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The earliest evidence for modern-
style plate tectonics recorded 
by HP–LT metamorphism in the 
Paleoproterozoic of the Democratic 
Republic of the Congo
Camille François1, Vinciane Debaille2, Jean-Louis Paquette3, Daniel Baudet4 & 
Emmanuelle J. Javaux1

Knowing which geodynamic regimes characterised the early Earth is a fundamental question. This 
implies to determine when and how modern plate tectonics began. Today, the tectonic regime is 
dominated by mobile-lid tectonics including deep and cold subduction. However, in the early Earth (4.5 
to 2 Ga) stagnant-lid tectonics may also have occurred. The study of high pressure–low temperature 
(HP–LT) metamorphic rocks is important, because these rocks are only produced in present-day 
subduction settings. Here, we characterize the oldest known HP–LT eclogite worldwide (2089 ± 13 Ma; 
17–23 kbar/500–550 °C), discovered in the Democratic Republic of the Congo. We provide evidence that 
the mafic protolith of the eclogite formed at 2216 ± 26 Ma in a rift-type basin, and was then subducted 
to mantle depths (>55 km) before being exhumed during a complete Wilson cycle lasting ca. 130 Ma. 
Our results indicate the operation of modern mobile-lid plate tectonics at 2.2–2.1 Ga.

Eclogites are high-pressure metamorphic rocks mainly composed of omphacite and garnet. Their pressure–tem-
perature conditions of formation are characteristic of modern subduction zones and, as such, they have been 
considered as representative of subduction processes in the geological record1,2. Few occurrences of true eclogites 
with precise ages have been described from the Archean to Paleoproterozoic rock record, thus the pattern and 
timing of early Earth tectonics are still heavily debated. The oldest currently proposed eclogites from an orogenic 
belt are recorded from the Belomorian Belt in Russia, which are dated between 1.9 and 2.8 Ga3–5. Other relicts of 
eclogites are found in Paleoproterozoic orogens, in the 1.9 Ga Snowbird zone from the Canadian Shield6 and in 
the 1.9–2.0 Ga Ubendian-Usagaran Belt of Tanzania7–9 (Fig. 1a). The oldest known high temperature eclogites 
(18–20 kbar and 800 °C; 2093 ± 45 Ma) with a MORB-like chemistry occur at the northwestern margin of the 
Congo Craton in the Nyong Complex of Cameroon10 (Fig. 1a).

The apparent geothermal gradient recorded by rocks may be used to discriminate geodynamical processes in 
the Early Earth, and more particularly to infer whether or not deep and cold subduction, i.e. ‘modern-style’ plate 
tectonics was in operation11,12. However, relying only on the apparent geothermal gradient might be misleading. 
Indeed, Archean metamorphic rocks not only record high apparent geothermal gradients, but also a large range 
of other possible apparent geothermal gradients (i.e. 15–30 °C/km), including low values similar to modern sub-
duction13. The maximum pressure attained will be limited in the case of sagduction, which is a partial convective 
overturn due to density contrast between dense (ultra)mafic covers into their granitoid crustal basement coupled 
to partial melting in the lower crust13. As such, it is an intracrustal process and the maximum pressure recorded 
depends on the crustal thickness (greenstones and crustal basement13–16). Thus, a very high pressure (i.e. >15–20 
kbar ≈ 50–65 km) seems difficult to reconcile in the case of stagnant-lid and sagduction tectonics. Therefore, the 
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study of (U)HP-LT rocks, including eclogites, seems to be a robust tool to evidence modern-style (deep and cold 
subduction) tectonics. Here, we focus our study on eclogites discovered in Democratic Republic of the Congo 
(DRC) in the Archean to Paleoproterozoic Congo Craton.

