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Abstract: Accumulating evidence indicates that exercise can enhance brain function and attenuate
neurodegeneration. Besides improving neuroplasticity by altering the synaptic structure and function
in various brain regions, exercise also modulates multiple systems that are known to regulate
neuroinflammation and glial activation. Activated microglia and several pro-inflammatory cytokines
play active roles in the pathogenesis of neurodegenerative diseases, such as Alzheimer’s disease
and Parkinson’s disease. The purpose of this review is to highlight the impacts of exercise on
microglial activation. Possible mechanisms involved in exercise-modulated microglial activation are
also discussed. Undoubtedly, more studies are needed in order to disclose the detailed mechanisms,
but this approach offers therapeutic potential for improving the brain health of millions of aging
people where pharmacological intervention has failed.

Keywords: neuroinflammation; myokine; growth factor; anti-inflammatory; antioxidant;
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1. Introduction

Exercise impacts our body at multiple levels, including the central nervous system (CNS).
In responding to exercise-related stress (e.g., hypoxia, heat, free radicals, etc.) and injuries, the body
launches multiple endogenous protective and repair systems by altering gene expression and releasing
a range of factors that prepare the body for the next challenge. These factors, amongst others,
involve trophic effects, anti-oxidation, energy metabolism, and anti-inflammation. Some of these
factors enhance brain function and ameliorate brain disorders by inducing neuroplasticity, increasing
metabolic efficiency, and improving anti-oxidative capacity [1–4]. Others maintain brain homeostasis
and protect brain from pathological insults by regulating glial activation and neuroinflammation.
Activated microglia and several pro-inflammatory cytokines play active roles in the pathogenesis
of neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD).
It has been well-documented that although acute, high-intensity exercise may cause muscle injury
and induce inflammation, long-term exercise at low-to-moderate intensity negatively regulates the
inflammatory response. Here, we review literature that provides empirical evidence showing potential
mechanisms for the inflammation-modulating effect of physical exercise, with focus on the effect of
anti-microglial activation.

2. Microglia Are the Central Modulators of Neuroinflammation

Microglia are the primary immune cells in the CNS. One of their major functions is to maintain
the homeostasis of the CNS [5]. In addition to controlling innate and adaptive immune responses
in the CNS, microglia also play a significant role in remodeling the dendritic spine formations and
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modulating neuronal activity [6,7]. In the healthy brain, microglia exist in a resting state characterized
by ramified morphology. However, resting microglia are not inactive. Their processes continually
survey a defined microenvironment [8,9]. Thus, it has been suggested that “surveying microglia” is a
more appropriate name to describe their active surveillance mode [9]. When exposed to pathological
insult, microglia transform from a resting stage into a spectrum of activated stages. Activated
microglia are characterized by changes in morphology and expression of cytoplasmic and surface
proteins [10,11]. Some of the morphological changes (e.g., retraction of ramified processes) and altered
protein expressions (e.g., MHC II, CD11b, CD68) have been adopted as markers of microglia activation.
The two types of activation states (i.e., the classical activation M1-proinflammatory type and the
alternative activation M2-anti-inflammatory type) in macrophages have been introduced into the field
of microglia [12–14]. Nonetheless, it has been argued whether this M1/M2 polarization occurs in
microglia in tissue, especially in the human brains [15].

The activity of microglia can be induced by a plethora of pro-inflammatory factors such as
neutrophil-related cytokines, oxidative stress, nucleotide-binding domain, leucine rich containing
protein (NLRP-inflammasome), and lipid-mediated proteins derived from metabolic disorders [16–18].
Different neurotransmitters are also known to activate microglia via their respective receptors, such
as purinergic receptors, glutamate receptors, dopaminergic receptors and cholinergic receptors [9].
The immune cells and molecules (e.g., complement, inflammasome associated protein, gut microbiota,
and the bacterial secreted metabolisms [19–21]) known to induce peripheral inflammation can also
induce microglial activation.

