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ABSTRACT
The plant DNA-binding with one finger (Dof) gene family is a class of plant-specific
transcription factors that play vital roles in many biological processes and stress
responses. In the present study, a total of 36 ClDof genes were identified in the
watermelon genome, which were unevenly distributed on 10 chromosomes.
Phylogenetic analysis showed that the ClDof proteins could be divided into nine
groups, and the members in a particular group had similar motif arrangement and
exon–intron structure. Synteny analysis indicated the presence of a large number of
syntenic relationship events between watermelon and cucumber. In promoter
analysis, five kinds of stress-related and nine kinds of hormone-related cis-elements
were identified in the promoter regions of ClDof genes. We then analyzed the
expression patterns of nine selected ClDof genes in eight specific tissues by qRT-PCR,
and the results showed that they have tissue-specific expression patterns. We also
evaluated the expression levels of 12 selected ClDof genes under salt stress and ABA
treatments using qRT-PCR. As a result, they showed differential expression under
these treatments, suggesting their important roles in stress response. Taken together,
our results provide a basis for future research on the biological functions of Dof genes
in watermelon.

Subjects Agricultural Science, Genomics, Plant Science
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INTRODUCTION
DNA binding with one finger (Dof) proteins are a group of plant-specific transcription
factors widely present in plants, while there has been no report about them in other
eukaryotes such as humans and yeast (Azam et al., 2018; Gupta et al., 2015). Genome-wide
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surveys showed that the Dof family genes are widely distributed in the genomes of various
plant species. For example, as model plants, Arabidopsis and rice include 36 and 30 Dof
genes in their genomes, respectively (Lijavetzky, Carbonero & Vicente-Carbajosa, 2003).
In addition, it has been reported that there are 25 Dof genes in peach (Prunus persica)
(Chen et al., 2017), 29 in eggplant (Solanum melongena) (Wei et al., 2018), 33 in pepper
(Capsicum annuum) (Kang et al., 2016; Wu et al., 2016), 34 in tomato (Solanum
lycopersicum) (Cai et al., 2013), 36 in cucumber (Cucumis sativus) (Wen et al., 2016), 45
in cassava (Manihot esculenta) (Zou, Zhu & Zhang, 2019), 45 in pear (Pyrus bretschneideri)
(Liu et al., 2020), and 60 in apple (Malus domestica) (Zhang et al., 2018). These reports
revealed that the Dof proteins are characterized by the highly conserved Dof domain in
their N-terminal regions, which is composed of about 52 amino acids with a Cys2/Cys2
zinc finger structure (Umemura et al., 2004; Yanagisawa, 2002). The Dof domain
specifically recognizes and combines with a T/AAAAG core sequence in the promoters of
target genes (Noguero et al., 2013; Umemura et al., 2004). In addition, the Dof proteins also
contain a variable transcriptional activation domain at their C-terminus. The N- and
C-terminal regions of the Dof proteins contribute to their bi-functional roles in DNA
binding and protein–protein interactions to regulate the expression of the target genes
(Gupta et al., 2015; Noguero et al., 2013).

As the first identified Dof gene, ZmDof1 was found to play a role in light-regulated gene
expression and affect light response and nitrogen assimilation (Yanagisawa & Izui, 1993;
Yanagisawa & Sheen, 1998). Subsequently, a large number of Dof genes were reported
to be involved in various plant-specific biological processes, such as seed germination
(Boccaccini et al., 2014; Gualberti et al., 2002; Santopolo et al., 2015), fruit ripening (Feng
et al., 2016), flowering time control (Li et al., 2009; Liu et al., 2020; Wu et al., 2017),
and responses to plant hormones (Boccaccini et al., 2016; Lorrai et al., 2018; Qin et al.,
2019; Rymen et al., 2017), as well as various stress responses (Su et al., 2017; Zang et al.,
2017). Moreover, some Dof genes can play multifaceted roles in regulating plant
development and stress responses. For example, overexpression of Arabidopsis CDF3
could contribute to higher tolerance to drought, cold and osmotic stress and lead to late
flowering, suggesting that it is involved in both flowering time control and abiotic
stress tolerance (Corrales et al., 2017). In tomato, overexpression of a Dof gene TDDF1
induced early flowering by increasing the expression of flowering-time control genes, and
the transgenic plants also displayed higher resistance to drought, salt, and late blight
caused by Phytophthora infestans (Ewas et al., 2017). In rice, salt stress repressed the
expression ofOsDOF15 in roots, and overexpression ofOsDOF15 reduced the sensitivity of
roots to salt stress via limiting ethylene biosynthesis, suggesting that OsDOF15-mediated
ethylene biosynthesis may be involved in the inhibition of primary root elongation by
salt stress (Qin et al., 2019). These findings demonstrate that the Dof proteins are involved
in diverse biological processes and play important roles in the growth and development of
plants.

