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Abstract: Dicranopteris linearis leaf has been reported to exert antinociceptive activity. The present
study elucidates the possible mechanisms of antinociception modulated by the methanol extract of
D. linearis leaves (MEDL) using various mouse models. The extract (25, 150, and 300 mg/kg) was
administered orally to mice for 30 min priot to subjection to the acetic acid-induced writhing-, hot
plate- or formalin-test to establish the antinociceptive profile of MEDL. The most effective dose was
then used in the elucidation of possible mechanisms of action stage. The extract was also subjected
to the phytochemical analyses. The results confirmed that MEDL exerted significant (p < 0.05)
antinociceptive activity in those pain models as well as the capsaicin-, glutamate-, bradykinin- and
phorbol 12-myristate 13-acetate (PMA)-induced paw licking model. Pretreatment with naloxone (a
non-selective opioid antagonist) significantly (p < 0.05) reversed MEDL effect on thermal nociception.
Only l-arginine (a nitric oxide (NO) donor) but not N(ω)-nitro-l-arginine methyl ester (l-NAME; a NO
inhibitor) or 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; a specific soluble guanylyl cyclase
inhibitor) significantly (p < 0.05) modified MEDL effect on the writhing test. Several polyphenolics
and volatile antinociceptive compounds were detected in MEDL. In conclusion, MEDL exerted the
opioid/NO-mediated antinociceptive activity, thus, justify D. linearis as a potential source for new
analgesic agents development.

Keywords: Dicranopteris linearis; family Gleicheniaceae; antinociceptive activity; mechanisms
of antinociception; opioid/NO-dependent pathway; UHPLC/EDI/HRMS analysis; GC-MS
analysis; polyphenolics

1. Introduction

Pain affects a substantial proportion of the population across the globe and exerts a crucial
challenge in public health and clinical medicine [1,2]. The limitations of currently available analgesics
such as opioids are mostly because of their adverse effects (i.e., sedation, addiction, nausea, apnea, and
constipation) while nonsteroidal anti-inflammatory drugs can produce stroke, myocardial infarction,
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gastrointestinal ulcers and bleeding [1]. Therefore, initiatives to find safer and potent alternatives are
actively conducted and plants have been one of the potential analgesic agents [3]). One of the plants
that has been traditionally used to heal pain-related maladies is Dicranopteris linearis L., a seedless
vascular pteridophytes belonging to the family Gleicheniaceae [4,5].

Scientifically, the chloroform and aqueous extracts of D. linearis exert the activity in several animal
models namely abdominal constriction test, hot plate test and formalin test [6,7] but no attempt was
made to elucidate the possible mechanisms of action involved. Since understanding the mechanisms
of antinociception of any potential substance is vital during an attempt to contribute to the drug
discovery and development of new analgesics [8] the present study was carried out to establish the
antinociceptive activity of the methanol extract of D. linearis leaves (MEDL) and to elucidate the
possible mechanisms of antinociception involved using various standardized rat or mouse models.

2. Materials and Methods

2.1. Collection and Identification of Plant

The leaves of D. linearis were obtained between February and March 2012 from its natural habitat
in Serdang, Selangor, Malaysia based on the previously deposited voucher specimen (SK 2685/15) [9].

2.2. Preparation of MEDL

Preparation of MEDL was described in detailed by Zakaria et al. [9]. Briefly, the oven-dried leaves
were coarsely grinded and then soaked in methanol (1:20 (w/v)) for 72 h at room temperature. The
supernatant was collected via sequential filtration process using steel filter, cotton wool, and Whatman
No. 1 filter papers and the residue was subjected to the same soaking processes for another two times.
The supernatants collected from the three filtration processes were pooled together and evaporated
(40 ◦C) under reduced pressure to obtain the crude methanol extract.

2.3. Drugs and Chemicals for Plant Extraction and Animal Study

The reagents and drugs used are as listed below: Acetylsalicylic acid (ASA), morphine
hydrochloride (MOR), capsaicin, glutamate, bradykinin, phorbol 12-myristate 13-acetate
(PMA), naloxone hydrochloride, l-arginine, N(ω)-nitro-l-arginine methyl ester (l-NAME),
1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) were purchased from Sigma-Aldrich (St. Louis,
MO, USA). Formaldehyde was purchased from R & M Chemicals (Essex, England). Acetic acid,
dimethyl sulfoxide (DMSO), and methanol were purchased from Fisher Scientific (England). Drugs
were dissolved in distilled water. Only ASA and MEDL were prepared by dissolving each of them in
2% DMSO (v/v) in distilled water. All solutions of drugs, chemicals, and MEDL were administered in
the volume of 10 mL/kg.

2.4. Reagents and Chemicals for Phytoconstituents Analyses Using the Ultra Performance Liquid
Chromatography-Electrospray Ionization-High Resolution Mass Spectrometry (UPLC-ESI-HRMS)

Acetonitrile and formic acid (LC-MS grade) were purchased from Fisher Scientific (M) Sdn. Bhd
(Kuala Lumpur, Malaysia), reverse osmosis Milli-Q water (18.2 MΩ) (Millipore, Billerica, MA, USA)
was used for all solutions and dilutions. Chemical standards such as gallic acid, catechin, chlorogenic
acid, ferulic acid were purchased from Sigma. The standards were diluted in methanol/water, (v:v, 1:1)
to 10 mg/mL and filtered through 0.22 µm membranes prior to LC-MS analysis.

2.5. Experimental Animals

Male ICR mice (25–35 g; 5–7 weeks old) were obtained from the Veterinary Animal Unit, Faculty of
Veterinary Medicine (FVM), Universiti Putra Malaysia (UPM), Malaysia, and acclimatized for at least
48 h in the Animal Holding Unit, Faculty of Medicine and Health Sciences, UPM (27 ± 2 ◦C; 70–80%
humidity; 12 h light/darkness cycle). Food and water were supplied ad libitum [10]. The study protocol
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of the present study has been approved by the Animal House and Use Committee, Faculty of Medicine
and Health Sciences, UPM (Ethical approval no.: UPM/IACUC/AUP–R093/2015). Experiments were
conducted between 09:30 and 18:30 h to minimize the effects of environmental changes. The number
of animals (n = 6) and intensities of noxious stimuli used throughout this study were the minimal
necessary to demonstrate the consistent effects of the treatments [11,12].

2.6. Evaluation of Antinociceptive Potential of MEDL

2.6.1. Acetic Acid-Induced Abdominal Constriction Test

The acetic acid-induced abdominal constriction test was used to assess the antinociceptive potential
of MEDL as described in detailed by Mohd Sani et al. [13]. Briefly, mice (n = 6) were treated per os
(p.o.) with vehicle (2% DMSO), ASA (100 mg/kg; positive control) or MEDL (25, 150, 300 mg/kg) for 60
min before the administration of phlogistic agent (0.6% acetic acid; intraperitoneal [i.p.]). The total
number of abdominal constrictions observed was counted cumulatively for 25 min commencing 5 min
after the phlogistic agent administration. Antinociceptive activity was calculated as the percentage
inhibition of abdominal constrictions using the following formula: ([mean of control group −mean of
test group]/mean of control group) × 100%).