The activity of microglia can be inhibited by anti-inflammatory factors, such as cluster of
differentiation-200 (CD200)/CD200 receptor (CD200R), interleukin-10 (IL-10), triggering receptor
expressed on myeloid cell-2 (TREM2), and vitamin D3 [22–25]. These proteins downregulate
inflammatory cytokines released by microglia and are involved in the essential signaling pathways in
these cells. For example, CD200R can inhibit the activation of the extracellular signal-regulated kinase
(ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) pathways,
which cause cytokine production [26]. IL-10 prevents the lipopolysaccharide (LPS)-induced production
and secretion of pro-inflammatory cytokines through the toll-like receptor-4 (TLR4) and nuclear
factor kappa B (NF-κB) signaling cascade [27,28]. Moreover, TREM2 downregulates the PI3K/Akt
and NF-κB signaling and attenuates the LPS-induced inflammatory responses [29]. Remarkably,
expression levels of several anti-microglial activation factors are significantly decreased in AD and
PD [30,31]. The deficiency of anti-inflammatory factors results in enhanced microglial activation and
subsequently leads to the neuroinflammation, which has been shown to impair in adult hippocampal
neurogenesis, neuronal synaptic morphology, and synaptic plasticity [32,33]. Furthermore, it has been
hypothesized that inflammation is important for the death of dopaminergic neurons [34]. The levels of
the proinflammatory cytokines TNF-α, IFN-γ, IL-1β, and IL-6 are elevated in the cerebrospinal fluid,
serum, striatum, and substantia nigra of PD patients [35]. Using positron emission tomography scans
with radiotracers for activated microglia and dopamine transporter, a negative correlation between
these two markers in the dopaminergic nigrostriatal system has been reported in early PD patients [36],
which suggests that microglia are activated early in the disease.

In Table 1, we list studies that have described how different forms of exercise can modulate some
of these factors to affect microglia activation.
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Table 1. Exercise regulates microglial activation by increasing anti-inflammatory factors.

Effects Models Time, Frequency& Duration # Intensity $ Type Reference

Cytokines
↑ [IL-4]spinal cord Mouse 30 min/day, 5 days/week,

Long-term Low Treadmill [37]

↑ [IL-10]skeletal muscle Rat 60 min/day, 5 days/week,
Long-term Low Treadmill [38]

↑ [IL-6, IL-10]plasma Human 3 h 26 min N/A Marathon [39]

Membrane
proteins

↑ [CD200, CD200R]midbrain Mouse 30 min/day, 5 days/week,
Long-term Low & Moderate Treadmill [40]

↑ [TREM2]CSF Human Long-term N/A Physical exercise [41]

↑ [Aquaporin-4]astrocyte Mouse Long-term N/A Wheel [42]

↑ [Aquaporin-4]astrocyte Rat Mouse Short- & long-term High Treadmill &Wheel [43]

Metabolism

↑ [SIRT-1]skeletal muscle Rat 60 & 90 min/day, 7 days/week,
Long-term Low & High Treadmill [44]

↑ [SIRT-1]cardiac muscle Rat 20–60 min/day, 5 days/week,
Long-term N/A Swimming [45]

↑ [SIRT-1]skeletal muscle Human 30 s N/A Sprint exercise [46]

↑ [leptin sensitivity]hippocampus Mouse Long-term ~5.6 ± 1.2 km/day Wheel [47]

Neurotrophic
factors

↑ [BDNF]serum Rat 30 min/day, Short-term Low Treadmill [48]

↑ [BDNF]serum Human 20 min High Cycling [49]

Heat shock
proteins

↑ [HSP60]subcutaneous adipose tissue Human 60 min/day, Long-term Moderate Aerobic, Treadmill, &
Cycling [50]

↑ [HSP70]skeletal muscle Rat 60 min/day, Short-term Mod/High Treadmill [51]

↑ [HSP70]serum, skeletal muscle Human 60 min/day, Short-term Moderate Treadmill [52]

Antioxidant
↑ [Glutathione]skeletal muscle Rat 2 h/day, 5 days/week,

Long-term High Treadmill [53]

↑ [Glutathione]skeletal muscle Dog 40 km/day, 5 days/week,
Long-term High Treadmill [53]

# Exercise duration: acute: single bout; short-term: ≤2 weeks; long-term: >2 weeks. $ For human studies, we followed the criteria of Physical Activity Guidelines for Americans [54] to
grade the intensity of exercise. For animal studies, we followed the method described in Inoue et al. [55] by using lactate threshold as a criterion to grade the intensity of exercise.
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3. Exercise Regulates Microglial Activation by Increasing Anti-Inflammatory Factors

