combinations, that increase the effect of synthetic lethality in tumours with
DNA repair deficiencies [86]. Combined with PARPi, the simultaneous inhibition of two repair
pathways during S-phase, with abrogation of the S/G2 cell cycle checkpoint, leads to accumulation
of DSBs in actively replicating cancer cells and cell death in the M-phase [85,86]. The DUETTE
study (NCT04239014), will assess the combination of Ceralasertib (AZD6738)—a potent, selective
ATR inhibitor—in combination with Olaparib, as second maintenance therapy in patients who have
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platinum-sensitive OC, who have acquired resistance from prior PARPi treatment. Another ongoing
clinical trial is combining the ATR inhibitor M6620 with the PARP inhibitor veliparib to evaluate if
this combination can impair DNA repair and induce the ‘BRCAness’ phenotype in solid tumours,
including ovarian cancer, which may increase sensitivity to platinum chemotherapy (NCT02723864) [87].

4.2. Epigenetic Resensitisation

It has been observed that the acquisition of a treatment resistant phenotype is associated with
the accumulation of epigenetic changes. These include transcriptional silencing of tumour suppressor
and DNA repair genes, including BRCA1, TP53, PTEN and MLH1 [88,89]. It is proposed that
epigenetic modulators may be able to re-sensitise tumours to platinum-chemotherapy. The DNA
methyltransferase (DNMT) inhibitors have not been effective as a single agent treatment in platinum
resistant OC. However, in combination they may be able to enhance sensitivity to platinum by altering
epigenetic regulation of gene expression. Mixed results have been observed in clinical trials. Decitabine
administered one week prior to carboplatin initially demonstrated no activity [90]. It was proposed
that this may have been related to the dosing schedule. At low dose, administered continuously in
combination with carboplatin, decitabine was shown to reduce DNA methylation of genes in cancer
pathways and apoptosis [91,92]. Azacitadine in combination with carboplatin was investigated in
a phase Ib/IIa trial, with an objective response rate (ORR) of 13.8% observed in a platinum resistant
OC population [93]. In a randomised phase II study [94], assessing Guadecitabine in combination with
carboplatin, the ORR and clinical benefit rate was 15% and 45%, respectively. Correlative analyses
of this study, including transcriptomic analysis, demonstrated that inhibiting DNA methylation can
sensitise OC cells to platinum drugs, in part by altering gene expression patterns related to DNA repair
and immune activation, an approach warranting further investigation [95].

The DNA damage initiated by DNMT inhibitors is repaired by the BER pathway, of which PARP1
plays a central role. Additionally, it has been proposed that DNMT treatment induces a “BRCAness”
phenotype [96,97]. In light of this, there may be a mechanistic rationale to investigate the combination
of DNMT inhibitors with PARPi. This therapeutic approach is yet to be explored in clinical trials.

Histone Deacetylase (HDAC) inhibitors are another class of epigenetic modulator that have not
shown significant anti-tumour activity as single agents in platinum resistant OC. A phase II study [98],
assessing the combination of Belinostat with carboplatin (n = 29), was stopped early due to lack of
activity. Another phase II study assessing Belinostat in combination with carboplatin (n = 35) and
paclitaxel [99] demonstrated an ORR 43%. The discrepancy between anti-tumour activity observed
between these studies may be related to heterogeneity in study populations, small sample size and
potentially the independent cytotoxic effect of paclitaxel.

4.3. Cell Cycle Checkpoint Inhibitors

The cell cycle checkpoint regulators, CHK1/2, halt cell division to allow DNA damage to be
repaired prior to DNA replication [100,101]. Cell cycle checkpoint inhibition may be able to prevent
progression of cancer cells through cell-cycle, halting replication and tumour growth.

Prexasertib is a CHK1/2 inhibitor, which demonstrated an ORR of 29% in non-gBRCAm carriers in
a phase II study in recurrent (predominantly platinum-resistant) HGSOC cohort (NCT02203513) [102].
The results from the germline BRCAm cohort of this study is awaited.

CHK1/2 inhibitors are also being tested in combination with platinum chemotherapy
(NCT02797977) and PARP inhibitors (NCT03057145), to assess possible synergy, and if combination
treatment can amplify the effects of DNA damage and increase CHK1/2 inhibition-related apoptosis.