2.6.2. Hot Plate Test

The central antinociceptive potential of MEDL was assessed using the hot plate test according to
the procedure described in detailed by Mohd Sani et al. [13]. Briefly, the untreated animals were placed
on the hot plate (Model 7280; Ugo Basile, Milan, Italy) heated to 50 ± 0.2 ◦C to select animals with
suitable latency of response (5–7 s) to the thermal-induced nociceptive stimuli. The selected mice (n =

6) were pretreated p.o. with vehicle (2% DMSO), MOR (5 mg/kg; positive control) or MEDL (25, 150,
300 mg/kg) for 60 min prior to being subjected to the test. The latency of nociceptive response for all
treated groups, recorded before and at 60, 90, 120, 150, 180, and 210 min after the oral administration of
the respective test solutions, was statistically compared against the vehicle-treated group.

2.6.3. Formalin-induced Paw Licking Test

The ability of MEDL to affect both the peripheral and central nociceptive mechanisms was further
evaluated using the formalin-induced paw licking test as described in detailed by Mohd Sani et al. [13].
Briefly, the mice (n = 6) received (p.o.) either vehicle (2% DMSO), ASA (100 mg/kg; standard
peripherally-acting analgesic), MOR (5 mg/kg; standard peripherally- and centrally-acting analgesic)
or MEDL (25, 150, 300 mg/kg) 60 min prior to the intraplantar (i.pl) injection of 5% (v/v) formalin
(20 µL) into the region of the right hind paw. The latency of discomfort (indicator of pain) specified by
the animal spent licking the injected paw was recorded at two phases, namely 0–5 min after formalin
injection (known as the early phase) and 15–30 min after formalin injection (known as the late phase).

2.7. Determination of the Muscle Relaxant or Sedative Effects of MEDL

To discard the possibility that the extract possesses the non-specific muscle relaxant or sedative
effect, which might result in the false positive interpretation of the antinociceptive activity of MEDL,
the mice receiving MEDL was also subjected to the rotarod test as described [14]. The apparatus
consisted of a horizontal bar with a diameter of 3 cm and subdivided into five compartments (Ugo
Basile, model 47600). Twenty-four hours before the experiment, the untreated mice underwent the
selection processes wherein each of them was trained on the apparatus by placing them on the rotarod
at a fixed speed of 20 rpm and those that were able to remain on the apparatus for 120 sec without
falling were selected. The selected mice (n = 6) were treated (p.o.) with vehicle (2% DMSO), diazepam
(DZP; 4 mg/kg; standard drug) or MEDL (300 mg/kg, p.o.) 60 min before being subjected to the test.
The latency took to remain on the apparatus before falling was recorded using a chronometer for 120 s
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at 5, 10, and 15 min. The average time the mice took to stay on the rotarod equipment for each group
was expressed as a result.

2.8. Investigation on the Possible Mechanisms of Antinociception of MEDL

2.8.1. Role of Transient Receptor Potential Vanilloid 1 (TRPV1) Receptors

The involvement of TRPV1 receptors in the antinociceptive activity of MEDL was elucidated
using the procedure described previously by Lopes et al. [15]. Firstly, mice (n = 6) were treated (p.o.)
with vehicle (2% DMSO), capsazepine (CAPZ; TRPV1 receptor antagonist; 0.17 mmol/kg) or MEDL (25,
150 or 300 mg/kg), or 60 min before the injection of 20 µL capsaicin (1.6 µg/paw) into the ventral surface
of the right hind paw (i.pl) of mice. After the administration of the phlogistic agent, the animals were
immediately and individually placed in a glass cage and observed individually for 5 min after the
capsaicin injection. The amount of time the mice spent licking or biting the injected paw, which was
considered as a nociceptive response, was counted cumulatively with a chronometer and used in the
statistical analysis.

2.8.2. Role of Glutamatergic System

Participation of glutamatergic system in the modulation of antinociceptive activity of MEDL was
determined according to the previously described method [16]. Mice (n = 6) were treated (p.o.) with
vehicle (2% DMSO), ASA (100 mg/kg) or MEDL (25, 150 or 300 mg/kg) 60 min prior to the glutamate
injection. Then, 20 µL of glutamate (10 µmol/paw) was injected (i.pl) into the ventral surface of the
right hind paw of mice. Immediately after the administration of the phlogistic agent, the animals were
individually placed in a glass chamber and observed from 0 to 15 min after the glutamate injection. The
amount of time the mice spent licking or biting the injected paw, which was considered as a nociceptive
response, was cumulatively counted with a chronometer and used in the statistical analysis.

2.8.3. Role of Bradykininergic System

The possible role of bradykininergic system in the mechanisms of antinociception of MEDL was
also determined using the method as previously described [17]. Mice (n = 6) were orally treated (p.o.)
with vehicle (2% DMSO), ASA (100 mg/kg) or MEDL (25, 150 or 300 mg/kg) 60 min before bradykinin
injection. A volume of 20 µL of bradykinin (10 nmol/paw) was injected (i.pl) into the ventral surface of
the right hind paw of mice. The mice were then observed individually for 10 min following bradykinin
injection and the amount of time the mice spent licking the injected paw, which was considered the
response of nociception, was recorded using a chronometer and used in the statistical analysis.

2.8.4. Role of Protein Kinase C (PKC)

The involvement of PKC in the antinociceptive effects of MEDL was also studied using a procedure
described by Savegnago et al. [18]. Firstly, the mice (n = 6) were treated (p.o.) with vehicle (2% DMSO),
ASA (100 mg/kg) or MEDL (25, 150 or 300 mg/kg) followed 60 min later by the i.pl injection of 50 µL
phorbol 12-myristate 13-acetate (PMA; 0.05 µg/paw; a PKC activator) into the ventral surface of right
hind paw of the mice. Mice were observed individually from 15 to 45 min after PMA injection. The
amount of time the mice spent licking the injected paw, which was indicative of nociception, was
recorded cumulatively using a chronometer and used in the statistical analysis.

2.8.5. Role of Opioidergic System

The involvement of opioid receptors in the antinociceptive activities of MEDL was examined using
the protocols described elsewhere [19]. Briefly, the mice (n = 6) were pretreated intraperitoneally (i.p.)
with 5 mg/kg naloxone, a non-selective opioid receptor antagonist, 15 min before the p.o. administration
of vehicle (2% DMSO) or MEDL (300 mg/kg), or i.p. administration of MOR (5 mg/kg). Sixty minutes
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after the respective test solution administration, the antinociceptive effect was evaluated using the hot
plate test as described earlier.

2.8.6. Role of l-Arginine/Nitric Oxide/Cyclic Guanosine Monophosphate (l-arg/NO/cGMP) Pathway

The possible contribution of l-arg/NO/cGMP pathway towards the antinociceptive effect of MEDL
was investigated according to the method described by Jiménez-Andrade et al. [20]. Briefly, mice
(n = 6) were pretreated (i.p.) with 20 mg/kg l-arg (the NO precursor), 20 mg/kg l-NAME (the NO
inhibitor), 2 mg/kg ODQ (the specific soluble guanylyl cyclase inhibitor), or their combinations (l-arg +

l-NAME or l-arg + ODQ) for 5 min followed by the administration (p.o) of vehicle (2% DMSO), ASA
(100 mg/kg) or MEDL (300 mg/kg). Sixty minutes after the administration of test solutions, the mice
were subjected to the acetic acid-induced abdominal writhing test as described above.