3.1. Anti-Inflammatory Cytokines

In response to muscular contractions, myocytes produce and release numerous molecules,
termed myokines [56]. Among them, IL-6 was the first identified myokine [56–58]. IL-6 has both
pro-inflammatory and anti-inflammatory effects. These effects are mediated by distinct signaling
pathways: classic-signaling and trans-signaling. The pro-inflammatory effects of IL-6 depend on
trans-signaling, in which IL-6 binds to a soluble form of IL-6 receptor; whereas the anti-inflammatory
effects of IL-6 depended on classic-signaling, in which IL-6 binds to the membrane-bound non-signaling
α-receptor [59,60]. Unlike pro-inflammatory cytokines (e.g., IL-1 and TNFα), IL-6, which can be
produced in contracting skeletal muscles and secreted to the vascular system, does not promote major
inflammatory mediators [61]. In terms of the anti-inflammatory effects, IL-6 myokine upregulates the
expressions of anti-inflammatory cytokine IL-10 and the levels of IL-1 receptor antagonist (IL-1Ra) [39].
Interestingly, the levels of IL-6 are reduced in several neurodegenerative diseases, including AD and
PD [60].

In addition to IL-6, other myokines may also have different kinds of anti-inflammatory cytokine
properties. It has been shown that long-term exercise can increase the production and secretion of IL-10
in the skeletal muscles [38]. In a peripheral nerve injury mouse model, two weeks of low-intensity
exercise was found to inhibit peripheral and central neuroinflammatory responses via upregulation
of IL-4 [37]. These anti-inflammatory myokines can be readily transported into the CNS from the
peripheral circulation [62]. When IL-10 interacts with its receptor on microglia, it enhances the
suppressor of cytokine signaling 3, an inhibitor of cytokine-induced signaling responses resulting in
inhibition of inhibits microglial activation [63].

Moreover, exercise can also stimulate the expression of IL-1Ra in the CNS [37]. IL-1Ra has a higher
affinity for the IL-1R than IL-1α or IL-1β. Blocking the binding of IL-1 to its receptor interrupts the
pro-inflammatory IL-1 signaling cascade and related microglial activity [64]. Therefore, exercise can
upregulate the expression of anti-inflammatory cytokines and inhibit microglial activation.

3.2. CD200-CD200R

CD200 is an immunomodulatory factor expressed by neurons in the CNS [65]. It inhibits
microglial activation through binding with CD200R on microglial plasma membranes [65]. It has been
demonstrated that long-term treadmill running increases expression levels of both CD200 and CD200R
in mouse brains [40]. When CD200-CD200R interaction occurs, it recruits downstream tyrosine kinases
1 and 2, phosphotyrosine-binding domain proteins. After phosphorylation, these proteins bind to
RasGAP and Src homology 2-containing inositol phosphatase, leading to inhibition of downstream
Ras/ERK-MAPK inflammatory signaling pathways. Furthermore, CD200/CD200R can also inhibit JNK
and p38 MAPK. The inactivation of MAPK signaling results in the suppression of pro-inflammatory
cytokine secretion [26,66,67]. Exercise may increase the expression of CD200/CD200R to suppress
MAPK signaling pathway and inhibit microglial activation.

3.3. TREM2

TREM2, an immunoglobulin superfamily receptor, is mainly expressed by microglia in the
CNS [68]. It plays essential roles in microglial phagocytosis and cytoskeleton rearrangement [69].
A soluble form of TREM2, derived from the cell surface receptor, can promote the survival of microglia
and their phagocytic activity [70,71]. It has also been suggested that increasing TREM2 levels is an
effective therapeutic approach for delaying the pathogenesis of AD [70]. Mutations in TREM2 resulting
in loss of function can lead to increased risk of developing AD. Long-term physical exercise increases
levels of soluble TREM2 in the CSF of AD patients [41]. When TREM2 forms a complex with DNAX
activation proteins 12 (DAP12), a transmembrane adapter protein on the microglial membrane, TREM2
activation causes DAP12 phosphorylation via Src family kinases. The TREM2-DAP12 interaction
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stimulates PI3K/Akt downstream effect and subsequently blocks MAPK cascade at the RAF level. These
signaling pathways lead to the inhibition of inflammatory responses driven by TLR4 in microglia [72,73].
Thus, exercise may regulate the activation status of microglia via upregulation of TREM2.