Sample Description
The studied sample is conserved at the Royal Museum for Central Africa, Tervuren, Belgium (RG-45977 serial 
number collection, Fig. 2a) and was collected in 1946 by Pierre Schnock. This rock comes from the South East of 
Gandajika town (value in decimal degrees: S6.5-S7/E23.9–24.5 close to Kayemba Ngombe town), in the northern 
part of the Archean to Paleoproterozoic Kasai Block (Fig. 1) within the Congo Craton. The northern part of the 
Kasai Block is composed of the Musefu Granulitic Complex (2.6–3.1 Ga17; Fig. 1b) and the Dibaya migmatitic 

Figure 1.  Simplified geological map of Central Africa with occurrences of Paleoproterozoic eclogites (a) and 
magnification of the geological map for the studied area (b). Eclogite age data from7–10. Maps modified after17, 
the 1:200 000 geological maps of Geological Survey of DRC (Sheets: S7/23, S7/22, S8/23 and S8/22) and the 
Commission for the Geological Map of the World CGMW map.
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Complex (2.6–2.8 Ga17,18). This Archean Block was marked by the Eburnian–Transamazonian (2.2–1.98 Ga) orog-
eny, which resulted from the accretion of the Congo Craton and the Brazilian São Francisco Craton19. The asso-
ciated metamorphism has been dated at 2.05 Ga in Cameroon10,20 (Fig. 1a) and at 2.10–2.07 Ga in Brazil21. The 
area records the emplacement of the Lueta gabbronoritic Complex and the Lusanza Supergroup (2.2–1.9 Ga17,19) 
during the Paleoproterozoic. Some enclaves of the upper Lusanza Supergroup have been described within the 
Musefu granulitic Complex close to Mwene Ditu town (Fig. 1b). No evidence of HP rocks (blueschist or eclogite) 

Figure 2.  Main minerals contained in the studied eclogite. (a) Photograph of the sample. (b) Microphotographs 
of clinopyroxene and plagioclase matrix containing amphibole and quartz crystals, (c,d) symplectites of feldspar 
and iron-oxides around garnet in a clinopyroxene, plagioclase, amphibole and quartz matrix. Garnets present 
rutile inclusions, and sometimes (e) an atoll-shaped. (f) Mineral mapping of a garnet containing rutile, quartz 
and apatite inclusions in an amphibole, feldspar, clinopyroxene and quartz matrix. Feldspar close to the garnet 
are K-rich. Mineral abbreviations from53.
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has previously been described from the area, other than the ca. 70 Ma22 eclogite xenoliths from kimberlites found 
close to Mbuji-Mayi town.

The chemical composition of the eclogite is basaltic (Table 1 and see Supplementary Fig. S1) with SiO2 = 51.6 
wt.%, Na2O = 2.7 wt.% and TiO2 = 1.2 wt.%. It contains low K2O (<0.5 wt.%), but high CaO (11.3 wt.%). A prim-
itive mantle-normalised trace element diagram (see Supplementary Fig. S2) shows an enriched-MORB signature.

The sample is a retrogressed eclogite and consists mainly of garnet, clinopyroxene, amphibole, rutile, feldspar, 
ilmenite, hematite, quartz and pyrite (Fig. 2, see Supplementary Table S1 and Fig. S3). Garnets are a solid solution 
between almandine (53–60%), grossular (21–29%), pyrope (11–19%) and spessartine (1–7%; see Supplementary 
Table S1 and Fig. S4a). They present a zoning pattern with a Fe- and Mn-rich core, and Ca- and Mg-rich rims. 
Rutile, clinopyroxene, amphibole and quartz are present in inclusions in garnet (Fig. 2f) and form the first par-
agenesis. No coesite was found. Corona textures around garnet are retrograde (Fig. 2c–f). Some garnets dis-
play atoll-shaped microstructures (Fig. 2e). A similar garnet shape was observed in other eclogitic rocks23–25. 