2.9. Phytoconstituents Analyses of MEDL

2.9.1. High-Resolution UPLC-ESI-HRMS Analysis of MEDL

Chromatography separation of MEDL was performed on Dionex Ultimate 3000 RS UHPLC
system comprising of a UHPLC pump, an auto sample operating at 4 ◦C and Exactive Orbitrap
mass spectrometer with a heated electrospray ionization probe operating in negative ionization mode
(Thermo Fisher Scientific, San Jose, CA, USA). Briefly, reverse separations were carried out using HSS
T3 column (2.1 × 50 mm, particle size 1.8 µm; Waters) maintained at 40 ◦C and eluted at a flow rate of
0.3 mL/min with 25 min gradient of 5–40% of 0.1% acidic acetonitrile in 0.1% aqueous formic acid. The
conditions were set as follows: sheath gas at 15 (arbitrary units), aux at 20 and sweep gas at 5 (arbitrary
units), spray voltage at 3.0 kV, capillary temperature at 350 ◦C, and s-lens RF level at 55 V. The mass
range was from 100 to 1500 amu with a resolution of 17,000, FTMS AGC target at 2e5, FT-MS/MS AGC
target at 1e5, isolation width of 1.5 amu, and max ion injection time of 500 ms and the normalization
collision energy at 35% [19].

2.9.2. Gas Chromatography-Mass Spectrometry (GC-MS) Analysis of MEDL

The GC-MS analysis of MEDL was performed using the Agilent 7890A (Agilent Technologies,
Palo Alto, CA, USA) coupled with MSD quadrupole detector 5975 C (Agilent Technologies). Separation
of analytes by gas chromatography was carried out using a Hewlett Packard HP-5MS silica capillary
column (30 m × 0.25 mm × 0.25 mm). For GC-MS detection, an electron ionization system with ionizing
energy of 70 eV was used. Helium gas (99.999%) was used as the carrier gas at a constant flow rate
of 1 mL/min and an injection volume of 1 µL was employed (split ratio of 1:10), injector temperature
was 250 ◦C, and the ion-source temperature was 280 ◦C. The oven temperature was programmed
from 100 ◦C (isothermal for 2 min), with an increase of 10 ◦C /min, to 200 ◦C and then 12 ◦C /min
to 280 ◦C, ending with a 17 min isothermal at 280 ◦C. Mass spectra were taken at 70 eV, a scanning
interval of 0.5 sec, and fragments from 45 to 450 Da. Total GC running time was 35.50 min. The relative
percentage (%) of the amount of each component was calculated by comparing its average peak area to
the total areas and the software used to handle mass spectra and chromatograms was a Turbomass.
Interpretation of the obtained mass spectrum GC-MS was conducted using the database of National
Institute Standard and Technology (NIST; Version 11.0, Gaithersburg, MD, USA), which have more
than 62,000 patterns. The spectrums of the unknown components were compared with the spectrum
of the known components stored in the NIST library [19].
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3. Results

3.1. Antinociceptive Profile of MEDL

3.1.1. Effect of MEDL on Nociceptive Response Assessed Using the Abdominal Constriction Test

The antinociceptive potential of MEDL assessed using the acetic acid-induced abdominal
constriction test is shown in Figure 1. MEDL at all doses (25, 150 and 300 mg/kg) demonstrated
significant (p ≤ 0.001) antinociceptive activity with the recorded percentage of antinociception of 42.30,
59.87 and 63.56%, respectively. The antinociceptive effect of 150 and 300 mg/kg MEDL was comparable
to 100 mg/kg ASA.
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3.1.2. Effect of MEDL on Nociceptive Response Assessed Using the Hot Plate Test

The central antinociceptive potential of MEDL was also assessed against thermal-induced
nociception using the hot plate test and is shown in Table 1. MEDL, at the doses of 150 and 300 mg/kg,
caused a significant change (p ≤ 0.001) in response latency when compared to the vehicle control.
However, the 150 mg/kg MEDL only prolonged the latency of nociceptive response a the interval of 60
min while the 300 mg/kg MEDL delayed the nociceptive response latency between the intervals 60 to
120 min. Morphine (MOR), as the standard pain-relieving drug, also exerted significant (p < 0.001)
antinociceptive activity, which started at the interval of 60 min and prolonged until the end of the
experiment (interval of 210 min).

Table 1. Effects of MEDL on the hot plate test in mice. Mice were treated with vehicle (10 mL/kg, p.o.),
MEDL (25, 150, 300 mg/kg, p.o.), or MOR (5 mg/kg, p.o.).

Treatment
Dose

(mg/kg)
Latency of Discomfort (sec) at Respective Time Interval (min)

0 60 90 120 150 180 210

Vehicle
control 5.53 ± 0.22 5.86 ± 0.19 5.90 ± 0.09 5.50 ± 0.11 5.80 ± 0.25 5.62 ± 0.17 5.65 ± 0.10

MEDL
25 6.14 ± 0.16 7.17 ± 0.14 6.47 ± 0.21 6.77 ± 0.07 6.38 ± 0.22 6.30 ± 0.18 6.25 ± 0.15

150 6.30 ± 0.30 9.02 ± 0.46 *** 6.93 ± 0.38 6.55 ± 0.13 6.20 ± 0.26 6.05 ± 0.38 6.18 ± 0.36
300 5.92 ± 0.18 10.83 ± 0.74 *** 8.34 ± 0.25 *** 8.02 ± 0.31 *** 6.83 ± 0.26 6.43 ± 0.29 6.57 ± 0.43

MOR 5 5.80 ± 0.22 12.07 ± 0.90 *** 10.29 ± 0.39 *** 9.14 ± 0.36 *** 8.59 ± 0.43 *** 7.69 ± 0.21 *** 7.65 ± 0.31 ***

Data expressed are the mean ± SEM of reaction time (sec) of six mice. Statistical analysis was performed using
2–way ANOVA followed by Tukey’s multiple comparisons test. *** p ≤ 0.001 compared to vehicle control group.
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3.1.3. Effect of MEDL on Nociceptive Response Assessed Using the Formalin-induced Paw Licking
Test

The antinociceptive potential of MEDL against inflammatory- or non-inflammatory-mediated
nociception was also evaluated using the formalin-induced paw licking test and the results are shown
in Figure 2. MEDL was found to significantly (p ≤ 0.01) reduce the amount of time taken to respond to
the nociceptive stimuli in both the early and late phases of formalin-induced paw licking test when
compared to the untreated group. In the early phase, only 150 and 300 mg/kg MEDL caused a significant
(p ≤ 0.01 and p ≤ 0.001) reduction in the latency of response to nociception with the percentage of
antinociception recorded in the range of 3–45% (Figure 2A). Conversely, in the late phase, all doses of
MEDL significantly (p ≤ 0.01, p ≤ 0.001 and p ≤ 0.001, respectively) and dose-dependently reduced
the latency of response to nociception with the percentage of antinociception recorded in the range
of 23–45% (Figure 2B). Comparatively, ASA, a peripherally-acting antinociceptive drug, significantly
(p ≤ 0.001) inhibited only the latency of second phase nociception whereas MOR, a centrally- and
peripherally-acting antinociceptive drug, significantly (p ≤ 0.001) reduced the latency of both phases of
nociception with the recorded percentage of antinociception that is higher than MEDL in both phases
of nociception when compared to the untreated group.
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3.2. Effect of MEDL on Motor Coordination Assessed Using the Rotarod Test