3.4. Heat-Shock Proteins (HSP)

During physical exercise period, neuroprotective HSPs are synthesized and released from skeletal
muscle into blood circulation. Hence, HSPs can be considered as myokines. HSPs are categorized into
several sub-types (e.g., HSP60, HSP70, and HSP72) [50–52,74] and their functions are multifaceted,
but mainly in maintaining cellular homeostasis and protein stability [75]. HSPs are associated with
endotoxin tolerance response [76]. Noticeably, HSP60 and HSP70 decrease the cellular responses to LPS
as well as TLR4 expression, resulting in downregulation of secretion of pro-inflammatory molecules,
including TNF-α and IL-1β [77–80]. Therefore, exercise-induced upregulation of HSPs may negatively
regulate the productions of pro-inflammatory cytokines from glial cells.

3.5. Metabolic Factors

The efficacy of both acute resistance and chronic endurance exercises enhances the production
of Sirtuin-1 (SIRT1), an NAD+-dependent protein deacetylase [44–46]. SIRT1 plays critical roles in
regulating inflammation and cell survival by deacetylation of transcription factors [81]. Overexpression
of SIRT1 deacetylates the NF-κB subunit p65, hence suppresses its activity, resulting in decreased
production of proinflammatory cytokines [82–84]. Moreover, SIRT1 can activate the expression of
transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) to stimulate the antioxidant
response [85]. Nrf2-activated gene expression leads to antioxidant enzymes being released, including
glutathione peroxidase and heme oxygenase-1 [86]. Another function of Nrf2 is an antagonist of
the NF-κB cascade, which causes reduced production of proinflammatory mediators [87]. More
importantly, SIRT1 directly stimulates the transcriptional co-activator peroxisome proliferator-activated
receptor gamma coactivator-1-alpha (PGC-1α), which controls inflammation. PGC-1α restrains the
activity of NF-κB-mediated microglial activation, but at the same time enhances the phagocytic activity
of microglia through the STAT3 and STAT6 pathways [88,89]. Thus, the SIRT1-related Nrf2 and NF-κB
pathways may contribute to exercise-induced inhibition of microglial activation and neuroinflammation.

In a diet-induced obesity and leptin resistance mouse model, increased leptin levels are found in
the hippocampus [47]. Accumulated leptin induces local astroglial activation and secretion of IL-1β
and TNF-α, which subsequently induces microglial activation [47]. Long-term voluntary exercise
decreases the degree of microglial activation in the hippocampus by increasing leptin sensitivity and
decreasing the levels of IL-1β and TNF-α [47].

3.6. Brain-Derived Neurotrophic Factor (BDNF)

BDNF is one of the most studied neurotrophic factors whose production in the brain is increased
by exercise [48,49,90]. BDNF is primarily produced by astrocytes and microglia in brain and has
multiple effects on neurogenesis and inflammation modulation. Using the 5xFAD AD model mouse
which develops severe AD-like pathology at an early age and cognitive dysfunction, it was found
that inducing adult hippocampal neurogenesis (AHN) alone did not reverse cognitive dysfunction or
pathology, but inducing AHN and BDNF levels through exercise resulted in reduced Aβ load, increased
expression of synaptic proteins and improved cognition [90]. These effects were only observed in 5xFAD
mice with pathology and not age-matched controls. The exercise induced secretions of BDNF, IL- 6
and fibronectin type III domain–containing protein–5 (FNDC5). It has been demonstrated that muscle
contraction-induced activation of PGC-1α stimulates the release of irisin from its membrane-bound
precursor FNDC5 [91]. The circulating irisin then enters the brain and upregulates BDNF expression
in the brain [91]. Alternatively, ketone body β-hydroxybutyrate released from the liver during
exercise has also been shown to induce BDNF expression in the brain [92]. BDNF can regulate brain
functions in multiple aspects, including neuronal cell survival, adult hippocampal neurogenesis,
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and neuroplasticity [93]. Furthermore, BDNF can alleviate microglial activation in several brain disease
models [94–97]. However, the decreased microglial activation is generally considered an indirect
consequence of reduced neuronal injury elicited by the BDNF neurotrophic effect, not a direct effect
of BDNF.

