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ABSTRACT

Detection of diffraction-limited spots in single-
molecule microscopy images is traditionally per-
formed with mathematical operators designed for
idealized spots. This process requires manual tun-
ing of parameters that is time-consuming and not al-
ways reliable. We have developed deepBlink, a neural
network-based method to detect and localize spots
automatically. We demonstrate that deepBlink out-
performs other state-of-the-art methods across six
publicly available datasets containing synthetic and
experimental data.

INTRODUCTION

In biomedical research, the detection, counting and local-
ization of sub-diffraction fluorescent signals (spots) repre-
sent essential steps in various imaging applications includ-
ing particle tracking in live cell imaging data and quan-
tification of mRNAs in single-molecule fluorescent in situ
hybridization (smFISH). While advances in smFISH-based
spatial transcriptomics have enabled the quantification of
thousands of mRNAs in single cells, these methodologies
have focused on the development of transcript barcoding
strategies for multiplexing and have relied on conventional
threshold-based detection of single mRNA molecules (1,2).
Accurate, high-throughput spot detection and localization
in single-molecule fluorescent microscopy images with vary-
ing background brightness levels and spot qualities, how-
ever, poses a challenge for current spot detection methods.
Current methods such as the broadly adopted TrackMate
(3) are based on intensity thresholds and rely on mathemat-
ical operators (e.g. Laplacian of Gaussian) that require ad-
hoc adjustments of parameters on a cell-by-cell and image-
by-image basis. These adjustments are time consuming and
not always reproducible as they rely on subjective selection

of thresholds. Fully automated, user-friendly, accurate, and
reproducible spot detection and localization methods are
currently not available.

Deep Learning is a machine learning method that uses ar-
tificial neural networks to automatically learn features and
patterns from raw data. Even though deep learning requires
labeled data, once a model is trained, it can be used out of
the box without further modifications or parameter adjust-
ments. Recent advances in deep learning have consolidated
the convolutional neural network (CNN) as the state-of-
the-art for computer vision applications (4,5). Previously,
CNNs have been used for threshold-independent particle
detection (6–8), however, to the extent of our knowledge,
none of these approaches can localize particle positions
with sub-pixel resolution. This prevents accurate positional
measurements and thus their application in high-resolution
microscopy. In addition, while the source code of some
methods is available, none of them have been made easily
accessible for non-experts.

Here we present deepBlink, a command-line interface to
automatically detect and localize diffraction-limited spots.
deepBlink exploits neural networks to achieve sub-pixel lo-
calization of spots in microscopy images. By benchmarking
deepBlink against state-of-the-art methods in spot detec-
tion across multiple datasets with different signal-to-noise
ratios (SNRs), we show that deepBlink can detect spots
more accurately and with higher precision.

MATERIALS AND METHODS

Training data

Datasets ‘Microtubule’, ‘Receptor’, and ‘Vesicle’ were cre-
ated from the ISBI Particle Tracking Challenge 2012 (9).
Each dataset consisted of 1200 images and was split into
training/validation/test splits ensuring equal distribution
of signal to noise ratios and densities. The synthetic ‘Parti-
cle’ dataset was generated using the ‘Synthetic Data Gen-
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erator’ Fiji plugin (http://smal.ws/wp/software/synthetic-
data-generator/) described in Smal et al. (10). A pool of 576
images was created with various signal to noise ratios and
background intensities to mimic small diffraction-limited
particles. The ‘smFISH’ dataset was created from a pool
of 643 manually annotated smFISH images originally pub-
lished in Horvathova et al. (11). The ‘SunTag’ dataset con-
sists of 544 manually annotated live cell SunTag images
originally published in Mateju et al. (12).

Dataset labeling

Labeling for both the experimental smFISH and SunTag
datasets was performed using TrackMate. Each image was
subjected to manual thresholding and falsely detected spots
were manually corrected. Labels were exported using the
‘All Spots statistics’ tool. Once all images were labeled, the
deepBlink command deepBlink create was used to
convert all images and labels into a partitioned dataset file.