Although the Dof gene family has been comprehensively analyzed and functionally
characterized in a number of plant species, little is known about this gene family in
watermelon, an economically important fruit crop cultivated worldwide. In this study,
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we characterized the Dof family genes in watermelon by analyses of their phylogenetic
relationships, conserved motifs, gene structures and chromosomal localizations.
In addition, the expression profiles of the selected Dof genes in different tissues and under
salt or ABA treatment conditions were also examined. Our findings may lay a foundation
for future functional analysis of Dof genes in watermelon.

MATERIALS AND METHODS
Genome-wide identification and protein properties of Dof family in
watermelon
To identify the watermelon Dof family genes, HHM profile of the Dof domain (PF02701)
was used as a query to perform an HMMER search against the watermelon proteome,
which was downloaded in watermelon (97103) v1 genome from the cucurbit genomics
database (CuGenDB; http://cucurbitgenomics.org). A comprehensive search was also
performed by using the amino acid sequences of Arabidopsis and rice Dof proteins from a
previous study (Lijavetzky, Carbonero & Vicente-Carbajosa, 2003), which were obtained
from the TIGR database (https://rice.plantbiology.msu.edu/) and the TAIR database
(https://www.arabidopsis.org/), respectively. The putative sequences were submitted to
Pfam (http://pfam.sanger.ac.uk/) and SMART (http://smart.embl-heidelberg.de/) for
checking the presence of the Dof domain.

Sequence analyses and phylogenetic tree construction
The biochemical features including molecular weight (MW) and isoelectric point (pI) of all
Dof proteins were determined by ProtParam server (http://web.expasy.org/protparam/).
The subcellular localizations of the watermelon Dof proteins were predicted with CELLO
v2.5 tool (http://cello.life.nctu.edu.tw/). The MEME tool (http://meme-suite.org/tools/
meme) was used to predict and analyze the conserved motifs of watermelon Dof proteins
with the maximum number of motifs being set as 10, and other parameters were set as
default. The predicted motifs were further confirmed by searching against InterProScan
(http://www.ebi.ac.uk/interpro/search/sequence-search/), and structure schematic
diagrams were illustrated using the TBtools software (Chen et al., 2018). The coding
region sequences (CDS) and genomic DNA (gDNA) sequences of ClDof genes were
downloaded from watermelon (97103) v1 genome database (http://cucurbitgenomics.org/
organism/1), and then the exon–intron structures of ClDof genes were displayed by the
GSDS tool (Gene Structure Display Server, http://gsds.cbi.pku.edu.cn/) based on the
alignment of CDSs with the corresponding gDNA sequences. For gene ontology (GO)
analysis, the annotations of ClDof genes were obtained from watermelon (97103) v1
genome database and visualized with the WEGO program (http://wego.genomics.org.cn/).
For promoter analysis, we determined the putative promoter sequence for each ClDof gene,
which was defined as the upstream 1,500 bp region of the transcription start site
(ATG), and analyzed the stress-related and hormone-related cis-elements using the
PlantCARE tool (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/).
For phylogenetic tree construction, the Dof proteins of watermelon, cucumber, rice and
Arabidopsis were aligned by Clustal Omega with default parameters. The Dof protein IDs
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of above species were listed in Table S1. Then, the MEGA program (v7.0) was used to
construct a Neighbor-Joining tree with parameters of 1,000 bootstrap replicates and
pairwise deletion.

Chromosomal location, gene duplication, and synteny analysis
The chromosomal location information of watermelon Dof genes was obtained from the
watermelon genome database, and MapChart was used to display the physical positions of
all ClDof genes along each chromosome. Gene duplication and synteny of Dof genes
from watermelon and cucumber were examined using multiple collinear scanning toolkits
(MCScanX) software with default parameters as previously reported (You et al., 2018).

