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Abstract

Aims: Several reports indicate that diabetes determines an increased mortality

risk in patients with coronavirus disease 19 (COVID‐19) and a good glycaemic

control appears to be associated with more favourable outcomes. Evidence also

supports that COVID‐19 pneumonia only accounts for a part of COVID‐19

related deaths. This disease is indeed characterised by abnormal inflammatory

response and vascular dysfunction, leading to the involvement and failure of

different systems, including severe acute respiratory distress syndrome, coagul-

opathy, myocardial damage and renal failure. Inflammation and vascular

dysfunction are also well‐known features of hyperglycemia and diabetes, making

up the ground for a detrimental synergistic combination that could explain the

increased mortality observed in hyperglycaemic patients.

Materials and methods: In this work, we conduct a narrative review on this

intriguing connection. Together with this, we also present the clinical character-

istics, outcomes, laboratory and histopathological findings related to this topic of a

cohort of nearly 1000 subjects with COVID‐19 admitted to a third‐level Hospital

in Milan.
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Results: We found an increased mortality in subjects with COVID‐19 and diabetes,

together with an altered inflammatory profile.

Conclusions: This may support the hypothesis that diabetes and COVID‐19 meet at

the crossroads of inflammation and vascular dysfunction. (ClinicalTrials.gov

NCT04463849 and NCT04382794).
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1 | INTRODUCTION

In patients with coronavirus disease 2019 (COVID‐19), older age and

the presence of comorbidities are associated with poor outcomes.1–4

Several reports indicate that diabetes is one of the most represented

condition, and it is associated with higher fatality rate, especially if

glucose control is inadequate.2,3,5–7 While severe acute respiratory

syndrome coronavirus 2 (SARS‐CoV‐2) exerts a direct cytotoxic ef-

fect, evidence supports that COVID‐19 pneumonia only accounts for

a part of COVID‐19 related deaths.2 The disease is indeed charac-

terised by abnormal inflammatory response and vascular dysfunction,

leading to multi‐organ involvement and failure.8,9 Inflammation and

vascular dysfunction are also well‐known features of hyperglycemia

and diabetes,10,11 making up the ground for a detrimental synergistic

combination.12 The purpose of our review is to investigate this

connection and to explain mechanisms underlying the increased

mortality observed in diabetic patients with COVID‐19, with the

point‐by‐point support of findings from our cohort of nearly 1000

patients.

2 | METHODS

Data were collected from patients admitted for SARS‐CoV‐2 acute

infection at ASST FBF‐Sacco Milan, Presidio Sacco, from 1 February

2020 to 15 May 2020, in whom COVID‐19 was confirmed by RT‐
PCR detection of SARS‐CoV‐2 in respiratory samples. All clinical

data were extracted from patient electronic medical reports, and all

research studies and analysis reported in this manuscript were

performed in accordance with the local Ethical Research Committee

of Milan (Comitato Etico Milano Area 1, Cobeta, SIDIACO, and

registered as NCT04463849 and NCT04382794). Glycaemia was

measured in each patient at admission to the emergency room,

during in‐hospital stay, and at the discharge from hospital. Patients

were classified as diabetic patients (type 2 diabetes, T2D) based on

a known history of diabetes or if they were on anti‐diabetic med-

ications. A magnetic microsphere‐based Bio‐Plex Pro Human

Cytokine 17‐plex immunoassay (#M5000031 YV) was used in the

analysis of serum cytokine levels on a Bio‐Plex 200 system (both

from Bio‐Rad) according to the manufacturer's instructions as

already described.13,14

3 | COVID‐19 PREVALENCE AND OUTCOMES IN
TYPE 2 DIABETES AND THE RELEVANCE OF
GLYCEMIC CONTROL

Diabetes is reported to increase the susceptibility to infections and

their complications15,16; poor glycaemic control is a predictor of worse

outcomes.17–20 Impaired neutrophil chemotaxis and adherence to

vascular endothelium, phagocytosis, intracellular bactericidal activity,

opsonisation, and cell‐mediated immunity were described in patients

with hyperglycemia and T2D, and could partially explain this increased

susceptibility.21–24 Viral infections may impair glucose balance,25 and

viral clearance resulted in an improved metabolic control.26 An in-

crease of cases among diabetic subjects were confirmed during Severe

Acute Respiratory Syndrome (SARS) outbreak in 200327,28 and

Middle‐East Respiratory Syndrome (MERS) outbreak in 201229;

however, it is still not completely clear if this is the case for COVID‐19.