Network architecture

deepBlink’s default network is based on the U-Net archi-
tecture (13). We used a second encoder to reduce the fully
sized representation into a smaller one corresponding to the
cell-size. This second encoder is variable in its depth to ad-
just for the configured cell-size. Each encoding step consists
of a convolutional block, squeeze and excitation block, and
spatial dropout (Supplementary Figure S1 and Supplemen-
tary Table S1). Decoding steps had the same layout but did
not employ dropout. The architecture was implemented in
Python version 3.7 using the TensorFlow framework ver-
sion 2.2.

Network training

All deepBlink trainings were performed using the public
command-line interface on version 0.1.0 on the default set-
tings provided by deepBlink config. In particular, we
used a cell-size of 4, a dropout rate of 0.3, a batch size of 2, a
learning rate of 0.0001, and the AMSGrad stochastic opti-
mizer (14). Training was run on a computer cluster with the
following specifications: 64-bit CentOS Linux 7 (Core), 96
cores (3926 threads) Intel(R) Xeon(R) Platinum 8168 CPU
2.70 GHz, 1007 GB RAM, 8 Nvidia GeForce RTX 2080 Ti
GPUs (11 GB VRAM). Training on average took around
5 h per model. All models were trained for 200 epochs.

Benchmarking of TrackMate

TrackMate (3) is not a machine learning method and relies
on manual thresholding. To find the best parameters, we op-
timized TrackMate on the pool of training and validation
images from each dataset. More specifically, we performed
a grid search across different values of ‘Estimated blob di-
ameters’ in the ‘LoG’ filter option in Fiji. Subsequently, the
resulting quality scores were normalized to the median of all
images. Twenty linearly distributed quantiles were applied.
At each quantile, the F1 integral score was calculated for
each image. The finally selected parameters (blob diameter
and absolute quantile value) maximized the mean F1 score
on the combined training and validation dataset.

Benchmarking of DetNet

Due to the lack of a publicly available implementation of
DetNet (8), we implemented the model and followed the
training procedure in the publication. Notably, the num-
ber of parameters in our model was 10x larger than orig-
inally described. Using the coordinate locations, ground
truth output masks were created with a single pixel of value
one at the centroid position. The output segmentation maps
were converted back to coordinates by binarizing and tak-
ing the centroids of each fully connected component. A hy-
perparameter search was performed across twenty linearly
distributed sigmoid shifts �. The � with the highest valida-
tion F1 score was used for evaluation on the test set. Sup-
plementary Table S6 lists the � values used for each dataset.

Benchmarking of deepBlink

deepBlink was trained through the command-line interface
version 0.1.0. All datasets were processed individually but
without dataset-specific hyperparameter optimization. The
models were then evaluated on the corresponding test sets.

Benchmarking of execution time

All methods were benchmarked on the same set of
512 × 512 px images after pre-loading dependencies to only
measure the time to predict coordinates from an in-memory
image. Time measurements were performed using Python’s
datetime module on a MacBook Pro with a 2.4 GHz
Quad-Core Intel Core i5 and 16GB 2133 MHz LPDDR3
Memory. Mean and standard deviation was measured on
100 images for seven rounds each.

F1 integral score

The F1 integral score was selected as a metric to com-
pare the detection and localization accuracy of given mod-
els. A linear distribution of 50 cutoff values was created
between 0 and 3 px. At each cutoff value, ground truth
and predicted coordinates with Euclidean distances be-
low the given cutoff were matched using the Hungarian
method (15). Finally, the trapezoidal rule was used to in-
tegrate the F1 score curve (Supplementary Figure S3).
The integrated value was then normalized to the maxi-
mum area resulting in a minimum score of 0 and a max-
imal score of 1. An algorithmic overview is described in
Supplementary Algorithm S1 of which an implementation
can be found in deepBlink’s source code under deep-
blink.metrics.f1 integral.

Root mean square error

The root mean square error (RMSE) was defined as the
mean Euclidean distance of all true positive coordinates at a
cutoff value of 3 px. True positive coordinates are predicted
coordinates with an assignment to a ground truth coordi-
nate.