Sample RG45977 157-1 158-1 159b-1 161b-1

SiO2 51,6 48,92 49,97 50,69 46,56

Al2O3 12,5 13,62 13,93 13,86 13,56

TiO2 1,2 0,8 1,01 0,52 1,23

Fe2O3 12,7 13,71 13,29 12 16,48

MnO 0,2 0,23 0,2 0,27 0,21

MgO 7,8 7,47 7,84 9,05 8,23

CaO 11,3 12,73 11,95 10,94 12,13

Na2O 2,7 2,03 1,68 1,92 1,75

K2O 0,5 0,11 0,03 0,22 0,09

P2O5 0,1 0,07 0,08 0,05 0,14

Total 101,0 99,69 99,98 99,52 100,38

LOI 0,4 — — — —

Rb 15,38 1,16 0,69 1,65 0,50

Sr 204,88 41,10 64,90 41,60 64,60

Y 18,46 22,60 21,60 19,00 36,10

Zr 73,53 39,30 56,60 35,20 91,20

Nb 10,91 1,92 2,65 1,58 3,93

Ba 87,58 16,50 6,83 26,30 5,44

La 8,98 1,10 3,05 1,95 4,24

Ce 19,73 3,35 8,18 5,47 12,30

Pr 2,63 0,59 1,31 0,92 2,03

Nd 12,24 3,31 6,66 4,67 10,40

Sm 2,93 1,43 2,22 1,51 3,49

Eu 0,87 0,58 0,79 0,56 1,16

Gd 3,47 2,37 2,77 1,98 4,50

Tb 0,69 0,51 0,53 0,40 0,85

Dy 3,23 3,45 3,39 2,75 5,53

Ho 0,79 0,75 0,72 0,62 1,18

Er 2,32 2,16 2,06 1,86 3,47

Tm 0,34 0,32 0,30 0,28 0,51

Yb 2,11 2,08 1,93 1,82 3,28

Lu 0,32 0,31 0,29 0,28 0,49

Hf 2,26 1,10 1,44 0,98 2,20

Ta 0,83 0,10 0,16 0,10 0,23

Pb 5,60 0,71 0,41 0,44 1,88

Th 1,32 0,03 0,36 0,11 0,14

U 0,24 0,05 0,07 0,04 0,07

Cr 91,25 258,00 144,00 511,00 76,60

Co 46,09 73,90 56,40 61,40 69,60

Ni 64,06 267,00 146,00 215,00 122,00

Cu 25,25 175,00 191,00 9,51 68,20

Zn 80,65 112,00 102,00 90,80 102,00

Ga 16,31 16,40 17,20 14,60 17,90

Table 1.  Whole rock composition and trace elements for our eclogite sample and for eclogite sample from 
Cameroon10.
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Clinopyroxenes have a pale greenish colour and constitute the major part of the matrix, often associated with 
albite-rich plagioclases in symplectites, which grew during the decompression (Fig. 2b). They are Ca- and Na-rich 
(see Supplementary Table S1) and have a composition of aegirine-augite. The XMg content varies from 0.016 to 
0.08, the XCa between 0.88 to 0.98 and the XFe between 0.05 and 0.40. The jadeite amount (XJadeite) is between 
2.0 and 4.0. However, as this eclogite is retrogressed, the initial composition of clinopyroxene was close to omph-
acite. The composition of omphacite was estimated by adding the oxide wt.% of clinopyroxene and the oxide 
wt.% of albite-rich plagioclase (SiO2 (Cpx) + SiO2 (Pl); TiO2 (Cpx) + TiO2 (Pl); …) analysed by electron microprobe 
(see Supplementary Table S1). The estimated compositions of XJadeite in omphacite were close to 24–28 wt.% 
and probably below 30 wt.%. Amphiboles have an intense greenish colour. They are mainly calcic, with Mg con-
tent ranging between 0.5 and 0.65, the Na + K content <0.05 and the Si content <7.1 (hornblende: pargasite to 
ferro-edenite; see Supplementary Table S1 and Fig. S4b). They occurred between garnet and pyroxene and some-
times within garnet (Fig. 2c,d). Feldspars are rich in Na and Ca when close to clinopyroxene and amphibole, and 
richer in K close to garnet (Fig. 2f). Rutile occurs in the matrix and mainly as inclusions within garnet (Fig. 2c,d). 
Ilmenite, hematite and titanite commonly replace rutile in the matrix (Fig. 2c,e). Apatite and zircon occur as 
accessory minerals. Kyanite is absent and, except amphibole, no hydrated mineral is present.