Plant materials and treatments
Seeds of the watermelon cultivar “Xinong 8” (Citrullus lanatus L.) were first sterilized and
germinated in an incubator (28 �C). Then, the germinated seeds were sown in pots and
cultivated under a 12 h day/12 h night cycle (25 �C/19 �C, day/night temperature cycle)
until the seedlings developed to four leaves. Uniformly developed four-leaf-stage
watermelon plants were then exposed to NaCl (200 mm) and ABA (100 µm) treatments
for 0 h, 1 h, 3 h, 9 h and 24 h. All leaves from watermelon plants were collected and rapidly
frozen in liquid nitrogen and stored at –80 �C until RNA extraction.

RNA extraction and quantitative real-time PCR (qRT-PCR)
Total RNA was isolated using the total RNAMiniprep Kit (Axygen Biosciences, Union City,
CA, USA) according to the manufacturer’s protocol. Then, RNase-free DNase I was added in
RNA solution to remove any contaminated gDNA. First-strand cDNA synthesis was carried
out following the manufacturer’s procedure (ReverTra Ace qPCR-RT Kit, Toyobo, Japan).
Primers were designed using Primer Premier 5.0 software (Table S2). The qRT-PCR was
performed on an CFX96 instrument (Bio-Rad, Alfred Nobel Drive Hercules, CA, USA)
using SYBR Green qPCR kits (TaKaRa, Japan). The watermelon constitutive actin gene
(Cla007792) was used as the endogenous control (Zhou et al., 2018b). The PCR amplification
conditions included an initial heat-denaturing step at 95 �C for 3 min, followed by 40 cycles
of 30 s at 95 �C, 30 s at 58 �C, and 1 min at 72 �C. Relative expression levels were calculated
using the 2−ΔΔCt method (Livak & Schmittgen, 2001), and each treatment included three
independent biological replicates and three technical replicates. Data were statistically
analyzed by one-way ANOVA using SPSS 19.0 software, and Tukey’s multiple range tests
were used to detect significant treatment differences (P < 0.05).

RESULTS
Genome-wide identification of Dof family genes in watermelon
A total of 36 Dof genes were identified and named as ClDof1–36 according to their order
on the chromosomes. Detailed information including the CDS length, protein length,
predicted MW and pI of each gene is listed in Table 1. The amino acid sequences and gene
sequences of ClDof members are listed in Tables S3–S5. These genes had CDS lengths
ranging from 492 bp (ClDof1) to 1575 bp (ClDof33), and encoded proteins ranging from

Zhou et al. (2020), PeerJ, DOI 10.7717/peerj.8358 4/22

http://dx.doi.org/10.7717/peerj.8358/supp-1
http://dx.doi.org/10.7717/peerj.8358/supp-2
http://dx.doi.org/10.7717/peerj.8358/supp-3
http://dx.doi.org/10.7717/peerj.8358/supp-5
http://dx.doi.org/10.7717/peerj.8358
https://peerj.com/


163 to 524 amino acid residues, with the predicted MW varying from 17.64 to 56.71 kDa.
The pIs of the ClDof proteins ranged from 5.00 (ClDof30) to 9.95 (ClDof13). The
CELLO v2.5 tool was used to analyze the subcellular localization of ClDof proteins.
The results showed that nearly all ClDof proteins were localized in the nucleus, with the
exception of ClDof6, which possibly had a nuclear and extracellular localization (Table 1).

Table 1 Members of Dof family genes identified in watermelon.

Gene name Gene ID Map position (bp) CDS length (bp) Protein length (aa) MW (kDa) pI Subcellular location