Effect of MEDL on the motor coordination of mice was also measured using the rotarod test
and the results obtained were presented in Figure 3. At the dose of 300 mg/kg, MEDL (p.o.) did
not cause any significant (p > 0.05) change on the motor coordination of mice when compared to the
vehicle-treated group. However, diazepam (DZP; 4 mg/kg; p.o.; standard drug) significantly (p > 0.001)
reduced the time spent by the animals on the revolving rod.
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3.3.2. Involvement of the Glutamatergic System in the Modulation of MEDL-induced Antinociceptive
Activity

The antinociceptive effect of MEDL against glutamate-induced paw licking test is shown in
Figure 5. All doses of MEDL caused a significant (p < 0.05) decrease of glutamate-induce nociception
with the inhibition ranging between 15–45%.
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3.3.3. Involvement of the Bradykininergic System in the Modulation of MEDL-induced
Antinociceptive Activity

All doses of MEDL exhibited significant (p < 0.05) inhibitory effect against the nociceptive response
induced by bradykinin in a dose-independent manner (Figure 6). The antinociception recorded was in
the range of 34–76%.
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Figure 6. Effect of MEDL on bradykinin-induced nociception in mice. Each column represents the
mean ± SEM of six mice. Statistical analyses were performed using 1-way ANOVA followed by Tukey’s
multiple comparisons test. *** p ≤ 0.001 compared to vehicle control group. Values on top of each
column denote inhibition.

3.3.4. Involvement of PKC Pathway in the Modulation of MEDL-Induced Antinociceptive Activity

MEDL was also found to exert significant (p < 0.05) inhibition of PMA-induced nociception.
However, this activity was observed only at the dose of 300 mg/kg with the recorded antinociception
ranging between 5–36%. In comparison, 100 mg/kg ASA recorded the antinociception of approximately
54% (Figure 7).
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Figure 7. Effect of MEDL on PMA-induced nociception in mice. Each column represents the mean
± SEM of six mice. Statistical analyses were performed using 1–way ANOVA followed Tukey’s
multiple comparisons test. *** p < 0.001 compared to vehicle control group. Values on top of columns
denote inhibition.

3.3.5. Involvement of the Opioidergic System in the Modulation of MEDL-induced Antinociceptive
Activity

Table 2 showed the effect of opioid receptors inhibition on the antinociceptive activity of MEDL
assessed using the hot plate test. The antinociceptive activity of MEDL, at the dose of 300 mg/kg,
was earlier observed between the 60 and 120 min intervals. Pre-treatment with 5 mg/kg naloxone
significantly reversed (p < 0.001) the antinociceptive effect of 300 mg/kg MEDL. Similarly, naloxone
also significantly (p < 0.001) reversed the antinociceptive effect of 5 mg/kg MOR until the end of
the experiment.

Table 2. Effects of naloxone on MEDL–induced antinociception in the hot plate test in mice.

Group Dose
(mg/kg)

Latency of Discomfort (sec) at Respective Time Interval (min)

0 min 60 min 90 min 120 min 150 min 180 min 210 min

Vehicle
Control 5.53 ± 0.22 5.86 ± 0.19 5.90 ± 0.09 5.50 ± 0.11 5.80 ± 0.25 5.62 ± 0.17 5.65 ± 0.10

MEDL 300 5.92 ± 0.18 10.83 ± 0.74 *** 8.34 ± 0.25 *** 8.02 ± 0.31 *** 6.83 ± 0.26 6.43 ± 0.29 6.57 ± 0.43
NLX +
MEDL 5 + 300 6.12 ± 0.22 6.21 ± 0.22 ### 6.30 ± 0.09 ### 5.88 ± 0.30 ### 6.03 ± 0.36 6.17 ± 0.27 5.70 ± 0.28

MOR 5 5.80 ± 0.22 12.07 ± 0.90 *** 10.29 ± 0.39 *** 9.14 ± 0.36 *** 8.59 ± 0.43 *** 7.69 ± 0.21 *** 7.65 ± 0.31 ***
NLX + MOR 5 + 5 6.58 ± 0.24 7.08 ± 0.24 ### 7.40 ± 0.21 ### 7.58 ± 0.40 # 7.03 ± 0.36 # 7.33 ± 0.40 7.23 ± 0.40

Data expressed are the mean ± SEM of latency time (seconds) of six mice. Statistical analyses were performed using
2-way ANOVA followed by the Tukey’s multiple comparisons test. *** p ≤ 0.001 compared to vehicle control group;
# p ≤ 0.05 and ### p ≤ 0.001 compared to 300 mg/kg MEDL or MOR-treated group.

3.3.6. Involvement of the l-arginine/NO/cGMP Pathway in the Modulation of MEDL-induced
Antinociceptive Activity

The effects of l-arginine, l-NAME or their combination on MEDL antinociception was assessed
using the abdominal constriction test and the findings are shown in Figure 8. l-Arginine alone did not
affect the acetic acid-induced nociception but significantly (p ≤ 0.01) reversed the MEDL antinociceptive
activity. On the contrary, l-NAME alone exerted significant (p ≤ 0.001) antinociceptive activity and
maintained the MEDL-induced antinociception as seen when the extract was given alone. l-arginine
was also found to reverse the l-NAME-induced antinociception but when these two compounds were
combined and given together with MEDL, the extract’s antinociceptive activity was significantly (p ≤
0.01) reversed but not complete inhibited.
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Figure 8. Effects of l-arg or l-NAME on MEDL against acetic acid-induced abdominal constriction test
in mice. Each column represents the mean ± SEM of six mice. Statistical analyses were performed using
1-way ANOVA followed by Tukey’s multiple comparisons test. ** p ≤ 0.01 and *** p ≤ 0.001 compared
to vehicle control group; # p < 0.05 and ## p < 0.01 compared to 300 mg/kg MEDL or l-NAME-treated
group. Values on top of each column denote inhibition.

Further investigation has shown that ODQ alone exerted significant (p ≤ 0.001) antinociceptive
activity but when given together with 300 mg/kg MEDL failed to affect the extract antinociceptive
activity (Figure 9). Furthermore, l-arginine failed to reverse ODQ’s antinociceptive activity and their
combination (l-arginine + ODQ) also failed to affect MEDL’s antinociceptive activity.
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3.4. Phytoconstituents of MEDL

3.4.1. UHPLC-ESI-HRMS Profile of MEDL

Chemical constituents of MEDL were analyzed by reversed phase UHPLC-ESI-HRMS, using a
gradient mobile phase consisting acetonitrile and aqueous formic acid that allowed for a comprehensive
elution of plant analytes i.e., flavanols and flavones and hydroxycinnamic within 20 min. Thoroughness
in identification was due in part to a higher sensitivity of the UHPLC-MS and processing Xcalibur
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software. Metabolite assignments were made by comparing retention time, MS data (accurate mass,
isotopic distribution and fragmentation pattern in negative ion mode) of the compounds detected
with compounds detected in the literature and database. Identification was confirmed with standard
compounds whenever available in-house. The identities, retention times, and observed molecular ion
for individual components are presented in Table 3 with a total of 30 metabolites identified (Figure 10;
Table 3). Some of the important phytoconstituents identified in MEDL were gallic acid, ferulic acid,
protocatechuic acid, caffeic acid, p-coumaric acid, rutin, isoquercitrin, astragalin, catechin, quercetin,
apigenin, and kaempferol.