Thermobarometry
In order to constrain the P–T conditions, we performed thermodynamic modelling (see Supplementary Fig. S5) 
using the phase-diagram calculation software Perple_X26 (version 6.8.3) and the self-consistent thermodynamic 
database and mineral solution models (solution_model_682; upgrade 2018). Bulk-rock compositions were cal-
culated in the TiMnNaCaFMASH system from modal phase proportions. Mineral solution models used are 
Grt(WPH)27, Opx(HP)28, Cpx(HP)28, Omph(GHP)29, Pl(h)30, Chl(HP)31 and cAmph(DP)32. Water content was 
estimated at 0.4 wt.% using a xH2O vs. temperature diagram (at 17 kbar). Considering the pseudosection, the first 
paragenesis of garnet, omphacite, amphibole, quartz and rutile is stable over a large range of P–T between 400 and 
550 °C for a pressure exceeding 10 kbar but lower than 24 kbar because no coesite was present. Adding the isop-
leths modelled for this assemblage for garnet: XPyrope (11–15 wt.%) and for XJadeite in the estimated omphacite 
(<30 wt.%), P–T conditions for the first paragenesis are estimated between 17 to 23 ± 1 kbar and 500–550 ± 50 °C 
(Fig. 3d and Supplementary Fig. S5, see33,34 for the associated errors). The exhumation is characterized by higher 
content of XPyrope (15–19 wt.%), a low content of XJadeite in the clinopyroxene (2–4 wt.%), the appearance of 
plagioclase by the substitution of omphacite in augite and albite (XAlbite: 61–81 wt.%) and the appearance of 
ilmenite and hematite (Fig. 3d and Supplementary Fig. S5) around 7.5–9.5 ± 1 kbar and 450–575 ± 50 °C.

U-Pb Dating
Zircons (20–100 µm) show subhedral to oval shapes, some grains displaying irregular and poorly visible zoning 
with locally preserved thin overgrowths (see Supplementary Fig. S6). Their morphology is very similar to that 
of zircons observed in some Variscan eclogite-facies meta-gabbros35. The rutiles (50–500 µm) generally appear 
homogeneous in BSE and reflected light images (see Supplementary Fig. S7). U-Pb ages were determined by 
Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) at the Laboratoire Magmas et 
Volcans, Clermont-Ferrand, France (Fig. 3a,b and Table 2). All the dated rutile grains contain a low U content 
of about 20 ppm and no Th, as often observed in rutiles36. A total of 22 spots was performed on 18 rutile crys-
tals (see Supplementary Fig. S7) and yields a discordia line with an upper intercept at 2089 ± 13 Ma (MSWD 
0.66, Fig. 3a), the lower intercept being at the origin of the concordia diagram within uncertainties. However, 
diffusion-induced resetting is unresolvable in LT eclogites36 and rutiles in eclogites provide similar ages than 
eclogitic zircons37. Consequently, the obtained 2089 Ma upper intercept can be confidently interpreted as the 
age of the eclogite-facies event. These results evidence the highest pressure so far reported for eclogitic facies 
metamorphism in the Paleoproterozoic. Fifteen zircons crystals were analysed (sorted and in thin section; 
see Supplementary Fig. S6) and yielded a discordia line with an upper intercept age of 2216 ± 26 Ma (MSWD 
0.2, Fig. 3b), the lower intercept being, as for rutiles, at the origin of the diagram within uncertainties. These 
sub-euhedral zircons display a weak and irregular zoning and a mean Th/U ratio of 0.4 regardless of the varia-
ble amounts of U, rather favouring a magmatic protolith38. A single zircon grain is concordant at 2087 ± 45 Ma 
(Table 2) and is characterized by a lower Th/U ratio of 0.05. It provides a similar age than the rutiles and may 
have been dissolved and recrystallized during the eclogite facies event. On the contrary, all the other zircons are 
interpreted as dating the magmatic stage of the mafic protolith at 2216 Ma.