ClDof1 Cla000091 Chr0:12921851–12922342 492 163 17.64 8.21 Nuclear

ClDof2 Cla000604 Chr0:24087372–24088166 795 264 29.22 8.41 Nuclear

ClDof3 Cla004880 Chr1:83833–84684 852 283 30.46 8.4 Nuclear

ClDof4 Cla011343 Chr1:1447591–1449038 831 276 29.57 7.72 Nuclear

ClDof5 Cla000975 Chr1:10830770–10831984 1,011 336 37.74 7.31 Nuclear

ClDof6 Cla001812 Chr1:26447800–26448528 729 242 24.73 8.34 Nuclear/extracellular

ClDof7 Cla001818 Chr1:26513973–26514995 1,023 340 35.45 9.21 Nuclear

ClDof8 Cla014094 Chr1:28161694–28162635 942 313 33.83 8.26 Nuclear

ClDof9 Cla001373 Chr1:31447086–31447871 786 261 29.33 8.84 Nuclear

ClDof10 Cla009627 Chr1:31658215–31659085 717 238 25.84 8.84 Nuclear

ClDof11 Cla009628 Chr1:31665641–31666539 729 242 26.88 9.49 Nuclear

ClDof12 Cla009692 Chr1:32112455–32112961 507 168 19.04 8.81 Nuclear

ClDof13 Cla013297 Chr2:30590643–30592400 1,020 339 37.52 9.95 Nuclear

ClDof14 Cla000540 Chr2:31118585–31119331 747 248 27.29 8.73 Nuclear

ClDof15 Cla008250 Chr3:1516113–1517286 1,026 341 37.25 9.31 Nuclear

ClDof16 Cla005059 Chr3:2677903–2678760 858 285 31.75 8.39 Nuclear

ClDof17 Cla019672 Chr3:8389380–8389913 534 177 20.21 7.13 Nuclear

ClDof18 Cla019705 Chr3:8782843–8783751 909 302 33.57 7.46 Nuclear

ClDof19 Cla019706 Chr3:8791610–8792131 522 173 18.69 9.22 Nuclear

ClDof20 Cla018219 Chr4:19894774–19896290 813 270 29.93 9.9 Nuclear

ClDof21 Cla018604 Chr4:23659963–23661769 1,308 435 47.56 7.04 Nuclear

ClDof22 Cla021140 Chr5:723346–723861 516 171 18.06 8.99 Nuclear

ClDof23 Cla004274 Chr5:9417748–9418525 678 225 24.96 8.32 Nuclear

ClDof24 Cla010192 Chr5:31339279–31340779 1,296 431 47.33 8.11 Nuclear

ClDof25 Cla006705 Chr6:3496040–3496858 819 272 29.94 8.26 Nuclear

ClDof26 Cla019034 Chr6:24515454–24516428 975 324 34.96 8.08 Nuclear

ClDof27 Cla019107 Chr6:25139609–25141772 1,395 464 50.63 6.19 Nuclear

ClDof28 Cla004013 Chr7:3742674–3743851 969 322 34.24 9.24 Nuclear

ClDof29 Cla012621 Chr7:24693545–24694168 624 207 22.36 8.36 Nuclear

ClDof30 Cla013851 Chr8:15842719–15843486 768 255 28.77 5 Nuclear

ClDof31 Cla022532 Chr8:24427298–24428044 747 248 25.77 8.12 Nuclear

ClDof32 Cla004676 Chr9:32014839–32016085 1,077 358 39.08 8.43 Nuclear

ClDof33 Cla016993 Chr10:21239053–21241153 1,575 524 56.71 5.07 Nuclear

ClDof34 Cla002907 Chr10:21961596–21963908 1,527 508 54.74 6.06 Nuclear

ClDof35 Cla017622 Chr10:24621093–24621851 759 252 27.81 6.76 Nuclear

ClDof36 Cla017890 Chr10:27032680–27034515 1,053 350 37.19 9.85 Nuclear
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The GO annotation results indicated that ClDof proteins were assigned into three major
categories and 18 subcategories (Table S6; Fig. S1).

Phylogenetic characterization of the watermelon Dof gene family
To study the evolutionary relationship of Dof family genes between watermelon and other
plants, a phylogenetic tree based on multiple sequence alignment was constructed by
using the amino acid sequences of ClDofs together with those from cucumber (CsDofs)
(Wen et al., 2016), rice (OsDofs) and Arabidopsis (AtDofs) (Lijavetzky, Carbonero & Vicente-
Carbajosa, 2003). The phylogenetic tree showed that these Dof proteins could be classified
into nine groups, namely A, B1, B2, C1, C2.1, C2.2, C3, D1 and D2, with well-supported
bootstrap values (Fig. 1). Nearly all groups included ClDofs, CsDofs, OsDofs and AtDofs,
with the exception of group C3, which comprised only dicotyledonous Dofs (ClDofs, CsDofs,
and AtDofs). Besides, the numbers of ClDofs in groups A, B1, B2, C1, C2.1, C2.2, C3, D1 and
D2 were 3, 7, 3, 3, 5, 2, 1, 8 and 4, respectively (Fig. 1).