WEE-1 inhibitors act on WEE-1 kinase, a G2 cell-cycle checkpoint regulator, in order to abrogate
G2 cell cycle arrest, and enhance cancer cell apoptosis in the setting of DNA damage [103]. A
phase II proof-of-concept trial [104] assessed the combination of WEE-1 inhibitor, (AZD1775) and
carboplatin in TP53 mutated platinum resistant OC, demonstrating an ORR of 43%. Correlative
transcriptomic analyses revealed that BRCA1, MYC and CCNE1 alterations were present in one patient
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with an exceptional prolonged response, highlighting the influence that DDR alterations may have on
response to treatment.

A recent randomised phase II study assessed the combination of AZD1775 and gemcitabine,
versus gemcitabine monotherapy, in platinum resistant HGSOC [105]. Impressively, a survival benefit
was observed, with median Overall Survival 11.5 months with combination treatment, compared to
7.2 months in the gemcitabine arm (Hazard Ratio 0.56, 95% Confidence Interval 0.34–0.92; p = 0.022).
A partial response was observed in 13 (21%) of the patients in this study. Given the survival benefit
observed, this approach warrants further investigation in a phase III trial.

4.4. BET Inhibitors

Bromodomains are small protein domains that recognise and bind to acetylated histone tails,
modify chromatin structure, and lead to upregulation of target genes to drive oncogenesis [106].
BET inhibitors reversibly bind to bromodomains of BET proteins, blocking interaction with acetylated
histones and transcription factors. Inhibition of BET interferes with BRCA1 and RAD51 expression [107].
BET inhibition has been demonstrated to induce HRD in ovarian cancer cell lines, by decreasing
transcription of BRCA1 and RAD51, depleting the DNA double stand break resection protein CtIP
(C-terminal binding protein (CtBP) interacting protein) and downregulating the G2-M cell-cycle
checkpoint regulator WEE1 and the DNA-damage response factor TOPBP1 [107–110]. BET and PARP
inhibition has demonstrated a synergistic effect on reducing xenograft tumour growth in HR-proficient
ovarian cancer mouse models [107,108]. These effects have been shown to be independent of BRCA1/2,
TP53, RAS, and BRAF mutation status. Combining PARP and BET inhibitors may thus help overcome
not only primary resistance but also the development of secondary resistance.

4.5. Anti-Angiogenic Therapies

Preclinical studies have demonstrated that anti-angiogenic therapy can induce a hypoxic tumour
microenvironment, which is associated with downregulation of HR genes [111]. This is the mechanistic
rationale for investigating the combination of anti-angiogenic therapy with PARPi, to enhance
their synthetically lethal effects.

A single arm phase II study [112] assessing the combination of olaparib and cediranib demonstrated
an ORR of 20% in a platinum resistant OC cohort. The observed benefit appeared to be higher in
patients with germline BRCAm. The Evolve study [113] was a proof of concept clinical-translational
phase II trial of cediranib-olaparib in ovarian cancer, including patients who had acquired resistance
to prior PARPi therapy, enrolled into platinum sensitive (n = 10), platinum resistant (n = 10) and
exploratory (n = 10) cohorts. Two partial responses were observed amongst a cohort of 10 patients
with platinum-resistant OC. The 16-week PFS was 54.5% (31.8–93.6) in PS, 50% (26.9–92.9) in PR
and 36% (15.6–82.8) in PE, respectively. OS at one year was 81.8% (61.9–100) in PS, 64.8% (39.3–100)
in PR and 39.1% (14.7–100) in PE. Correlative analyses identified mechanisms of PARPi resistance
in ~77% of evaluable patients with matched pre-post PARP inhibitor progression biopsies, such as
reversion mutations in BRCA1/2 and other HR genes, MDR1 upregulation, CCNE amplification and
RIG-I like receptor downregulation [113]. The anti-tumour activity of this combination will be assessed
further in the OVC2 trial (NCT02502266), a randomised phase III study evaluating Olaparib+Cediranib
vs. chemotherapy in Platinum Resistant OC. Importantly, this study demonstrates the feasibility
of integrating translational objectives into clinical trial protocol design. This is critical, as further
translational studies to exploring mechanisms of treatment resistance will be crucial to developing
more effective therapeutic strategies.