Sm-Nd Systematics
The 147Sm-143Nd systematic gives a εNdi of +2.04 at 2216 Ma (Fig. 3c and see Supplementary Table S2), i.e. slightly 
more enriched than the evolution of the depleted MORB mantle (DMM) at ~2 Ga (e.g.39). The TDMM model age 
for the sample is relatively close, at 2350 Ma (Fig. 3c). The trace element pattern also indicates a source slightly 
more enriched in incompatible trace elements than the DMM (Table 1 and see Supplementary Fig. S2). This 
slight enrichment in incompatible elements, combined to enrichment in robust and immobile elements such a 
Zr, Nb and Y, can be ascribed as T(transitional)-MORB rather than E(enriched)-MORB. Because T-MORB are 
considered characteristic of a transitional geodynamic tectonic setting between oceanic and continental litho-
spheres, i.e. rifting and continental breakup40, crustal contamination is expected and could explain the decrease 
of the εNd from ~+3–4 for the DMM39 to +2.04 as measured in the sample at 2216 Ma. Because of the crustal 
contamination, the model age at 2350 Ma is a maximum, the metamorphic age at 2089 Ma being the minimum. 
This is coherent with the age obtained on the zircon discordia line (2216 ± 26 Ma), that is thus interpreted as the 
true crystallization age.
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Discussion
The 2.09 Ga eclogites of the Nyong complex of Cameroon and the 2.0 Ga eclogites of the Usagaran Belt of 
Tanzania have a geochemical affinity to oceanic crust and are interpreted to represent the relics of subducted 
Paleoproterozoic oceanic crust at the margins of the Congo Craton7,8,10. These eclogite occurrences with 
MORB-like compositions in a continental setting support the hypothesis that plate tectonics operated on Earth 
in the Paleoproterozoic Era, apparently in a similar fashion as in the modern Earth, since production of the 
eclogite facies MORB requires the subduction of an old, cold and dense lithosphere (e.g.9,41). Moreover, the RDC 
eclogite presented here is the first evidence of an entire Wilson cycle in the Paleoproterozoic comprising HP-LT 
subduction. These eclogites derive from a mafic protolith, with a T-MORB signature, formed at 2216 ± 26 Ma 
in a intra-cratonic rift-type basin inside the Congo Craton, then buried at high pressure and low temperature 
(17–23 ± 1 kbar and 500–550 ± 50 °C) and exhumed during a cycle of ca. 130 Ma. These observations evidence a 
modern-style plate tectonics at 2.2–2.1 Ga. We thus show here that modern-style plate tectonics, as evidenced by 
cold and deep subduction (>55 km), operated at least since the Paleoproterozoic. Because it certainly took some 
time of a transient regime from stagnant-lid tectonic42 to mobile-lid subduction, this result is compatible with 
a major change in Earth’s tectonic regime between 2.5 and 3.0 Ga43. On the other hand, it is difficult to envision 

Figure 3.  Dating, Nd-epsilon and thermobarometry estimates for the sample. (a) Concordia diagrams for LA-
ICP-MS U–Th–Pb analyses on 18 rutiles (22 analyses) and (b) on 15 zircons (dotted ellipse represents analyse of 
the metamorphic zircon). Error ellipses are 2σ.(c) Nd-epsilon vs age diagram for the eclogite. Model of Depleted 
Mantle is from39 (d) P-T-t path of the eclogite sample. Colored boxes correspond to the first paragenesis (Gt-
Omph-Amp-Qtz-Rt) and to the second paragenesis (Gt-Cpx-Amp-Pl-Qtz-Ilm) in Perple_X pseudosection. 
Mineral abbreviations from53.
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how mobile-lid plate tectonics could have started since ~4.5 Ga and left no older compelling imprint, even when 
considering the incompleteness and preservation bias of the Archean rock record.

Methods
U-Pb Dating.  The sample was crushed for dating and rutiles and zircons were separated using standard heavy 
liquids and magnetic techniques. Rutiles (50–500 µm) and zircons (20–100 µm) were hand-picked and mounted 
in a 1 inch epoxy disc, which was polished to expose the mid-section of grains. Zircon crystals were also found 
in situ in petrographic thin section (20–50 µm), located in the matrix as well as inside garnets. The internal struc-
tures of zircons and rutiles were investigated with backscattered electron (BSE) and cathodoluminescence (CL) 
images at the University Pierre & Marie Curie, Paris (France).