Table 3. Phytochemical compounds detected and characterized in MEDL using UHPLC-ESI-HRMS in
negative ion mode.

Tentative Identification RT
(min) Mol Formula Exact Mass

[M − H]−
∆ Mass
(ppm) MSn

Quinic acid 0.6 C7H11O6 191.05495 −0.338 0
Citric acid 0.62 C6H7O7 191.01857 −0.309 11,117,367
Gallic acid 0.65 C10H9O4 169.0.1297 −1.064 12,512,796
Ferulic acid 0.69 C7H5O6 193.04971 0.905 87,111,178,134

Protocatechuic acid 0.87 C7H5O4 153.18720 3.169 109
Protocatechuic acid-4-O-β-hexoside 1.1 C13H15O9 315.07184 2.481 0

Coumaryl-hexoside 2.89 C15H17O8 325.09268 2.633 145,163,119
Ferulic acid hexose 3.50 C9H7O4 355.1033 2.651 193,178,134

Caffeic acid 3.52 C9H7O4 179.03387 −0.085 135,107
Liquiritin-O-glucosylapioside 3.53 C16H19O10 711.2146 2.122 433,311

Galloylquinic acid 3.62 C9H7O3 343.06738 4.101 0
Quercetin-O-diglucoside 4.28 C27H29O17 625.14069 1.223 463,301,151

p-Coumaric acid 4.58 C14H15O11 163.03922 1.530
Rutin isomer ii 4.86 C27H29O16 609.14557 0.918 300,301,151

Dichotomain B-i 5.05 C21H23O12 467.11954 2.435 112
Isoquercetrin 5.53 C21H19O12 463.08820 2.370 300,301,178,151

Dichotamain B-i 5.82 C21H23O12 467.11945 2.242 112
Vicenin 6.1 C27H29O15 593.1033 1.321 575,473,353

Kaempferol-3-O-galactoside 6.39 C21H19O11 447.09283 1.436 284,255
Dichotomain A-i 6.45 C23H25O13 509.12955 1.145 474

Astragalin 6.48 C21H19O11 447.09296 1.727 28,785
(+)Aromadendrin 6.82 C18H17O9 287.05521 0.681 0

Geshoidin 7.06 C15H11O7 377.08701 0.800 217,115
Catechin 7.27 C15H13O6 289.0712 1.852 87,245

Apigenin-7-O-glucoside 7.59 C21H19O9 431.09763 0.828 28,587
Dichotomain A-ii 7.71 C23H25O13 509.12955 0.477 474

Quercetin 9.11 C15H9O7 301.03580 1.000 178,151
Kaempferol-3-O-glucoside 9.62 C30H25O13 593.12970 1.236 285,161

Apigenin 10.7 C15H9O5 269.04559 0.521 151,225,228
Kaempferol 11.17 C15H9O6 285.0394 0.125 183,257

3.4.2. GC-MS Profile of MEDL

Figure 11 shows the GC-MS chromatogram profile of MEDL with a total of 48 peaks detected.
Of these, 7 major peaks were identified as follows: (1) triphenylphosphine oxide (17.52%), (2)
9,12,15-octadecatrienoic acid (13.43%), (3) hexadecanoic acid (9.70%), (4) tri(2-ethylhexyl) trimellitate
(7.98%), (5) erucylamide (5.45%), (6) 5,10-dihexyl-5,10-diihydroindolo[3,2-b]indole-2,7-dicarbaldehyde
(4.63%) and (7) linoleic acid (4.17%).
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Figure 11. GC-MS profile of MEDL showing 48 detected peaks with 7 major peaks of area more
than 4%. (i) Triphenylphosphine oxide (17.52%), (ii) 9,12,15-octadecatrienoic acid (13.43%), (iii)
hexadecanoic acid (9.70%), (iv) tri(2-ethylhexyl) trimellitate (7.98%), (v) erucylamide (5.45%), (vi)
5,10-dihexyl-5,10-diihydroindolo[3,2-b]indole-2,7-dicarbaldehyde (4.63%) and (vii) linoleic acid (4.17%).

4. Discussion

We have earlier reported on the ability of chloroform (CEDL) and aqueous (AEDL) extract of D.
linearis leaf to exert peripherally- and centrally-mediated antinociceptive activity [6,7]. These findings
confirmed that both the lipid-soluble/non-polar and water-soluble/polar bioactive compounds present
in D. linearis leaf possess the ability to attenuate nociceptive response. It is interesting to highlight that
the phytochemical screening of AEDL, CEDL and MEDL revealed that the methanol extract, which
contains flavonoids, tannins and saponins, possesses the highest total phenolic content and the most
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remarkable antioxidant activity [21]. Taking these findings into consideration with the aim of extracting
the maximum amount of antinociceptive-bearing bioactive compounds from D. linearis regardless of
their polarity/solubility, methanol extraction was, therefore, prepared and used in the present study.

The results of the present investigation revealed that MEDL successfully attenuates nociceptive
response when assessed using the acetic acid-induced abdominal constriction test, hot plate test,
and formalin-induced paw licking test. It is well known that intraperitoneal injection of acetic acid
triggers inflammation by casing the resident peritoneal macrophages and mast cells to release several
inflammatory mediators (i.e., TNF-α, IL-1β, IL-8, bradykinin, substance P, serotonin and histamine)
into the peritoneal cavity, which, in turn, stimulate peripheral nociceptive neurones [22,23]. Thus,
the ability of MEDL to attenuate nociception in the abdominal constriction test suggests the extract
potential to attenuate inflammatory-mediated peripheral nociceptive response as seen with ASA, a
standard peripherally-acting analgesic [22,24]. However, being a classic non-selective nociceptive
model, drugs such as muscle relaxants and adrenergic receptor agonists can also reduce abdominal
constriction, which could lead to a false positive conclusion [25]. Hence, additional investigations using
other nociceptive models such as the hot plate test and formalin-induced paw licking test are essential.

The hot plate test, which involves exposure of rodents onto a plate heated to a constant temperature,
generates two behavioural parts, namely paw licking and jumping, as a result of the reflex latency
reactions to thermal stimulation of non-inflamed paws. According to Lavich et al. [26] both reactions
are considered to be a centrally (supraspinally) integrated responses and, therefore, are sensitive to
centrally-acting, but not peripherally-acting analgesics. The ability of MEDL to prolong the latency
of discomfort towards thermal thermal-induced nociceptive response indicates the extract potential
to attenuate centrally-mediated nociception, a characteristic of the standard analgesic such as MOR.
Moreover, since the hot plate test does not involve any motor response modulation or the process
of inflammation, but is solely a supraspinal reflex, it is worth to mention on the ability of MEDL to
attenuate non-inflammatory mediated nociceptive response and confirmed that the extract possessed
antinociceptive activity.