Conserved motif analysis of ClDofs
By using the MEME program, a total of 10 conserved motifs were identified (Fig. 2).
Amongst them, motif 1 was annotated as a Dof domain, which was widely present in all

Figure 1 Phylogenetic relationships of Dof family proteins in watermelon, cucumber, rice and
Arabidopsis. Different plant species are represented with different colors: watermelon (red, Cl),
cucumber (green, Cs), rice (yellow, Os), and Arabidopsis (blue, At).

Full-size DOI: 10.7717/peerj.8358/fig-1
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ClDof proteins, with the exception of ClDof4. Some other motifs were specifically present
in individual groups. For example, motif 3, 4, 6, 7 and 10 were exclusively present in
the ClDofs in group D1, while motif 2 was present in all ClDofs of group B1. Besides motif
2, nearly all group B1 ClDofs included motif 9 (except for ClDof20). In addition, motif 8
was present in all group C1 ClDofs, as well as some ClDofs in groups C2.1 and C2.2
(Fig. 2). It is worth noting that besides motif 1 and 8, three motif 5 and one motif 9 were
also present in ClDof5 of group C1.

To better understand the structural features of Dof domain, multiple sequence
alignment of the Dof domain sequences of ClDofs was carried out. As a result, the Dof
domain of ClDofs was highly conserved, and nearly all ClDof proteins harbored the four
Cys residues associated with zinc finger structure, with the exception of ClDof4 (Fig. 3),
which may result in the divergence of its function from that of other ClDofs.

Exon–intron arrangement analysis of Dof family genes in watermelon
The CDS and gDNA sequences of the 36 ClDof genes were used to examine the
distribution of exons and introns. As a result, most of the ClDof genes (20 out of 36)
contained no introns, 11 ClDof genes (ClDof5, ClDof10, ClDof15, ClDof23, ClDof27,
ClDof28, ClDof21, ClDof24, ClDof32, ClDof33 and ClDof34) had one intron each, whereas
five ClDof genes (ClDof4, ClDof11, ClDof13, ClDof20 and ClDof36) possessed two introns
(Fig. 4).

Chromosome distribution, gene duplication and synteny analysis of
ClDof genes
Using the MapInspect program, a total of 34 ClDof genes were mapped on 10 of the
12 chromosomes in watermelon genome, while ClDof1 and ClDof2 were located on
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Figure 2 Conserved domains of ClDofs based on the evolutionary relationship. Distribution of conserved motifs in the ClDof proteins.
Full-size DOI: 10.7717/peerj.8358/fig-2
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chromosome 0 (Fig. 5). In detail, there were 10, 2, 5, 2, 3, 3, 2, 2, 1 and 4 ClDof genes
on chromosome 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10, respectively. Moreover, the gene duplication
events were analyzed using the MCScanX program, and a total of 20 ClDof genes exhibited
segmental duplication, which made up 21 pairs of segmental duplication genes (Fig. 5).

To reveal the orthologous relationships of Dof genes on chromosomes between
watermelon and cucumber genomes, a comparative analysis was performed between Dof
genes in watermelon and cucumber by MCScanX. A total of 31 orthologous gene pairs
were identified between watermelon and cucumber (Fig. 6), indicating close relationships
between ClDof and CsDof genes.

Promoter cis-elements of the ClDof genes
To assess the transcriptional regulation and potential functions of the ClDof genes, the
cis-elements in the promoter regions of the ClDof genes were investigated and described in