RMSE(ŷ, y) =
√√√√

n∑
i=1

(ŷi − yi )2

n
(1)

http://smal.ws/wp/software/synthetic-data-generator/
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Figure 1. Overview of deepBlink’s functionality. deepBlink requires a pre-trained model that can be obtained by training from scratch using custom images
and coordinate labels (1–3) or downloaded directly (4). To predict on new data, deepBlink takes in raw microscopy images (5) and the aforementioned
pre-trained model (6) to predict (7) spot coordinates. The output is saved as a CSV file (8) which can easily be used in further analysis workflows (9). An
example use case is shown for a smFISH analysis with blue indicating DAPI staining.

RESULTS AND DISCUSSION

Here we present deepBlink, a novel neural network-based
tool to detect and localize diffraction-limited spots. deep-
Blink can batch process images with different background
brightness levels and spot qualities without relying on man-
ual adjustments of thresholds. deepBlink’s interface pro-
vides the ability to detect and localize spots on images us-
ing a pre-trained model (Figure 1, steps 5–9). Pre-trained
models are available for download using deepBlink (Fig-
ure 1, step 4). Alternatively, new models can also be trained
in deepBlink using custom-labeled data (i.e. images and
their corresponding spot-coordinate annotations) (Figure
1, steps 1–3). To customize training, the plug-and-play soft-
ware architecture with a central configuration file allows
more experienced deep learning practitioners to easily ad-
just existing functionalities or add new ones. Instructions on
how to install and use deepBlink are described in a tutorial
(https://youtu.be/vlXMg4k79LQ).

The current default network architecture is a fully con-
volutional neural network that exploits the U-Net architec-
ture (13) to encode features that are used for spot coordi-
nate prediction (Supplementary Figure S1). The network
takes in microscopy data and maps the input images onto
smaller regions we termed ‘grid-cells’. For each grid-cell, the
network predicts the probability and localization of a spot
within its region. This process works similarly to the region-
based bounding-box predictions originally developed in the
YOLO architecture (16).

Each grid-cell returns three values corresponding to the
probability, the x, and the y position of a single spot. The
performance of the network critically depends on the cell-
size (width/height in pixels of one grid-cell in the original
image) as too small sizes can lead to a class imbalance.
Given a fixed number of spots in an image, decreasing the
cell-size results in fewer grid-cells containing a spot. This
will create an imbalance for the classification part of the

https://youtu.be/vlXMg4k79LQ
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loss, favoring background (grid-cells without spots). Images
with higher spot densities perform better even at smaller
cell-sizes (Supplementary Figure S2). In contrast, bigger
cell-sizes increase the risk of one grid-cell containing mul-
tiple spots that pose the known design limitation as one
grid-cell cannot regress to multiple coordinates (17). We
found a cell-size of four to be ideal for most scenarios, as
only around 0.0003% of grid-cells contained more than one
spot across all datasets used (Supplementary Figure S2). Al-
though a cell-size of four was found to be optimal, datasets
containing significantly more or less dense regions of spots
could require smaller or larger cell-sizes respectively. deep-
Blink allows for the configuration of cell-sizes when training
new models.

The basic building blocks of our architecture consist of
three convolutional layers followed by a squeeze and excita-
tion layer (18). We employ spatial dropout layers (19) before
every downsampling step to increase training stability and
to reduce overfitting. We trained the models by minimizing
the dice loss for the classification (Jclass, Equation 2) and the
average root mean square error (RMSE) across all spots (n)
for the localization (Jloc, Equation 3). The objective func-
tion (J) is shown in Equation 4:

Jclass = 1 − 2 |ŷclass · yclass|
|ŷclass| + |yclass| (2)

Jloc =
√√√√

n∑
i=1

(ŷloc,i − yloc,i )2

n
(3)

J = Jclass + 2 · Jloc (4)

To determine the importance of each component in our
network, we performed ablation experiments where we re-
moved individual elements to measure the decrease in per-
formance (Supplementary Table S2). This showed us that
the most important factor for model performance was the
usage of dice loss. Dice loss has previously been shown to
improve performance on class imbalanced datasets (20),
which is common in spot detection as a majority of the
image is background (i.e. not a spot). A greater weight on
localization loss over detection loss also improved model
performance. This is likely because it might be more chal-
lenging for the network to regress on spot coordinates
rather than to detect spot-containing grid-cells. Another
factor impacting performance was the use of the squeeze
block. Squeeze blocks might allow for finer adjustments
on the most important features by scaling convolutional
feature maps (18). We experimented with other architec-
tural blocks, namely inception (21) and residuals (22),
that have been employed in similar computer vision tasks
(23) but were not able to observe any significant improve-
ments. We found that having a constant number of fil-
ters (64) across every layer of the network performs bet-
ter than the typical increase/decrease in filters for every
downsampling/upsampling step, respectively. This suggests
that higher-level features found in deeper layers are less im-
portant for spot detection. We found 64 filters to be a good
trade-off between model performance and model size. Fur-
thermore, the reduction in overfitting by spatial dropout