Further study using the formalin-induced paw licking test (formalin test) could also provide
information on the ability of MEDL to affect the peripheral and/or central level of nociception. Formalin
injection into the i.pl region of the mice’ hind paw triggers two distinct phases of nociceptive behaviour
consisting of licking, tonic flexion and phasic flexion (paw jerk) of the injected limb that are described
as the early/first and late/second phases [27]. The early phase, which is a result of formalin direct action
on nociceptors, is observed instantaneously after the formalin injection and persists for 5 min while the
late phase, which results from the generation of inflammatory processes in the periphery and spinal
cord and activation of the neurons in the dorsal horns of the spinal cord, emerges between 15 and 60
min following the formalin injection [27]. Due to the different in mechanisms seen both phases, the
early phase is also called a neurogenic pain or a non-inflammatory-mediated pain whereas the late
phase is also known as an inflammatory-mediated pain due to the tonic response resulted from the
release of inflammatory mediators [14]. It is well acknowledged that the centrally acting analgesics
inhibit both phases of formalin test whereas the peripherally acting analgesics attenuate only the late
phase of formalin test [14]. The ability of MEDL to attenuate both phases of nociceptive responses
in the formalin test further suggests that the extract possessed a characteristic of the centrally acting
analgesics and might possibly interact with opioid receptors to attenuate nociceptive response.

Since MEDL was proven to act at central level, further investigation needs to be performed to
assess the extract’s effect on motor coordination, balance and equilibrium ability of the animals [28].
The rotarod test is frequently used to determine the possible disturbance in the motor coordination by
centrally acting compounds/extracts as it is important to make sure that this class of compounds/extracts
did not cause depression of the CNS when used as an antinociceptive agent. The results revealed that
MEDL did not interfere with the motor coordination of treated animals.

Following the establishment of antinociceptive profile of MEDL, attempt was also made to elucidate
the possible mechanisms of antinociception modulated by MEDL with the role of TRPVI, glutamatergic,
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bradykininergic and opioidergic systems, PKC, and NO/cGMP channels pathways investigated. Since
these systems play a crucial role in the modulation of nociceptive response, they are regarded as novel
and promising drug targets for the treatment of inflammatory- and non-inflammatory-mediated pain
in humans. The role of TRPVI receptors in the modulation of MEDL-induced antinociceptive effect was
evaluated using the capsaicin-induced paw licking test. Capsaicin activates the primary afferent fibres
through the stimulation of TRPV1 receptors found in the PNS and CNS [29]. The activation of these
receptors leads to a series of complex processes in the PNS and transmits nociceptive information to the
spinal cord. Interestingly, the TRPVI receptors upregulation or sensitivity is influenced among others
by the presence of pro-inflammatory mediators such as bradykinin, phosphorylation mediated by PKC
or inactivation of opioid receptors [30]. Interestingly, Vetter et al. have demonstrated that MOR, an
opioid receptor agonist, acts peripherally via inhibition of adenylate cyclase to inhibit PKA-potentiated
TRPV1 responses, thus, confirmed the association between peripheral opioid receptors and TRPV1
responses in inflammation [31]. In addition, the TRPV1 receptors have also been reported to co-express
with many other receptors (such as histamine 1 (H1) receptors, purine (P2) receptors, acid-sensing ion
channels, interleukin (IL-1) receptors, and prostaglandin E2 (PGE2) receptors) that are also activated
by chemokines and cytokines at sensory terminals [29,32]. Although the present study showed that
MEDL inhibited capsaicin-induced nociceptive behaviour, thus, suggesting that the extract may partly
interacts with TRPV1 receptors and inhibit it, the selective blockage of TRPV1 receptors by MEDL may
not be sufficient to completely attenuate capsaicin-induced nociceptive response due to the complex
interaction between the receptor with various nociceptive-modulated factors as described above.

The role of glutamatergic system in the modulation of antinociceptive activity exerted by MEDL
was evaluated using the glutamate-induced paw licking test. Evidence from the previous studies
suggests that glutamate plays an important role in nociceptive processing since this excitatory amino
acid and its receptors are located in areas of the brain, spinal cord, and periphery that are involved in
pain sensation and transmission [33]. Glutamate acts at several types of receptors, including ionotropic
(such as N-methyl-d-aspartate (NMDA) receptors) and metabotropic receptors, as well as the opioid
receptor system. NMDA receptors, in part, are found on myelinated and non-myelinated primary
afferents at both the peripheral and central terminals. Central activation of presynaptic NMDA receptor
by glutamate binding increases calcium influx leading to increase release of glutamate, which further
contributes to the central sensitization via the subsequent increase in postsynaptic membrane excitation.
Influx of calcium ions mediated partly by NMDA receptors is known to activate, among others,
PKC to phosphorylate and sensitizes the TRPV1 receptors leading to the nociceptive response [30].
In comparison, the peripherally-acting NMDA receptors are essential to peripheral sensitization in
inflammation with expression amplified and reversal of hyperalgesia and spontaneous pain behaviour
with peripheral infiltration of NMDA antagonists. The presence of these receptors might partly explain
why the application of glutamate to the spinal cord or periphery induces nociceptive behaviours while
inhibition of glutamate release, or of glutamate receptors, in the spinal cord or periphery attenuates
both acute and chronic pain in animal models. Interestingly, Rodríguez-Muñoz et al. [34] have further
reported on the association between opioid receptors, particularly the mu-receptors, and NMDA
receptor subunit in the postsynaptic structures of PAG neurons. They also reported that MOR disrupts
this complex by PKC-mediated phosphorylation of the NMDA subunits leading to MOR tolerance
whereas the inhibition of PKC activity preserves the complex association and maintain the analgesic
effect of MOR. These opposing actions of the MOR and NMDA receptors in pain control could,
therefore, be exploited in developing bifunctional drugs that would act exclusively on those NMDA
receptors associated with MORs [34]. The present study revealed the ability of MEDL to inhibit
glutamate-induced nociceptive response indicating the involvement of glutamatergic system in the
antinociceptive activity MEDL. The fact that activation of TRPV1 receptors leads partly to the liberation
of glutamate that contributes to nociceptive transmission [29,33] seems to further support the present
findings in which MEDL either inhibits glutamate action directly or indirectly via the inhibition of
TRPVI receptors leading to the observed antinociceptive activity.
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The involvement of bradykininergic system in the modulation of MEDL-exerted antinociceptive
activity was analysed using the bradykinin-induced paw licking test. Bradykinins, a small
proinflammatory peptide released during tissue damage and inflammation, is involved in the initiation
of pain in the periphery and in the development of hypersensitivity in inflamed or injured tissues [35].
In normal tissue bradykinin causes an acute sensation of pain by an action at B2 receptors but in
inflamed tissue the pharmacology of the response changes to that of B1 receptors [35,36]. Other than
sensitizing nociceptors, bradykinin was also cited to enhance glutamatergic synaptic transmission
between spinal cord neurons and to sensitize TRPV1 in dissociated DRG neuronal cultures partly
via the activation of PKC produced downstream to B2 receptor activation [37]. Meanwhile, the
activation of B2 receptors predominantly resulted in the activation of a series of biochemical changes
leading to Ca2+ release, which helps to prolong the activation of PKC pathway resulting in direct
phosphorylation of TRPVI receptors. Increased gain of sensory input by TRPV1-induced enhancement
of glutamate release and its potentiation by various inflammatory mediators may contribute to increase
nociceptive behaviour responses [38–40]. The results obtained demonstrate that MEDL was able to
attenuate bradykinin-induced nociception, thus, suggesting the extract direct inhibitory effect on the
synthesis/action of bradykinin or the B2 receptors or indirect action via the modulation of PKC, TRPV1
or glutamate actions that results in the observed antinociceptive activity. Interestingly, the ability of
PKC-activating phorbol esters and bradykinin to lower the thermal activation threshold of TRPV1
to below body temperature have also been cited by [37]. Hence, the ability of MEDL to reverse the
thermal-induced nociception could plausibly be attributed to the extract ability to inhibit PKC and
bradykinin action as seen using the PMA- and bradykinin-induced paw licking test, respectively.
Although there is lack of report to link the bradykininergic system with opioidergic system in pain
transmission, reports have shown that dynorphin A, an endogenous opioid peptide, induces calcium
influx via voltage-sensitive calcium channels in sensory neurons by activating bradykinin receptors to
exert the pronociceptive effect [41]. Based on the brief mechanism of action of dynorphin A as described
above, it is plausible to suggest that MEDL, being an opioid-acting agent, acts in a contradicting
manner on the bradykinin receptors to exert the antinociceptive activity.