Figure 3 Dof domain sequence alignment of watermelon Dof proteins. The Dof DNA-binding
domains among watermelon Dof proteins were aligned and the four Cys residues associated with zinc
finger structure of the ClDofs are colored in red. Full-size DOI: 10.7717/peerj.8358/fig-3
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Fig. 7. Five kinds of stress-related and nine kinds of hormone-related cis-elements were
identified in this study (Fig. 7). The ARE element was the most abundant among the
stress-related cis-elements, and the promoter regions of 28 ClDof genes harbored the
ARE element (Fig. 7), which is essential for the anaerobic induction. Other four
stress-related cis-elements, includingW-box, WUN-motif, MBS and TC-rich repeats, were
found in 17, 16, 13 and 10 promoter regions of ClDof genes, respectively. Furthermore,
various hormone-related cis-elements were also identified among the promoters of
ClDof genes (except for ClDof4), including abscisic acid (ABA)-responsive element
(ABRE), ethylene-responsive element (ERE), salicylic acid (SA)-responsive element
(TCA-element), methyl jasmonate (MeJA)-responsive element (CGTCA-motif),
auxin-responsive elements (AuxRR-core and TGA-element), and gibberellin-responsive
elements (P-box, GARE-motif and TATC-box) (Fig. 7). These findings indicated that
ClDof genes might play certain roles in various stress responses and hormone signaling.

Tissue-specific expression profiles of the ClDof genes
To evaluate the functions of ClDof genes in the growth and development of watermelon,
the expression of nine selected ClDof genes in different tissues (mature and expanding
leaves, roots, stems, stem apexes, flowers and fruits) was examined with qRT-PCR. Most
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Figure 5 Chromosomal distribution of ClDof genes in watermelon genome. The segmental dupli-
cation genes are connected by lines. Full-size DOI: 10.7717/peerj.8358/fig-5
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ClDof genes were highly expressed in flowers and/or fruits, such as ClDof11, ClDof21,
ClDof27, ClDof29, ClDof35 and ClDof36 (Fig. 8; Table S7), suggesting that they may
function in flower and fruit development of watermelon. In addition, ClDof2, ClDof5,
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ClDof8, ClDof21 and ClDof35 displayed the highest expression in leaves, and relatively
lower expression in other tissues, especially roots, stems, and tendrils (Fig. 8). Besides
expanding leaves, ClDof5 also showed relatively higher expression in fruits as compared
with other tissues, while its expression was extremely low in flowers. Finally, nearly all
ClDof genes exhibited moderate transcript abundance in stem apexes (Fig. 8), implying
their possible roles in stem apex development of watermelon.

Expression profiles of ClDof genes in response to salt stress and ABA
treatment
To reveal the possible roles of ClDof genes in response to abiotic stress, we determined
the expression levels of 12 selected ClDof genes under salt stress and ABA treatments
using qRT-PCR. Under salt stress, nine ClDof genes (ClDof3, ClDof5, ClDof8, ClDof20,
ClDof22, ClDof27, ClDof29, ClDof35 and ClDof36) were up-regulated at certain time points
(Fig. 9; Table S7). Amongst them, ClDof5 was induced gradually and reached the highest
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transcript abundance at 24 h, while the expression of ClDof36 showed a decrease at early
time point (1 h) and then gradually increased until 24 h (Fig. 9). In addition, three ClDof
genes (ClDof2, ClDof11 and ClDof21) were down-regulated across all time points under
salt stress, indicating their negative roles in response to salt stress. It should be noted that
the expression levels of ClDof3, ClDof8, ClDof20, ClDof22, ClDof27 and ClDof35 were
significantly decreased at some time points (Fig. 9). We also determined whether these
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ClDof genes are regulated by ABA. As shown in Fig. 10 (Table S7), the expression of all
detected ClDof genes was significantly altered by ABA treatment, and the expression of five
ClDof genes (ClDof2, ClDof11, ClDof21, ClDof27 and ClDof36) showed a decreasing
tendency at early time points (1 h and 3 h) and finally increased at the late time points
(24 h). It is worth noting that the expression of four ClDof genes (ClDof3, ClDof5, ClDof20
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and ClDof22) was dramatically induced at 1 h, followed by sharp decreases thereafter.
These results indicated that the ClDof genes may play crucial roles in stress responses.