SARS‐CoV‐2 binds to angiotensin‐converting enzyme 2 (ACE2) to

enter the cell,30,31 and is capable of using human ACE2 as efficiently, if

not more, as SARS coronavirus (SARS‐CoV)32; therefore, an enhanced

ACE2 expression likely facilitates viral homing at target tissues in

primary invasion sites.33 Following entry into the pneumocyte, the

virus replicates and ACE2 gets downregulated34; this, together with

the activation of ADAM‐17 that detaches the catalytic active domain

of ACE from the cell surface, leads to ACE2 depletion.33 ACE2, the

‘good’ ACE, is a homologue of ACE that cleaves angiotensin II (AngII)

to form Ang‐(1–7) with a high catalytic efficiency, suggesting an

important role in preventing AngII accumulation, while enhancing

Ang‐(1–7) formation,35 and thus contributing to keep in balance the

pro‐oxidative effects of AngII in the vascular system, and also in

pancreatic islets. ACE2 expression is sometimes reduced in subjects

with diabetes34 and the subsequent pro‐inflammatory condition

represents an important contribution to the development of vascular

and renal diabetes complications.36 In a recent study, a phenome‐wide

Mendelian randomisation suggested that diabetes and related traits

may increase ACE2 expression, which could influence susceptibility to

infection,37 but these data need to be further confirmed. Some au-

thors also speculated that potentially an aberrant glycosylation of

ACE2 in the lung, nasal airways, tongue, and oropharynx in uncon-

trolled hyperglycemia may serve as increased SARS‐CoV‐2 viral

binding sites and lead to a higher propensity to infection.38,39 How-

ever, glycosylation does not seem to be crucial for the SARS‐CoV‐2
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receptor binding domain (RBD)/ACE2 interaction.40 A lower ACE2

expression before infection indicates a more likely evolving imbalance

between the pressor and counteracting depressor arm of the angio-

tensin family during COVID‐19 infection predisposing to greater

disease severity.33 Two other major components of the renin‐
angiotensin‐aldosterone system (RAAS) probably play an important

role in disease development: the kinin‐kallikrein and the chymase

pathways; they both exert pro‐inflammatory and procoagulant effects

(via AT1R and BKB‐1R, respectively), and BKB‐1R is upregulated in

subjects with diabetes.41 Diabetes severely increases the need for

medical interventions and the mortality risk in subjects with COVID‐
19.1,42 In an early report7 of 193 patients with severe COVID‐19,

nearly 25% had diabetes, and 36% of non‐survivors had diabetes

versus 11% of survivors. Diabetic patients had almost double mor-

tality compared to non‐diabetic patients, together with higher rates of

ICU hospitalisation and need of mechanical ventilation, when expe-

riencing COVID‐19.7 Also, in other reports with higher numbers of

patients, subjects with diabetes showed worse outcomes compared to

sex‐ and age‐matched controls without diabetes, with hypertension

and older age as independent contributors to in‐hospital death.6,43

This was confirmed in our cohort (Figure 1), where diabetic subjects

had an almost double mortality risk independent of age and sex (OR

1.876, 95% CI 1.250–2.850, p = 0.0027). Interestingly, we observed

that higher mean glycaemic levels measured during hospitalisation in

patients with T2D and COVID‐19 may predict poorer outcomes as

compared to subjects with a better glycaemic control (Figure 2). In a

previous report, authors found that patients with hyperglycemia

during hospitalisation, although with normal HbA1c, had higher

mortality than subjects with a history of diabetes.44 Stress‐
hyperglycemia is indeed known to be associated with worse out-