The involvement of PKC in the modulation of antinociceptive activity exerted by MEDL was
determined using the PMA-induced paw licking test. PKC is a family of serine/threonine kinases that
have been found to localize in the anatomical regions that regulate pain and has been demonstrated
to play important roles in various intracellular events including pain modulation and analgesia [42].
Activation of PKC, in particular, increases depolarization of TRPV1 receptors, thus, reduces the
nociceptive threshold. Interestingly, several inflammatory mediators, including bradykinin and
glutamate, may augment the activity of TRPV1 via PKC-dependent pathways [43]. The role of PKC in
opioid receptor phosphorylation particularly in opioid desensitization and internalization has also
been cited by Ueda et al. [44]. Taking into account that MEDL inhibited PMA-induced nociception, it is
possible to suggest that MEDL exerts antinociceptive activity partly by inhibiting the phosphorylation
of PKC, which might lead to inhibition of TRPVI receptors and, attenuation of bradykinin and/or
glutamate effects on nociceptive transmission.

The role of the opioidergic system in the modulation of antinociceptive activity exhibited by MEDL
was determined using the abdominal constriction and hot plate tests. Opioid receptors are found in
the PNS and throughout the CNS. Opioid drugs have been used for decades for the management
of both acute and chronic pain and exert analgesic effects via directly binding to µ-opioid receptors
presynaptically and postsynaptically within the dorsal horn of the spinal cord [45,46]. In addition,
Alvarez et al. [47] has also cited that the blunt response of the µ-opioid receptor to its agonists is
attributed to the translocation and activation of PKC, the induction of nitric oxide synthase, as well as
the increase of intracellular nitric oxide resulting from the postsynaptic influx of calcium ions produced
by activated NMDA receptor channels. Hence, an inhibition of NMDA-mediated calcium influx by
any agent can also prevent inhibitory effects of PKC and intracellular NO on µ-opioid receptor activity.
The present study revealed that the MEDL-exerted antinociceptive activity was inhibited by naloxone,
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a non-selective antagonist of opioid receptors, when assessed using the abdominal constriction and hot
plate tests. Thus, these observations confirmed the involvement of opioid receptors in the modulation
of MEDL-exerted antinociceptive activity at the peripheral and central levels. Furthermore, the ability
of MEDL to exhibit antinociceptive activity via the modulation of opioid receptors, TRPV1 receptors,
glutamatergic system, bradykininergic system and PKC pathway as reported here was concurrent
with the previous reports on the association between these nociceptive transmission systems as briefly
described above. Interestingly, Alvarez et al. [47] have also reported that the µ-opioids can exert acute
antinociceptive activity by binding to opioid receptors, and they can also trigger hyperalgesia by acting
on NMDA receptors. The fact that MEDL demonstrated a characteristic of an opioid agonist and
produced an antinociceptive activity like MOR, but without inducing hyperalgesia, suggest that the
extract also possesses a potential to act as the antagonist rather than agonist of NMDA receptors.

The involvement of l-arginine/NO/cGMP pathways in modulating the antinociceptive activity
of MEDL was also investigated using the abdominal constriction test. It is well-known that the
l-arginine/NO/cGMP pathway plays a role in the nociceptive transmission at various levels of the
sensory system [48]. Depending on the dose and site of administration of NO donors or inhibitors,
tissue level of NO or predominant type of fibres involved in the nociceptive response stimulation, this
pathway may modulate nociceptive or antinociceptive activities [49,50]. Nitric oxide (NO), a soluble
gas continuously synthesized from l-arginine in endothelial cells by the nitric oxide synthase (NOS),
modulates pain mechanism at both the PNS and CNS levels depending on its dose. At high dose, NO
induces pain while at low dose NO triggers antinociceptive effect [50]. The differential effect exerted
by NO might be attributed to the presence of different subsets of primary nociceptive neurons that
innervates the tissues [51]. Based on the results of the present study, increase in NO level alone (as
seen in the group receiving l-arginine alone) did not affect the nociceptive action triggered by acetic
acid but reversed the antinociceptive effect of MEDL (as seen in the group receiving l-arginine and
then MEDL). Failure of l-arginine alone to affect the nociceptive action could be due to the inadequate
dose of NO (20 mg/kg) used, which may result in an insufficient amount of NO synthesized. However,
the same amount of NO produced by l-arginine was sufficient enough to reverse but not block the
antinociceptive activity of MEDL. This observation is concurrent with the suggestion that: (i) the effect
of NO depends on dosage levels and the rate and timing of its release and (ii) NO might act as a
mediator or modulator in analgesic drug’s function. On the other hand, reduction in NO level alone (as
seen in the group receiving l-NAME alone) induced antinociceptive action against acetic acid-induced
nociceptive response but did not affect the extract-induced antinociceptive activity (as seen in the group
receiving l-NAME and then MEDL). The presence of antinociceptive activity at a low level of NO
suggests the importance of NO in the modulation of nociceptive transmission. Failure of l-NAME to
enhance but instead maintain the antinociceptive activity of MEDL might suggest that: (i) the sufficient
level of NO reduced by l-NAME at the peripheral level inactivate several NO-associated (such as COX,
glutamatergic, or TRPV1 systems), but not all, nociceptive pathways, or (ii) MEDL directly activates
the non-NO-associated nociceptive pathway(s). Moreover, the presence of NO seems to be more
dominance over the absence of NO (as seen in the group receiving l-arginine and l-NAME) leading
to (i) reversal of antinociceptive effect associated with l-NAME administration, and (ii) incomplete
inhibition of the antinociceptive activity of MEDL.