Nonetheless, we propose that BDNF may directly influence microglial activation through the
following pathways. By binding to its receptor TrkB, BDNF can induce ERK activation and CREB
phosphorylation, which can block the activity of NF-κB and transcription of certain anti-inflammatory
genes [98,99]. Furthermore, BDNF can activate Akt signaling, which suppresses the activity of glycogen
synthase kinase 3, resulting in a decrease of NF-κB activation and an increase of CREB activation [100].
BDNF is also known to modulate mitogen-activated protein kinase phosphatase 1, resulting in the
reduction of p38 and JNK phosphorylation [101–103]. The effect of BDNF on microglial activation
requires further in-depth investigation to determine the interactions of the effects of exercise-induced
BDNF on neurogenesis and microglia/astrocyte responses.

3.7. Antioxidants

It is known that free radical substances are produced during exercise. However, endurance and
long-term exercises essentially induce adaptive responses by upregulation of endogenous antioxidants,
including glutathione peroxidase (GSH) and superoxide dismutase [53,104,105]. Noticeably, GSH
plays vital roles in maintaining redox balance and anti-inflammatory mediators found in astrocytes and
microglia [106,107]. The increased GSH synthesis can attenuate the releasing pro-inflammatory factors
TNF-α and IL-6. Moreover, it negatively regulates the p38 MAPK, JNK, and NF-κB inflammatory
pathways in glial cells [108–110], which may also inhibit the production of free radicals. In a
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse study, long-term treadmill
running decreased the MPTP-induced upregulation of NADPH oxidase and microglial activation [111].
Therefore, long-term exercise-induced upregulation of antioxidant levels play a crucial role in the
protection against neuroinflammation by microglia. The induced upregulation of antioxidants is
involved in protection not only to oxidative stress but also to neurodegenerative diseases, including
AD and PD [112].

3.8. Glymphatic System

The glymphatic system is known as the brain waste clearance system, involving glial cells
and lymphatic vessels [113,114]. This system drains the fluid and solutes from the parenchyma
(i.e., interstitial fluid) into the cerebrospinal fluid and eventually to the deep cervical lymph nodes [115].
Aquaporin-4 is a key protein component, which is found along the astrocytic endfeet contacting to
the cellular membranes of perivascular cells. It functions in brain-water homeostasis and importantly
facilitates the pathway of perivascular interstitial fluid-cerebrospinal fluid exchange [116,117]. Impaired
glymphatic function is evident in aging and neurodegenerative diseases [118,119]. On the other hand,
both voluntary wheel and mandatory treadmill exercise enhanced the efficiency of glymphatic system
in normal aging and AD mice [42,120]. Furthermore, the degrees of astrocytic and microglial activations
in aged mice were also decreased, whereas the amount of aquaporin-4 increased through exercise [43].
It has been suggested that the anti-microglial activation effect of exercise is due to the enhanced
glymphatic system, which facilitates the clearance of metabolic wastes and toxins, such as amyloid-β
and α-synuclein, from the brain [121,122].

4. Effect of Exercise on Proinflammatory Cytokines and Chemokines

In this section, studies showing that exercise inhibits microglial activation by suppressing the
production of pro-inflammatory factors will be discussed. The key studies are summarized in Table 2.
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4.1. Proinflammatory Cytokines and Chemokines

Exercise can inhibit microglial activation and alleviate pathogenesis of AD and PD in both
patients and animal models by downregulating the expression of proinflammatory cytokines [123–126].
For example, in the APPswe/PS1De9 double-transgenic mouse model of AD, long-term treadmill
exercise has been shown to suppress oxidative stress and microglia-induced neuroinflammation by
decreasing the level of IL-1β and TNF-α [127]. IL-1β, IL-18, and TNF-α are considered the major
proinflammatory cytokines in the CNS [128]. IL-1β and IL-18 can promote inflammasome production to
enhance the inflammatory response [116]. In the APP/PS1 model of AD, IL-1β secretion has been shown
to enhance NLRP3 inflammasome in microglia, while deficiency of NLRP3 inflammasome decreases
deposition of amyloid-β [129]. Furthermore, in several neurological disease models, including multiple
sclerosis, PD, and AD, NLRP3 and NLRC4 inflammasomes have been demonstrated to play critical
roles in the activation of microglia and astrocytes [18,129,130]. In ovariectomized mice, long-term
treadmill running has been shown to decrease the release of IL-1β and IL-18 and inhibit microglial
activation from NLRP3 inflammasome production in the hippocampus [123].