U-Th-Pb isotope data were measured by laser ablation inductively coupled mass spectrometry (LA-ICP-MS) 
at LMV (Clermont-Ferrand, France). Zircons were ablated using a Resonetics Resolution M-50 equipped with 
a 193 nm Excimer laser system coupled to a Thermo Element XR high resolution ICP-MS. Helium carrier gas 
was supplemented with N2 prior to mixing with Ar for sensitivity enhancement44. The laser was operated with a 

Rutiles Pb Th U 2 σ absolute 2σ absolute error Age (Ma) 2 σ error

analysis ppm* ppm* ppm* Th/U 207Pb/235U** 207Pb/235U 206Pb/238U** 206Pb/238U correlation 207Pb/206Pb 207Pb/206Pb

RG-45977/Rt01 5,5 16 6,584 0,203 0,366 0,010 0,87 2125 61

RG-45977/Rt02 4,7 13 6,750 0,272 0,381 0,011 0,72 2099 76

RG-45977/Rt03 4,0 12 6,354 0,205 0,360 0,010 0,84 2089 63

RG-45977/Rt04 3,1 8,8 6,709 0,236 0,377 0,010 0,79 2108 68

RG-45977/Rt05 4,8 14 6,751 0,211 0,374 0,010 0,86 2131 61

RG-45977/Rt06 5,4 16 6,543 0,225 0,366 0,010 0,80 2115 67

RG-45977/Rt07 6,3 19 6,481 0,197 0,366 0,010 0,88 2097 60

RG-45977/Rt08 6,5 19 6,597 0,218 0,369 0,010 0,82 2112 65

RG-45977/Rt09 5,6 16 6,546 0,205 0,363 0,010 0,85 2126 62

RG-45977/Rt10 2,2 6,7 6,318 0,294 0,353 0,011 0,65 2117 88

RG-45977/Rt11 5,3 15 6,534 0,211 0,361 0,010 0,83 2133 64

RG-45977/Rt12 5,2 15 6,445 0,204 0,358 0,010 0,84 2125 63

RG-45977/Rt13 5,8 16 6,576 0,205 0,363 0,010 0,85 2138 62

RG-45977/Rt14 11 30 6,737 0,200 0,375 0,010 0,88 2121 60

RG-45977/Rt15 5,2 14 6,630 0,215 0,369 0,010 0,82 2122 64

RG-45977/Rt16 7,2 20 6,507 0,202 0,363 0,010 0,85 2117 62

RG-45977/Rt17 11 32 6,481 0,195 0,359 0,009 0,86 2132 61

RG-45977/Rt18 2,6 7,5 6,290 0,242 0,345 0,010 0,73 2146 74

RG-45977/Rt19 1,9 5,3 6,529 0,236 0,365 0,010 0,75 2115 71

RG-45977/Rt20 16 42 6,619 0,211 0,367 0,010 0,82 2128 64

RG-45977/Rt21 7,8 22 6,199 0,192 0,343 0,009 0,84 2134 62

RG-45977/Rt22 7,6 22 6,189 0,193 0,343 0,009 0,84 2132 63

Zircons Pb Th U 2 σ absolute 2 σ absolute error Age (Ma) 2 σ error

analysis ppm* ppm* ppm* Th/U 207Pb/235U** 207Pb/235U 206Pb/238U** 206Pb/238U correlation 207Pb/206Pb 207Pb/206Pb