4.6. G-Quadruplex Stabilisation

G-quadruplex (G4) structures can potentially form at over 700,000 sequences in the human
genome, including telomeres, rDNA, the immunoglobulin heavy chain switch regions, minisatellite
and microsatellite repeats [114–116]. G4 structures increase the tendency for DNA damage to occur,
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by impeding DNA polymerase and DNA damage repair processes. Chromosome breaks induced
by G4 structures will activate diverse repair pathways, such as HR, TLS, NHEJ pathways and pol
θ-mediated alternative end-joining pathways [117–120]. CX-5461, is a novel, synthetically derived
small molecule, which selectively kills HR deficient cancer cells, through stabilising G4 structures and
inducing replication-dependent DNA damage. Phase 1 studies of CX-5461 in solid tumours have
been completed [121], with further investigation planned in an ovarian cancer cohort with acquired
resistance to treatment from prior PARPi and/or platinum exposure.

5. Overlap between Acquired Platinum and PARPi Resistance Mechanisms

Clearly, there is significant overlap between mechanisms of resistance to platinum chemotherapy,
and PARPi, with DDR alterations playing a key role. However, it must be noted that patients who
progress on PARPi maintenance often retain sensitivity to platinum chemotherapy. Acquired resistance
to these classes of agents clearly does not develop entirely in parallel (Figure 2). It is not yet clear
whether patients who progress on PARPi, then respond to platinum chemotherapy, may retain some
sensitivity to PARPi and benefit from second maintenance therapy with PARPi. This question is
currently being explored in the OReO study (NCT03106987; ENGOT-ov38/OReO), a Phase IIIb study
of olaparib maintenance retreatment in patients with epithelial ovarian cancer previously treated with
a PARPi and responding to repeat platinum chemotherapy. It will also be addressed in the olaparib
monotherapy arm of the DUETTE study (NCT04239014). With the success of PARPi as first and
second-line maintenance treatment, a new patient population with platinum sensitive relapsed OC is
emerging, for whom no standard of care exists. Hence, the results of these studies are eagerly awaited,
for their capacity to define a new standard of care in this patient population of unmet needs.
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Figure 2. Overlapping mechanisms of resistance to Platinum and PARP-inhibitor treatment. Platinum
and PARPi demonstrate distinct and overlapping mechanisms of acquired treatment resistance. Whilst
both demonstrate reactivation of HRR and loss of 53BP1, and replication fork protection promoting
progression through the cell cycle, platinum resistance is additionally associated with defects in
the NER pathway, including increased ERCC1 activity. Reduced intracellular drug accumulation
is achieved via copper transporters for platinum, and MDR1 drug efflux pump for PARPi. In both
instances, an immunosuppressive microenvironment and desmoplastic stroma likely contribute to
tumour progression. Abbreviations; HRR, homologous recombination repair, MDR1, Multidrug
Resistance Protein 1, ERCC1, DNA excision repair protein ERCC-1, PARPi, PARP inhibitor.
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6. Biomarkers of Resistance to PARPi and Platinum

Predicting platinum or PARPi resistance in individual patients remains challenging, as resistance
mechanisms are multifactorial and evolve over time. As discussed earlier, whilst current HRD assays
have their limitations, HRD is a powerful biomarker for predicting the initial response to both platinum
chemotherapy and PARPi [26]. At time of relapse, the Therapy Free Interval (TFI), defined as the time
between last treatment and documented relapse, remains the most widely used clinical predictor
of likely response [122]. Recently, however, the biological relevance of using a six-month TFI to
define platinum resistance has been challenged, and much effort has been put into defining and
validating molecular biomarkers of treatment resistance [123]. The detection of somatic mutations
linked to acquired resistance mechanisms (such as BRCA reversion mutation) in ctDNA is a promising
non-invasive biomarker, which warrants investigation in future prospective studies.

7. Conclusions

Platinum chemotherapy remains the cornerstone of systemic therapy for OC, with PARPi playing
a key role as maintenance treatment. Resistance to these treatments has important prognostic
implications. Whilst research has improved our knowledge thus far, our global mechanistic
understanding is still limited. In particular, the complex interactions, compensatory changes, and
relative contributions between DDR pathways and the tumour microenvironment remain to be
fully described. The incorporation of translational objectives into clinical trial protocol design will
enable further elucidation of these important mechanistic questions, in order to improve patient
stratification, and develop therapeutic approaches that effectively target molecular vulnerabilities in
treatment-resistant OC.
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