Chemokines are responsible for the recruitment of cells of monocytic origin to sites of inflammation,
which may aggravate the degrees of local microglial activation [131]. In obese mice induced by a
high-fat western diet, expression of a number of proinflammatory molecules, including chemokines
CCL2 and CXCL10, are increased in the prefrontal cortex [132]. Long-term wheel running is known
to decrease the expression levels of CXCL10 and CCL2, which may lessen the degrees of subsequent
microglial activation [132].

4.2. Toll-Like Receptor (TLR) Signaling Pathway

TLRs are a class of pattern recognition receptors that play a key role in the innate immune response,
including the activation of microglia. Several studies have implied that exercise can inhibit microglial
activation by regulating TLR signaling pathways. In the mouse model of PD, soluble α-synuclein
indirectly lead to oxidative stress when binding to surface receptors TLR2, TLR4, and CD11b in
microglia, resulting in activation of neuroinflammation [133–135]. Interestingly, long-term treadmill
running suppressed α-synuclein (α-Syn)/ TLR2 mediated neuroinflammation and the associated
microglia and NADPH oxidase activation [111]. In another study, long-term treadmill running was
found to decrease the high-fat-diet induced hippocampal neuroinflammation, including the degree of
microglial activation, levels of proinflammatory cytokines (TNF-α and IL-1β) and cyclooxygenase-2,
as well as the expression levels of TLR-4 and its downstream proteins [136]. In these two studies,
the authors attributed the exercise-induced anti-microglial activation to downregulation of TLR
signaling pathways. However, the actual causal relationship between TLRs and microglial activation
remains to be confirmed.
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Table 2. Exercise regulates microglial activation by decreasing pro-inflammatory factors.

Effects Models Time, Frequency & Duration # Intensity $ Type Reference

Toll-like receptors ↓ [TLR2]substantia nigra Mouse 60 min/day, 5 days/week,
Long-term Low Treadmill [111]

↓ [TLR4]hippocampus Rat 30 min/day, 5 days/week,
Long-term Low Treadmill [136]

Cytokines

↓ [IL-1β, TNF-α]substantia nigra Mouse 60 min/day, 5 days/week,
Long-term Low Treadmill [111]

↓ [IL-1β, TNF-α] hippocampus Mouse 45 min/day, 5 days/week,
Long-term Low Treadmill [127]

↓ [IL-1β, TNF-α]hippocampus Rat 30 min/day, 5 days/week,
Long-term Low Treadmill [136]

↓ [IL-1β, IL-18]hippocampus Mouse 60 min/day, 7 days/week,
Long-term Low Treadmill [123]

Chemokines
↓ [CCL2,

CXCL10]prefrontal cortex
Mouse 30 min/day, Long-term N/A Wheel [132]

Inflammasome ↓ [NLRP3]hippocampus Mouse 60 min/day, 7 days/week,
Long-term Low Treadmill [123]

Free radicals
↓ [NADPH

oxidase]substantia nigra
Mouse 60 min/day, 5 days/week,

Long-term Low Treadmill [111]

Microbiome Shifting gut microbiota Mouse 60 min/day, 4 days/week,
Long-term Low/High Treadmill [137]

# Exercise duration: acute: single bout; short-term: ≤2 weeks; long-term: >2 weeks. $ For human studies, we followed the criteria of Physical Activity Guidelines for Americans [54] to
grade the intensity of exercise. For animal studies, we followed the method described in Inoue et al. [55] by using lactate threshold as a criterion to grade the intensity of exercise.
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4.3. Gut Microbiota