comes, irrespective of pre‐existing diabetes.45,46 With regard to this,

other studies suggest that uncontrolled cardiovascular risk factors

may worsen the progression of COVID‐19 more than previous history

of major cardiovascular events with well‐controlled metabolic risk

factors.47 In the CORONADO Study, in subjects with diabetes hos-

pitalised for COVID‐19, BMI, but not long‐term glucose control, was

positively and independently associated with tracheal intubation and/

or death within 7 days.48 The follow‐up study indicated no association

between BMI, HbA1c, and other comorbidities with negative out-

comes, but showed that a history of microvascular complications,

routine anticoagulant therapy, dyspnoea, and biological markers of

COVID‐19 severity are associated with a reduced chance of hospital

discharge by day 28.49 In agreement with this, Maddaloni et al. re-

ported that cardiovascular disease (CVD) prevalence does not differ

between people with diabetes with and without COVID‐19 requiring

hospitalisation, and described an increased prevalence of chronic

obstructive pulmonary disease (COPD) and chronic kidney disease in

COVID‐19 patients with T2D.50 In addition, the CovidiabII study

provided a deeper view about cardiometabolic risk factors, and

showed that subjects with cardiometabolic multimorbidity have

higher risk of negative outcomes if compared to subjects without such

conditions.51 Since all risk factors together contribute to the cytokine

storm and therefore to disease severity, the metabolic unbalance at

the moment of viral infection is probably crucial; subjects with dia-

betes present an increased risk of negative outcomes also because

diabetes often clusters with other metabolic conditions. Of note, we

recently demonstrated that the dipeptidyl peptidase‐4 (DPP4) inhib-

itor sitagliptin, as an add‐on therapy to standard of care, may improve

clinical outcomes in patients with T2D and COVID‐1952; the effect

may be linked to metabolic and inflammatory mechanisms.53 How-

ever, other reports did not confirm these results.54–56

4 | ALTERED INFLAMMATION IN COVID‐19 AND
DIABETES

Together with direct viral infection, an abnormal and aggressive in-

flammatory host response is strongly implicated in COVID‐19

severity.8 Host cells infected by SARS‐CoV‐2 undergo pyroptosis, a

highly inflammatory form of programed cell death, and release

damage‐associated molecular patterns. As a consequence, epithelial

cells, endothelial cells, and alveolar macrophages produce pro‐
inflammatory cytokines and chemokines (including IL‐6, IL‐1β, IP‐
10, MIP1α, MIP1β, MCP1) that attract monocytes, macrophages,

and T cells2,8 towards a Th1‐polarized response.8 This pro‐
inflammatory feedback loop may be associated with vascular

leakage, as seen in patients with SARS‐CoV,57 and is the trigger to a

cytokine storm that can in some cases result in multi‐organ failure.

Consistent with these findings, some studies have reported the as-

sociation of COVID‐19 severity and elevated plasma levels of in-

flammatory markers, such as IL‐6, IL‐8, IL‐1β, IL‐2, IL‐2 R, IL‐7, IL‐17,

IL‐10, G‐ CSF, IP‐10, MCP1, MIP1α, and TNFα.2,58–60 Increased

white blood cells and neutrophil count, lactate dehydrogenase, C‐
reactive protein, and D‐Dimer are associated with poor prognosis

too.58 T‐cells are instead decreased and exhausted in subjects with

F I GUR E 1 Time to endpoint analysis (death/discharge) in

patients with type 2 diabetes (n = 486) or not (n = 396) and
admitted to the hospital for COVID‐19. Log‐Rank (Mantel‐Cox)
analysis
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COVID‐19, and reduced lymphocyte count is associated with worse

outcomes.58,61 An underlying pro‐inflammatory status is a typical

feature of insulin resistance and T2D, and increased circulating levels

of IL‐6 and TNFα can be detected in diabetic patients.10,62 Some

reports suggest that COVID‐19 patients with diabetes show

increased levels of some circulating cytokines compared to non‐
diabetic patients.7,43,63 Subjects with diabetes also show reduced

lymphocyte count,43 and a reduction of CD4+ and CD8+ T‐cell was

associated with lower survival rates.6 Our data showed an altered

secretome in patients with T2D and COVID‐19 as compared to those

with COVID‐19 but without T2D (Figure 3 and Figure S1). Particu-

larly of interest are the increased levels of IL‐1ra, IL‐6, IL‐8, MCP‐1,

IFN‐γ, and IP‐10 (Figure 3), which may explain the propensity to

develop excessive inflammation after SARS‐CoV‐2 infection.

5 | VASCULAR DYSFUNCTION IN COVID‐19 AND
DIABETES

There is an inseparable link between inflammation and vascular

dysfunction, and it seems particularly strong in patients with COVID‐
19.64,65 The endothelium is altered by SARS‐CoV‐2 infection: direct

viral damage, the presence of inflammatory and vasoactive mole-

cules, reduced ACE2 activity, and neutrophils activation determine

the loss of its barrier function and lead to vascular leakage.66 As a

consequence, tissue oedema in pulmonary endothelium is the basis

for acute respiratory distress syndrome propagation.66–68 Monocyte‐
derived tissue factor and PAI‐1 are increased,69,70 and both the