NO triggers guanylyl cyclase resulting in the conversion of guanosine triphosphate to the second
messenger, cGMP, which activates cGMP-dependent kinases that modulate numerous direct biological
actions, related to NO including spinal nociceptive processing [52]. Based on the results obtained, it is
plausible to suggest that modulation of cGMP synthesis plays a role in the nociceptive transmission. It
was observed that inhibition of guanylyl cyclase action leads to antinociceptive activity (as seen in
the group receiving ODQ alone) and when inhibited in the presence of MEDL (as seen in the group
receiving ODQ and then MEDL) no changes in the effectiveness of antinociceptive activity of MEDL
was observed. This finding indicates that inhibition of guanylyl cyclase, which leads to blocking of
cGMP synthesis, might contribute to the antinociceptive effect. However, the inhibition of guanylyl
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cyclase neither helps to enhance nor play a role in the antinociceptive activity of MEDL. This seems
to suggest that MEDL works via the cGMP-independent pathway. Increase in the level of NO in a
condition wherein the action of guanylyl cyclase was inhibited results in: (i) antinociceptive effect
associated with ODQ administration (as seen in group receiving l-arginine and ODQ alone), which
seems to suggest that the inhibition of guanylyl cyclase whether in the presence of NO or not may lead
to antinociceptive activity, and; (ii) failure to neither enhance nor affect the antinociceptive activity of
MEDL (as seen in group receiving l-arginine and ODQ and then MEDL). Although the presence of
NO has been earlier proven to reverse MEDL activity, inhibition of guanylyl cyclase activity resulted
in the failure of NO to affect the antinociceptive activity of MEDL. Based on these observations, it is
suggested that the inhibition of cGMP pathway, whether in the presence or absence of NO, will lead to
an antinociceptive effect. However, inhibition of cGMP pathway did not cause a significant increase
in the antinociceptive activity of MEDL suggesting the involvement of cGMP-independent pathway.
This finding is contradicting several reports on the role of cGMP in modulating the antinociceptive
activity of several analgesic drugs [53,54].

Nociceptive neuron sensitivity is modulated by a large variety of mediators in the extracellular
space. These mediators activate a large number of receptor classes, which in turn activate a plethora of
signalling cascades. This might explain the ability of MEDL to affect different nociceptive pathways
namely TRPV1 receptors, glutamatergic and bradykininergic system, PKC activity, opioidergic system,
and l-arginine/NO/cGMP pathway. Interestingly, different reports have demonstrated the link of
l-arginine/NO/cGMP pathway with TRPV1 receptors [55], glutamatergic [56] and bradykininergic [57]
system, PKC activity [58], and opioidergic system [59]. How this multitude of cascades mediates
nociceptor sensitization and pain is only beginning to be understood.

Plant-derived phytoconstituents have been reported to play role in modulating various
pharmacological activity, including antinociceptive activity. As part of an attempt to establish
the antinociceptive potential of D. linearis and to promote the use of medicinal plants as pain-relieving
agent, MEDL was also subjected to phytoconstituents analyses using the UHPLC-ESI-HRMS and
GC-MS methods to determine the presence of polyphenolics or any volatile bioactive compounds
with potential antinociceptive activity, respectively. The UHPLC-ESI-HRMS analysis of MEDL leads
to identification of approximately 30 polyphenolic compounds of which several of them, such as
gallic acid [60,61], ferulic acid [62], protocatechuic acid [63], caffeic acid [64,65], p-coumaric acid [66],
rutin [67,68], isoquercitrin [69], astragalin [70], catechin [71], quercetin [72,73], apigenin [74] and
kaempferol [75], have been reported to show antinociceptive activity. These reports also revealed
that: (i) gallic acid was reported to show low antinociceptive activity against the acetic acid-induced
nociception [60] while its derivative (gallic acid ethyl ester) was reported to attenuate bradykinin-
and formalin-induced nociception [61]. In addition, gallic acid ethyl ester was ineffective in the
hot-plate test and demonstrated partly the opioid/NO-independent action; (ii) ferulic acid exerts an
opioid-mediated antinociceptive activity when assessed using the hot plate test [62]; (iii) protocatechuic
acid also exerts an opioid-mediated antinociceptive activity when assessed using the hot plate test [63];
(iv) caffeic acid demonstrated the antinociceptive activity against the abdominal constriction test
and the late phase of the formalin-induced nociception, but not the hot plate test [64] whereas the
dodecyl ester derivative of caffeic acid were reported to produce antinociceptive activity against the
abdominal constriction test as well as the formalin-, capsaicin- and glutamate-induced nociceptive
model [65]; (v) rutin exerts antinociceptive activity when assessed using the abdominal constriction
test and the formalin-induced nociception, respectively [66,67] with Hernandez-Leon et al. [67] also
showed that rutin produces an opioid-mediated antinociceptive activity only in the late phase of
the formalin-induced test; (vi) isoquercitrin exhibits antinociceptive activity against the abdominal
constriction and formalin tests [68]; (vii) astragalin demonstrates an opioid-mediated antinociceptive
activity when assessed using the hot plate test and the formalin-induced nociception [69]; (viii) catechin
produces antinociceptive activity against the abdominal constriction, hot plate and formalin-induced
paw licking tests with an opioid-independent activity shown using the hot plate test [70]; (ix) quercetin
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was earlier reported to show an opioid-mediated antinociceptive activity when assessed using the
hot plate test [71] while later study demonstrates that quercetin produces antinociceptive activity
against the abdominal constriction test, as well as the formalin-, capsaicin- and glutamate-induced
nociceptive tests that involves an interaction with l-arginine/NO pathway [72]; (x) apigenin was found
to show antinociceptive activity against the abdominal constriction, hot plate and formalin-induced
paw licking tests with the centrally-mediated opioid activity proven using the hot plate test [73];
and (xi) kaempferol derivatives (i.e., kaempferol 3-O-rutinoside, kaempferol 3-O-glucoside and
kaempferol-3,7-di-O-α-l-rhamnopyranoside) was reported to exert antinociceptive activity against
the abdominal constriction and formalin-induced paw licking tests [74,75]. In addition, Ali et
al. [75] also reported that kaempferol-3,7-di-O-α-l-rhamnopyranoside exerts an opioid-independent
antinociceptive activity. Further analysis of MEDL using the GCMS leads to the identification of three
volatile bioactive compounds that possessed antinociceptive activity, namely 9,12,15-octadecatrienoic
acid, hexadecanoic acid and linoleic acid [76–78]. Although some of the findings related to the individual
bioactive compound cited above contradicted the present finding related to MEDL, particularly on the
involvement of opioid-independent antinociceptive activity, the discrepancy could be attributed to
the synergistic action between all of the compounds present in MEDL. The interaction between these
compounds is believed to overcome the individual compound effect, which might explain why MEDL
exert an opioid-mediated antinociceptive activity.

5. Conclusions

In conclusion, MEDL exerts antinociceptive activity at the peripheral and central level via
mechanisms of action that involved partly modulation of the TRPV1 and opioid receptors, glutamatergic
and bradykininergic system, PKC activity and l-arginine/NO-dependent, cGMP-independent pathway.
The antinociceptive activity of MEDL could be due to the presence of several volatile and non-volatile
bioactive compounds that have previously proven to attenuate nociceptive response in rodents.
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