Bidirectional communication between the brain and the gut has been suggested [138]. The brain
can alter gut function by influencing motility, secretion, blood flow, and gut-associated immune
function; whereas, the microbiome and products or metabolites secreted from the microbiome can
modulate neuronal, immune, metabolic and endocrine pathways [21,139]. It has been suggested that
information exchange along the brain-gut-microbe axis can be achieved by various routes, including
the vagus nerve, the hypothalamic-pituitary-adrenal axis, and neurotransmitters and hormones, some
of which can be produced by the microbiota [140,141]. For example, the gastrointestinal inflammatory
tone could cross into brain via vagal afferent neurons [142]. It has been shown that pathogenic gut
bacteria, such as Campylobacter jejuni or Salmonella typhimurium can, via the vagal afferents, induce
neuronal activation in the nucleus of the solitary tract, suggesting vagal innervation of the GI tract
is capable of detecting host-pathogen interactions in the intestine prior to the challenge producing a
systemic response [142].

Intriguingly, gastrointestinal abnormalities such as constipation are highly associated with PD [143].
Recently, studies indicated that α-synuclein accumulation appears early in the gut and propagates
via the vagus nerve to the brain in a prion-like fashion [144,145]. In an α-synuclein overexpressed
mouse model of PD, α-synuclein pathology and microglial activation are regulated by gut microbiota,
whereas antibiotic treatment ameliorates these pathologies [145]. Likewise, the dysregulation of gut
microbiota is also known to regulate microglia activation and contribute to AD pathogenesis [146–148].
These findings strongly indicate that intestinal dysbiosis can induce microglial activation and other
inflammatory responses in the brain.

It has been shown that physical exercise can modify the microbiome and influence the activation
status of microglia, as well as performance of learning and memory [137]. However, exactly how
exercise can modulate gut microbiota remains unclear, although several potential mechanisms
have been suggested. These include indirect effects of exercise on the brain-gut-microbe axis,
diet-microbe-host metabolic interactions, neuro-endocrine, and neuro-immune interactions, most likely
via the regulation of vagus efferents with respect to the immune system (e.g., spleen and lymph nodes)
and gut [142,149,150]

5. Conclusions

Undoubtedly, physical exercise can modulate microglial activation in the CNS. Current literature
states that low-intensity exercise is sufficient to induce an anti-microglial activation effect by regulating
the expressions of various factors. Some of these factors (e.g., myokines) can directly inhibit
microglial activation via assorted mechanisms that subsequently prevent neuroinflammation in the CNS.
Considerable evidence also suggests that exercise may inhibit microglial activation by downregulation of
the levels of pro-inflammatory factors. However, the mechanism for the exercise-related downregulation
of pro-inflammatory factors is less clear, as pro-inflammatory cytokines can be secreted from various
sources (e.g., injured neurons, astrocytes, and microglia). Thus, the anti-microglial activation effect
of exercise can be interpreted indirectly by upregulating the levels of trophic factors, which then
lead to reduced neuronal injury and degrees of microglial activation. Furthermore, there are a few
reports suggesting that physical exercise can shift the composition of the gut microbiome, which then
affects both peripheral and central inflammation, including microglial activation in the CNS. Although
some mechanisms are still waiting to be determined, it should be emphasized that physical activity
represents a natural strong anti-inflammatory strategy to improve brain function [43].
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Abbreviations

AD Alzheimer’s disease
BDNF brain-derived neurotrophic factor
CD200 cluster of differentiation-200
CNS central nervous system
DAP12 2-DNAX activation protein 12
ERK extracellular signal-regulated kinase
FNDC5 fibronectin type III domain–containing protein–5
GSH glutathione peroxidase
HSP heat-shock protein
IL interleukin
IL-1Ra IL-1 receptor antagonist
JNK c-Jun N-terminal kinase
LPS lipopolysaccharide
MAPK mitogen-activated protein kinase
MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
NF-κB nuclear factor kappa B

NLRP
nucleotide-binding domain, leucine rich containing
protein

Nrf2 nuclear factor erythroid 2-related factor 2
PD Parkinson’s disease

PGC-1α
proliferator-activated receptor gamma
coactivator-1-alpha

PI3K/AKT phosphoinositide-3-kinase/AKT
SIRT1 sirtuin-1
TLR toll-like receptor
TNF-α tumor necrosis factor-alpha
TREM2 triggering receptor expressed on myeloid cell-2
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