extrinsic and intrinsic coagulation pathways are involved.71 Patients

with COVID‐19 show a procoagulant pattern, with platelet activation

and increased clot strength,72 and an increase in vascular complica-

tions, such as microvascular thrombosis, disseminated intravascular

coagulation, and venous thromboembolic events,73,74 together with a

directly and indirectly increased cardiovascular risk.75–78 However,

the lung pathology observed in these patients appears somehow

distinct from the one usually observed in macrophage activation

syndrome or disseminated intravascular coagulation; the suggested

‘diffuse pulmonary intravascular coagulopathy’ definition indicates an

extensive lung immunothrombosis, as this condition mainly affects

lungs, with reduced systemic bleeding risk.79 Plasma levels of α‐
defensins, antimicrobial peptides released from activated neutrophils

with antifibrinolytic and prothrombotic effect, were reported to be

elevated during COVID‐1980; α‐defensin is also increased in patients

with diabetes,81 putting these subjects at greater risk of vascular

dysfunction. Another feature in common between hyperglycemia and

COVID‐19 is represented by alterations of the glycocalyx. Endothe-

lial glycocalyx is impaired in diabetic condition, and changes in the

structure and function of the glycocalyx promote an inflammatory

response.82–84 An undersulphated glycocalyx may not only increase

susceptibility to SARS‐CoV‐2 infection, but would also result in a

procoagulant and antifibrinolytic state associated with poorer out-

comes.85,86 The competitive action of heparin with heparan sulphate,

which is used by SARS‐CoV‐2 to adhere to vascular wall and to bind

to ACE2, may explain some of the positive effects of heparin therapy

in COVID‐19. Insulin resistance and hyperglycemia affect vascular

wall by a series of events.87 Decreased nitric oxide bioavailability,88

PI3‐K/Akt pathway disorders,89 increased cytokine levels,10,89 and

platelet hyperactivity11 altogether impair endothelial function. Hy-

perglycemia increases the production of reactive oxygen species,

impairs the function of endothelial progenitor cells, and activates the

protein kinase C, hexosamine, and polyol pathways,90–93 and a better

glucometabolic control, as that obtained with successful islet trans-

plantation, may improve vascular dysfunction.94–96 Interestingly, the

vessel ultrastructure, as observed at electron microscopy, suggested
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that COVID‐19 induces wide abnormalities, somehow mimicking

those observed in patients affected with T2D (Figure 4).97,98 Endo-

thelial cells show extensive vacuolisation, an endothelial cell pyknotic

nucleus, and Weibel‐Palade granules loss. Skin capillary endothelial

cells in patients with COVID‐19 also show, contained in the vacuoles,

some small vesicles that could be interpreted as viral particles

(Figure 4).

6 | THE MOLECULAR LINK BETWEEN
HYPERGLYCEMIA, INFLAMMATION, AND
VASCULAR DYSFUNCTION

Hyperglycemia acutely increases circulating cytokine concentrations

by an oxidative mechanism,10 and circulating levels of IL‐6 and TNF‐α
are elevated in diabetic patients,62,99,100 with increased M1 macro-

phage polarization.89 Insulin resistance and hyperglycemia also

determine endothelial dysfunction and increased platelet activ-

ity.11,87,88,101 This makes up the ground for a detrimental synergistic

combination with what is observed in COVID‐19. After SARS‐CoV‐2
entry into the cells, innate immunity activation leads to the nuclear

translocation of NF‐κB and interferon regulator factors, resulting in

the secretion of type I interferons and pro‐inflammatory cytokines/

chemokines such as TNFα, IL‐1, IL‐6, CXC‐chemokine ligands, and

CC‐chemokine ligands69,70; higher monocyte‐derived TF and PAI‐1
expressions were also observed.70,72 This is exactly what we

observed in subjects with T2D and COVID‐19 in our cohort: the

increase in IL‐6, IL‐8, MCP‐1, IL‐1ra, IFN‐γ, and IP‐10 is the

expression of an excessive Th1‐polarized immune response. As a

result, hyperglycemia may be responsible for an amplificated pro‐
inflammatory and procoagulant milieu during SARS‐CoV‐2 infec-

tion, and therefore explain why diabetic people, especially if having

poorly controlled blood glucose levels, have greater risk to develop a

severe form of COVID‐19 (Figure 5).5,6 Interestingly, Codo et al. also

showed that SARS‐CoV‐2 replication and cytokine production in

monocytes are promoted by elevated glucose levels through a

mitochondrial ROS/HIF‐1a dependent pathway, which results in T

cell dysfunction and epithelial cell death.102

7 | TARGETING INFLAMMATION AND VASCULAR
DYSFUNCTION IN COVID‐19

Vaccination is the most effective strategy we nowadays have to

prevent the severe forms of the disease,103 and should for this reason

be the priority. When facing the clinical course of COVID‐19,

improving inflammation and vascular dysfunction may represent an

important strategy to reduce disease severity.65,104,105 Thanks to its

anti‐IL‐6 action, tocilizumab, a monoclonal antibody, has been among

the first agents considered for COVID‐19 therapy: one first retro-

spective study suggested a reduced risk of invasive mechanical

ventilation or death106; treatment with this drug was also described
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to improve endothelial dysfunction107 and its efficacy in COVID‐19