layers (19) was reflected in the lower performance upon ab-
lation. Lastly, the bottom skip connection might allow eas-
ier gradient flow similar to residual blocks (22) if skipped
layers are not useful or do not add value in overall accu-
racy.

To compare the performance of deepBlink to previously
published methods, we used a new metric we termed the ‘F1
integral score’ (see Supplementary Figure S3 and Methods)
that takes into account both spot detection and spot local-
ization. The F1 integral score ranges between zero and one
where one corresponds to perfect prediction and zero de-
notes that no prediction is within a 3px radius around the
ground truth spot positions. Additionally, to compare de-
tection efficiency and localization precision separately, we
used the classical F1 score at a 3 px cutoff and the RMSE
respectively. The F1 score measures the accuracy with which
true positive spots are detected in a radius of 3 px. The F1
score ranges from zero to one where one denotes that all
spots were detected and zero that no prediction is within a
3 px radius. To evaluate localization precision, the RMSE
was calculated on true positive spots only. The RMSE is
zero for perfect localization and increases as precision de-
creases.

To measure performance on a variety of spot sizes,
shapes, densities and signal-to-noise ratios (SNRs), we used
two experimental, manually labeled microscopy datasets
(smFISH (11) and SunTag live cell single particle track-
ing (12)) and four synthetic datasets (a custom Particle
dataset generated using (10) and the Microtubule, Vesicle,
and Receptor datasets from the International Symposium
on Biomedical Imaging (ISBI) particle tracking challenge
(9)). Exemplary images of each dataset are displayed in
Supplementary Figure S4. Since manual labeling is time-
consuming, we measured how many images have to be la-
beled until only marginal performance increases are ob-
served by adding more images. Based on the F1 integral
score, a training set size of around 100 images is enough
to achieve sufficient prediction quality on datasets with
narrow SNR distributions (Supplementary Figure S5a, b),
while more images are required for datasets with broader
distributions (Supplementary Figure S5a, c). This is be-
cause broader SNR distributions have more variability and
will thus require more labeled training examples for the net-
works to capture this variability.

We compared the performance of deepBlink against
a popular classical method and a state-of-the-art deep
learning-based method. TrackMate (3) is a Fiji plugin that
uses the Laplacian of Gaussian (LoG) to detect and localize
spots. This would require the setting of manual thresholds
on an image-by-image basis for highly variable datasets.
DetNet (8) is a more recent deep learning-based method
that has been shown to perform well on the synthetic ISBI
datasets. To improve the fairness of the comparison, we op-
timized hyperparameters for both benchmarking methods
(TrackMate and DetNet) on every dataset individually (see
Methods).

On average, deepBlink is able to significantly outperform
other methods on all datasets (Table 1). We found that deep-
Blink performs excellently on all datasets both in detection
(average efficiency above 85%, Supplementary Table S3)
and in localization (average error below 0.5 pixels, Supple-
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Table 1. F1 integral score (mean ± standard deviation) results for three methods across six datasets. Statistical significance was determined by one-sided
Wilcoxon signed-rank test (deepBlink greater than) with **P < 1e−2, ****P < 1e−4. Size of test set: 129 smFISH, 105 SunTag, 64 Particle, 240 Microtubule,
240 Receptor and 240 Vesicle. Bold signifies the highest score

TrackMate DetNet deepBlink

Real smFISH 0.865 ± 0.177 **** 0.442 ± 0.250 **** 0.905 ± 0.145
SunTag 0.652 ± 0.328 ** 0.036 ± 0.040 **** 0.712 ± 0.279