RG-45977/Zr01 13 3,2 27 0,12 7,945 0,362 0,413 0,013 0,69 2220 83

RG-45977/Zr02 20 21 55 0,38 6,054 0,272 0,315 0,010 0,69 2217 82

RG-45977/Zr03 9,6 6,4 21 0,30 7,853 0,382 0,411 0,013 0,66 2208 88

RG-45977/Zr04 3,1 1,2 7,4 0,16 7,614 0,671 0,398 0,018 0,51 2212 156

RG-45977/Zr05 2,3 2,0 5,6 0,36 6,726 0,568 0,350 0,015 0,51 2218 150

RG-45977/Zr06 4,1 4,9 11 0,43 6,070 0,633 0,317 0,016 0,48 2211 185

RG-45977/Zr07 5,8 3,9 13 0,31 7,845 0,513 0,408 0,015 0,57 2222 117

RG-45977/Zr08 8,3 6,2 21 0,30 6,929 0,457 0,368 0,014 0,56 2182 119

RG-45977/Zr09 6,4 6,0 15 0,40 7,513 0,573 0,392 0,016 0,53 2214 136

RG-45977/Zr10 9,1 11 24 0,45 6,331 0,340 0,329 0,011 0,61 2222 97

RG-45977/Zr11 4,8 9,4 12 0,76 6,552 0,462 0,345 0,013 0,54 2201 127

RG-45977/Zr12 36 31 103 0,30 6,067 0,298 0,319 0,010 0,64 2199 90

RG-45977/Zr13 15 16 34 0,48 7,451 0,344 0,386 0,012 0,66 2225 84

RG-45977/Zr14 31 71 46 1,56 7,962 0,326 0,413 0,012 0,72 2224 75

RG-45977/Zr15 10 1,1 24 0,05 6,810 0,357 0,382 0,012 0,62 2089 96

RG-45977/Zr16 153 71 420 0,17 6,563 0,225 0,347 0,010 0,80 2192 65

Table 2.  Rutile and zircon U-Th-Pb data obtained by in situ Laser Ablation ICP-MS. *Concentration 
uncertainty c.20%. **Data not corrected for common-Pb. Decay constants52.



www.nature.com/scientificreports/

8Scientific REPOrTS |  (2018) 8:15452  | DOI:10.1038/s41598-018-33823-y

repetition rate of 3 Hz, a fluence of 3.5 J/cm2 and spot diameters of 15 and 33 µm for zircon and rutile, respectively. 
The signals of 204Pb (+Hg), 206Pb, 207Pb, 208Pb, 232Th, and 238U were acquired during each analysis45. Background 
levels were measured on-peak with the laser off for ~30 seconds, followed by ~60 seconds of measurement with 
the laser firing and then ~30 seconds of washout time. Reduction of raw data was carried out using the GLITTER® 
software package of Macquarie Research Ltd46. Isotope ratios were corrected for laser-induced and instrumental 
mass fractionation via sample-standard bracketing using the GJ-1 zircon47 and Sugluk-4 rutile48 reference mate-
rials. Concentrations of U, Th, and Pb were calculated by normalization to the certified composition of GJ-146 
and 9150049. Data were not corrected for common Pb. Concordia diagrams were generated for each sample using 
the Isoplot/Ex v. 2.49 software of 50. Error ellipses for each point are shown at the 2σ level and incorporate both 
internal and external uncertainties. The 91500 zircon and PCA-207 rutile48 were analysed along with the sam-
ples, to independently monitor the external precision and accuracy of the measurements. The pooled ages for 38 
analyses of 91500 and 27 analyses of PCA-S207 conducted over the course of the study were 1064.9 ± 4.5 Ma and 
1862.2 ± 6.9 Ma, respectively.

Trace elements.  Around 50 mg of powdered sample was mixed with 1 g of ultrapure lithium metaborate and 
tetraborate (4:1). After heating at 1000 °C, the bead was re-dissolved in 50 ml of HNO3 5% plus traces of HF. After 
ad-hoc dilution, the sample was measured on the Agilent 7700 ICP-MS at ULB, Belgium. BHVO standard was 
used to ensure the precision and reproducibility of the measurements, which was better than 5% for the elements 
presented here.

Sm-Nd systematics.  After crushing, ~200 mg of powder have been dissolved in a mixture of ultrapure 
HF:HNO3 (1:3). After removing the supernatant, the solid residue has been re-dissolved by the same but fresh 
mixture in high-pressure vessels to ensure a complete dissolution of refractory phases such as zircon. The two 
fractions were recombined and after evaporation, HCl 6 N was added. Once the solution was clear, a small aliquot 
was taken and spiked with a mixed 150Sm-148Nd spike and the mixture was equilibrated 24 h on hotplate. Both 
unspiked and spiked aliquots were purified on a cationic resin by rinsing in 1.5 N HCl and collecting REE in 6 N 
HCl. Then, REE were purified from each other using home-made HDEHP resins. Both spiked and unspiked cuts 
have been measured on the HR-MC-ICP-MS Nu-Plasma 1 at ULB, Belgium. For the unspiked cut, the value was 
corrected for mass fractionation by using the ratio 146Nd/144Nd = 0.7219, and then for the accepted Rennes Nd 
standard value 143Nd/144Nd of 0.511963. The internal total reproducibility (n = 9) was better than 22 ppm. The 
measurement was replicated and values are well-within errors. For the spiked cut, mass fractionation was calcu-
lated by iterative calculation as in51.
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