was reduced by hyperglycaemic state.108 Unfortunately, a following

randomized controlled trial did not confirm the efficacy.109 In a small

randomized controlled trial, a short course of metilprednisolone in

hospitalised patients did not reduce mortality110; however, the larger

RECOVERY trial indicates, in subjects requiring respiratory support,

improved outcomes with dexamethasone.111 IL‐1 blockade with

anakinra showed promising results in severe forms of COVID‐19,112

and JAK inhibition with baricitinib was able to prevent disease pro-

gression by modulating the patients' immune landscape.113 Intrigu-

ingly, the cyclosporine‐analog alisporivir has been shown to inhibit

SARS‐CoV2 in vitro,114 thus indicating a potential role of calci-

neurin inhibitors115,116; blocking IL‐17 could also provide a novel

therapeutic strategy.117 Coagulopathy with prominent elevation of

D‐dimer is associated with high mortality. Considering also its anti‐
inflammatory action, anticoagulation with heparin is considered a

paramount in COVID‐19 therapy.118,119 Critically ill patients showed

an increased incidence of venous thromboembolic events despite

prophylaxis with low‐molecular‐weight heparin65,120 but, on the

other hand, bleeding was recently described as a significant cause of

morbidity.121 Prophylaxis with heparin is therefore recommended

but the appropriate type, dose, and timing of administration is still

debated.122,123 RAAS inhibitors do not increase the risk of severe

COVID‐19 outcomes and may be helpful to restore ACE1/ACE2

balance.124–127 Since in diabetic subjects a good glycaemic control is

associated with better outcomes, normalising glycaemia is mandatory

in all patients with COVID‐19. Insulin is known to have some po-

tential anti‐inflammatory effects128,129 and is the drug of choice for

hyperglycemia management in hospitalised patients.130,131 One

interesting aspect regarding DPP4 inhibition: it was speculated that

gliptins may reduce viral entry into the cells,53,132 and a recent study

showed that treatment with sitagliptin is associated with reduced

COVID‐19 mortality,52 thus suggesting a potential therapeutic role in

subjects with and without diabetes. On the other hand, other works

suggested no effect of DPP4 inhibitors on COVID‐19 clinical

course.54,55 The reason may lie in the observational nature of avail-

able studies, the heterogeneity of data, and the resulting potential

F I GUR E 4 Electron microscopy of skin capillary sections in healthy control (Panels A and C) and in subject with COVID‐19 (Panels B and
D). Panel C: blue arrows indicate Weibel‐Palade granules in endothelial cells. Panel D: red arrows indicate small vesicles within vacuoles

F I GUR E 5 Excessive inflammation and vascular dysfunction
are a key feature of both hyperglycemia and COVID‐19, making up

the ground for a detrimental synergistic combination. The increase
of IL1‐ra, IL‐6, IL‐8, MCP‐1, IFN‐γ, and IP‐10 observed in subjects
with type 2 diabetes and COVID‐19 may contribute to explain the
greater disease severity observed in diabetic patients
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biases. Thus far, evidence suggests that DPP4 inhibitors are safe but

does not provide sufficient evidence to strongly recommend their use

against COVID‐19.56

8 | CONCLUSIONS

Our data confirmed an increased COVID‐19 mortality in subjects

with diabetes, and a better glycaemic control during hospitalisation

was associated with improved outcomes. COVID‐19 severity is

strongly related to an abnormal inflammatory response and a hy-

percoagulable state, and oxidative stress, cytokine release, and

endothelial dysfunction are also a hallmark of hyperglycemia, making

up the ground for a detrimental synergistic combination. This was

confirmed by the observation of increased levels of IL‐1ra, IL‐6, IL‐8,

MCP‐1, IFN‐γ, and IP‐10 in subjects with T2D and COVID‐19 in our

cohort, suggesting a propensity to develop excessive inflammation

and endothelial dysfunction that may contribute to explain the

greater disease severity observed in diabetic patients. COVID‐19

was also recently shown to be associated with insulin resistance on

an inflammatory basis.133 For all these reasons, treating inflamma-

tion, preventing coagulopathy, and, importantly, normalising glycae-

mia should be a priority in these patients.
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