DISCUSSION
In the present study, we systematically predicted and identified 36 Dof genes in the
watermelon genome (Table 1). The number of ClDof genes is similar to that in many other
plant species, such as pepper (33 genes) (Kang et al., 2016; Wu et al., 2016), tomato
(34 genes) (Cai et al., 2013), potato (35 genes) (Venkatesh & Park, 2015), foxtail millet
(35 genes) (Zhang et al., 2017), cucumber (36 genes) (Wen et al., 2016), chickpea (37 genes)
(Nasim et al., 2016), and pigeonpea (38 genes) (Malviya et al., 2015), suggesting that
Dof genes usually form multigene families in plants. Duplication events were found to be
the primary driving force for the evolution of Dof genes. For example, two pairs of
tandemly duplicated genes and six pairs of segmentally duplicated genes were identified in
the cucumber genome (Wen et al., 2016). In poplar, up to 49% (20 out of 41) of PtrDof
genes were found to be located in both segmental and tandem duplicated regions
(Wang et al., 2017). In apple, a total of 57 and 18 MdDof genes were located in segmental
and tandem duplicated regions, respectively, and 13 MdDof genes were both segmentally
and tandemly duplicated genes (Hong et al., 2019). In this study, more than half of the
ClDof genes (20 out of 36) exhibited segmental duplications, while no tandem duplication
was identified in watermelon chromosomes, suggesting that segmental duplication has
been predominant in the expansion of the Dof genes in watermelon. Similar results have
also been reported in other plants such as cotton (Li et al., 2018).

The phylogenetic results revealed that ClDofs could be clearly divided into nine groups:
A, B1, B2, C1, C2.1, C2.2, C3, D1 and D2 (Fig. 1), which is consistent with the results in
eggplant (Wei et al., 2018), pear (Liu et al., 2020), Arabidopsis and rice (Lijavetzky,
Carbonero & Vicente-Carbajosa, 2003). Besides, each of the watermelon Dof genes has at
least one homologous gene in Arabidopsis (Fig. 1), implying that Dof genes might play
similar roles in watermelon as their homologs in Arabidopsis. In addition, nearly all ClDofs
had a common Dof motif (motif 1), but there were also some unique motifs in certain
groups with nearly conserved motif compositions (Fig. 2). However, gain or loss of
certain motifs was observed between several duplicate pairs, such as ClDof3/ClDof23,
ClDof13/ClDof15, ClDof14/ClDof16, ClDof13/ClDof20 and ClDof20/ClDof36 (Figs. 2
and 5), suggesting that these motifs might be involved in the functional divergence of
ClDofs. The organization of exon–intron structures can provide insights into the
evolutionary relationships within certain gene families (Zhou et al., 2018a). In this study,
the number of introns of ClDof genes varied from 0 to a maximum of 2, and most of them
contained one intron or no intron at all (Fig. 4). Similar results were obtained in many
other plant species, such as cucumber (Wen et al., 2016), poplar (Wang et al., 2017),
eggplant (Wei et al., 2018), pear (Liu et al., 2020), Arabidopsis and rice (Lijavetzky,
Carbonero & Vicente-Carbajosa, 2003), revealing that the exon–intron structure of Dof
genes is highly conserved in plants, which may be related to their similar functions.

The specificity of gene expression in plant tissues and developmental stages can provide
important information about the possible functions of genes, and previous reports have
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revealed that some Dof genes usually have tissue-specific expression patterns (Ma et al.,
2015; Venkatesh & Park, 2015; Zou & Yang, 2019). For example, ZmDof3 was found to be
exclusively expressed in the endosperm of maize kernel and participate in the regulation of
starch accumulation and aleurone development in maize endosperm (Qi et al., 2017).
Another maize Dof gene ZmDof36 was also reported to be highly expressed in maize
endosperm and function in starch synthesis by regulating the expression of starch
synthesis genes (Wu et al., 2019). In this study, ClDof2, ClDof5, ClDof8, ClDof21 and
ClDof35 showed much higher expression in leaves than in other tissues, suggesting that
they play essential roles in leaf development. Similarly, seven potato Dof genes (StDof15a,
StDof22, StDof26, StDof29a, StDof32 and StDof34) exhibited higher expression in leaf
tissues than in other tissues (Venkatesh & Park, 2015). In addition, ClDof11, ClDof27,
ClDof29 and ClDof36 were predominantly expressed in fruits (Fig. 8), suggesting that they
may be associated with fruit development of watermelon. In a previous study, a number of
MaDof genes were markedly regulated throughout the fruit development of banana
(Dong, Hu & Xie, 2016), and MaDof23 can act as a transcriptional repressor and interacts
with MaERF9 to regulate the fruit ripening by controlling specific ripening-related genes
(Feng et al., 2016). Besides fruits, the flowers also showed high expression of ClDof11,
ClDof21, ClDof27, ClDof29, ClDof35 and ClDof36, which was also observed in other plants.
For example, all PheDof genes displayed differential expression patterns during the flower
development stage of moso bamboo (Cheng et al., 2018; Wang et al., 2016), and
overexpression of PheDof12-1 in Arabidopsis resulted in early flowering under long-day
conditions (Liu et al., 2019a). In rubber tree, the HbDof genes in Cluster III and Cluster VI
are typically expressed in male and female flowers, respectively (Zou & Yang, 2019).
It should be noted that ClDof21 and ClDof27 were segmental duplication genes and they
exhibited similar expression patterns in various tissues (Figs. 5 and 8). The qRT-PCR
results revealed that both of them were highly expressed in mature leaves and fruits but
lowly expressed in tendrils (Fig. 8). Therefore, the tissue-specific expression patterns
revealed that ClDof genes play vital and seemingly redundant roles in watermelon growth
and development.