Synthetic Particle 0.941 ± 0.008 **** 0.828 ± 0.014 **** 0.944 ± 0.008
Microtubule 0.380 ± 0.228 **** 0.298 ± 0.149 **** 0.637 ± 0.261
Receptor 0.606 ± 0.344 **** 0.517 ± 0.258 **** 0.682 ± 0.310
Vesicle 0.459 ± 0.198 **** 0.520 ± 0.245 **** 0.732 ± 0.259
Average 0.651 ± 0.214 0.440 ± 0.159 0.769 ± 0.210

mentary Table S4). TrackMate is able to slightly exceed our
performance in detection efficiency on the Particle dataset
and localization precision on the Receptor dataset. This is
most likely because LoG filters are designed for particle-
like objects. Importantly, however, deepBlink is able to out-
perform TrackMate on other particle-like datasets, specifi-
cally the experimental smFISH and SunTag datasets. Pre-
sumably, because experimental microscopy images have a
higher image-to-image variability and thus our TrackMate
thresholds that were determined based on the training set
might not be optimal for the evaluated test set. In contrast,
deepBlink outperforms DetNet across all datasets both in
detection and localization. Taken together, while all of these
methods can detect most spots, deepBlink still outperforms
the other two pieces of software without any dataset-specific
tuning. This will make deepBlink more accessible for a
large variety of applications. Additionally, we fitted a Gaus-
sian function on the original input data initialized by deep-
Blink’s prediction output and did not observe any improve-
ment in localization (Supplementary Table S4). This further
demonstrates deepBlink’s localization precision.

We compared the execution time on a set of sample
images between all methods and found that deepBlink is
slower than both TrackMate and DetNet (TrackMate: 30
± 6 ms, DetNet: 253 ± 31 ms, deepBlink: 502 ± 27 ms).
Since TrackMate, however, requires manual adjustment of
parameters on an image-by-image basis, the gain in execu-
tion speed is offset by the time required to manually set these
parameters. DetNet is marginally faster than deepBlink, but
as previously mentioned, has markedly worse performance.

To determine the effect of spot densities and SNRs on
detection performance, we used the official categories from
the ISBI particle tracking challenge and divided the Mi-
crotubule, Receptor, and Vesicle datasets accordingly (see
Methods). In general, both spot density and SNR do not af-
fect the performance of deepBlink except for very low SNRs
where no model is able to perform well (Supplementary Ta-
ble S5, Supplementary Figures S6 and S7).

deepBlink detects and localizes spots on 2D data, but im-
portantly, one can easily use coordinate outputs for multi-
dimensional data analysis. This allows deepBlink’s appli-
cation in multi-channel colocalization, particle tracking
across time, and three-dimensional spot detection. To this
end, deepBlink is applied on every channel/frame/slice of
a multi-dimensional image separately. Multi-dimensional
detection is then achieved by linking identified particles.
Example workflows are shown on GitHub (https://github.
com/BBQuercus/deepBlink/tree/master/examples).

In summary, deepBlink enables automated detection
and accurate localization of diffraction-limited spots in a
threshold-independent manner. deepBlink is packaged in
an easy and ready to use command-line interface and KN-
IME node, allowing both novel and expert users to effi-
ciently analyze their microscopy data. All pre-trained mod-
els are available for download from Figshare (see Methods)
or through the command-line interface. We benchmarked
deepBlink on six publicly available datasets that contain
both synthetic images as well as smFISH and live cell (Sun-
Tag) imaging data, each with a variety of spot sizes, shapes,
densities, and signal-to-noise ratios. We show that deep-
Blink outperforms all benchmark methods, both in detec-
tion and localization across these datasets. We expect that
our improved detection efficiency and localization preci-
sion will also enhance current particle tracking analyses and
make image processing more reliable and reproducible.

DATA AVAILABILITY

All datasets with their training, validation, and test splits
are available on Figshare (https://figshare.com/projects/
deepBlink/88118) together with all trained models used for
benchmarking. Further data will be made available from the
corresponding authors upon request.

deepBlink’s command-line interface is available on PyPI.
Updated versions of the software can also be found
on GitHub https://github.com/BBQuercus/deepBlink. The
KNIME node is available on KNIME Hub (https://hub.
knime.com/bbquercus/spaces/Public/latest/deepBlink).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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