Dof genes are known to play a crucial role in stress responses. For example, tomato
SlCDF1–5 genes were differentially up-regulated by osmotic, salt, heat and cold stresses,
and transgenic Arabidopsis plants overexpressing SlCDF1 or SlCDF3 displayed higher
drought and salt tolerance (Corrales et al., 2014). Another Dof gene SlDof22 was shown
to control the ascorbate accumulation and salt stress in tomato (Cai et al., 2016). In this
study, many stress-related cis-elements were found in the promoter regions of the
ClDof genes (Fig. 7), implying their roles in regulating responses to various stresses.
In addition, all of the detected ClDof genes showed differential expression under salt stress
(Fig. 9), suggesting their regulatory roles in salt stress response. It should be noted that
ClDof5 was induced gradually by salt stress (Fig. 9), and had the highest expression in
leaves (Fig. 8). Similarly, GhDof1 also showed the highest expression in leaves as compared
with in any other tissues, and salt treatment induced its transcript accumulation.
Overexpression of GhDof1 in cotton resulted in significantly higher salt and cold tolerance
(Su et al., 2017). However, the expression levels of ClDof2, ClDof11 and ClDof21
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significantly declined across all time points (Fig. 9), implying that they may play negative
regulatory roles in salt stress response. In banana, many MaDof genes were found to be
down-regulated under drought and salt stress conditions (Dong, Hu & Xie, 2016).
In addition, two pairs of segmental duplication genes, ClDof3/ClDof22 and ClDof20/
ClDof36, displayed similar expression patterns under salt treatment, whose expression
levels decreased at early time points but increased at the late time points (Fig. 9), suggesting
their similar roles in response to salt stress. Notably, since the expression of detected
ClDof genes was altered under salt treatment, ClDof29 exhibited much higher expression
levels than other detected genes (Fig. 9), indicating that ClDof29 might be the primary
regulator of response to salt stress in watermelon. Moreover, a large number of cis-
elements associated with stress-related hormonal response, such as ABA, GA, SA,
MeJA, ethylene and auxin (Fig. 7), and all of the detected ClDof genes exhibited
ABA-dependent expression patterns (Fig. 10). In castor bean, a large number of RcDof
genes were regulated (13 up-regulated and 2 down-regulated) in response to ABA
treatment (Jin, Chandrasekaran & Liu, 2014). In Arabidopsis, the expression of AtCDF3
was induced by cold, drought, salt, and ABA treatment, and AtCDF3 overexpression could
promote tolerance to drought, cold and osmotic stress (Corrales et al., 2017). ABA is
thought to participate in the adaptation of plants to various abiotic stresses by regulating
the expression of numerous stress-related genes (Zhou et al., 2019). These results indicate
that the ClDof genes may play important roles in plant adaptation to salt stress through
ABA-dependent pathways.

CONCLUSIONS
In this study, we performed a comprehensive analysis of the phylogenetic relationships,
conserved motifs, gene structures, chromosome distributions, and gene duplications of
36 Dof genes in watermelon. In addition, qRT-PCR was employed to examine the
expression profiles of the ClDof genes in different tissues and in responses to salt and ABA
treatments. All of the detected ClDof genes were regulated by salt and ABA treatments.
Our findings may help the functional research of ClDof genes for dissecting their roles in
the growth, development and stress response of watermelon.
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