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ABSTRACT

Recently, Caribbean coasts have experienced atypical massive arrivals of pelagic
Sargassum with negative consequences both ecologically and economically. Based
on deep learning techniques, this study proposes a novel algorithm for floating
and accumulated pelagic Sargassum detection along the coastline of Quintana Roo,
Mexico. Using convolutional and recurrent neural networks architectures, a deep neural
network (named ERISNet) was designed specifically to detect these macroalgae along
the coastline through remote sensing support. A new dataset which includes pixel values
with and without Sargassum was built to train and test ERISNet. Aqua-MODIS imagery
was used to build the dataset. After the learning process, the designed algorithm achieves
a90% of probability in its classification skills. ERISNet provides a novel insight to detect
accurately algal blooms arrivals.

Subjects Computational Science, Environmental Impacts, Spatial and Geographic Information
Science

Keywords Remote Sensing, Neural Networks, Algal blooms, Sargassum, MODIS, Mexico, Deep
learning

INTRODUCTION

Pelagic Sargassum is formed by brown macroalgae S. fluitans and S. natans, and constitutes
floating ecosystems serving as habitats and nurseries for important marine species like sea
turtles, fishes, invertebrates, and micro and macro-epiphytes (Rooker, Turner ¢ Holt, 2006;
Witherington, Hirama ¢ Hardy, 2012). However, over the last seven years, Caribbean shores
have experienced atypical massive shoals of pelagic Sargassum, with exceptional abundances
for the Mexican Caribbean during the summers of 2015 and 2018. Massive influx was
observed in numerous Caribbean beaches linked with the accumulation of Sargassum
spp. (hereafter Sargassum)(Gower, Young & King, 2013; van Tussenbroek et al., 2017).
Since 2011, these extensive off-shore Sargassum shoals have appeared in unprecedented
ways in oceanic waters off the coast of northern Brazil (De Széchy et al., 2012; Gower,
Young & King, 2013; Sissini et al., 2017), actually, this events of Sargassum blooms were
registered on the African coast as well (De Széchy et al., 2012; Maréchal, Hellio & Hu, 2017).
Those shoals likely have origins in the North Equatorial Recirculation Region (NERR)
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(Schell, Goodwin ¢ Siuda, 2015), suggesting that they did not emerge from the traditional
northwestern Atlantic Ocean region known as “The Sargasso Sea”. With MODIS (Moderate
Resolution Imaging Spectroradiometer) and MERIS (Medium Resolution Imaging
Spectrometer) satellite images, it was possible to track a shift in their distribution patterns
in order to identify a new possible distribution source. To track the patterns of Sargassum,
Gower, Young & King (2013) used the maximum chlorophyll index (MCI) derived from
MERIS level 1 radiances and the MODIS Red Edge (MRE). Likewise Sissini et al. (2017)
used MODIS Aqua 250 m level 1 radiance images (band 1, 645 nm; band 2, 859 nm) to
find Sargassum distribution patterns.

The biomass reported since 2011 has no precedent (van Tussenbroek et al., 2017;
Rodriguez-Martinez, van Tussenbroek ¢ Jorddn-Dahlgren, 2016). A crucial difference is
that Sargassum does not remain in the open ocean, but rather washes ashore at the coast.
The accumulated biomass has resulted in negative conditions both economically and
ecologically (Hu et al., 20165 Schell, Goodwin ¢ Siuda, 2015).

This excessive biomass along the coast modifies beaches and increases bioerosion.
This has a direct influence on the tourist industry, and depending on the Sargassum
amounts, these generate bad smell, disrupts the access to tourists, and even could have
repercussions for health (Maréchal, Hellio ¢~ Hu, 2017). The accumulation is also associated
with physical-chemical water change, anoxia, and generation of hydrogen sulphide (Louirme,
Fortune ¢ Gervais, 2017). Sargassum sinking can contribute to the organic matter input, the
shallow and the deep-sea communities as well (Wang et al., 2018). The decomposition of
Sargassum biomass on the beaches is a disturbance agent that can also modify the physical,
physiological and ecological processes in near-shore coral reef communities. The modified
flow of organic matter caused by this disturbance could have negative effects at different
scales. The negative effects would also affect tourism, local fisheries (Cuevas, Uribe-Martinez
¢ Liceaga-Correa, 2018; Ferreira et al., 2009; Solarin et al., 2014), and benthic communities.
The case of coral reefs is relevant, as they are the most threatened marine ecosystems in the
world (Hoegh-Guldberg et al., 2007; Harvey et al., 2018) and although the whole ecological
impacts remain still unknown, and we consider that one of the most affected areas of
Sargassum accumulations is the reef lagoon. Excessive organic material leads to turbidity
and reduced light causing hypoxia in seagrasses and corals. This has increased coral
mortality and damaged seagrasses and associated fauna (Franks, Johnson ¢ Ko, 2016; van
Tussenbroek et al., 2017; Louime, Fortune ¢ Gervais, 2017). According to Spalding et al.
(2017) coral reefs provide nearly US$35.8 billion in net benefits of goods and services
to world economies each year. This includes tourism, fisheries, and coastal protection.
Caribbean region represents US$1,853 million of those benefits. Annually around 10
million tourists visit the Mexican Caribbean (Rioja-Nieto ¢ Alvarez-Filip, 2018). Economic
loss caused by Sargassum arrival can reduce those benefits. In 2015 alone, the state
government invested US$3 million to remove the macroalgae from tourist areas. More
than 4,400 workers were hired. In 2018, between June and August US$3.1 million were
spent on wages for 450 workers.

Through spectral water-leaving radiance or surface reflectance, remote sensing has served
as the primary means to study ocean constituents suspended or dissolved in water (Dickey,
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Lewis ¢ Chang, 2006). Floating Algae Index (FAI) proposed by Hu (2009) has been the
main method used in remote sensing to assess presence/absence of floating algae in the open
sea (Hu, 2009). Research has been carried out to assess and monitor pelagic Sargassum
in the Western Central Atlantic, Yellow Sea, the Gulf of Mexico, and the Caribbean
Sea (Putman et al., 2018). On the other hand, sensors with several spatial, temporal,
spectral and radiometric features have been used for the study of Sargassum (Dickey, Lewis
& Chang, 2006; Hu et al., 2015; Cuevas, Uribe-Martinez & Liceaga-Correa, 2018). The use
of platforms Aqua-MODIS, Terra-MODIS and Landsat imagery is highlighted due to their
wide coverage and worldwide heritage, as well as being open-access datasets (Hu, 2009;
Hu et al., 2015; Wang ¢» Hu, 2016). Regarding the coasts of the Gulf of Mexico and the
Caribbean Sea, (Cuevas, Uribe-Martinez ¢ Liceaga-Correa, 2018) present a methodology
to detect Sargassum in the northeastern region of the Yucatan peninsula applying the
”Random Forest” algorithm to a set of Landsat 8 imagery previously selected. The previous
studies are valuable contributions to the detection of floating vegetation like pelagic
Sargassum. However, no study has dealt with the probability of presence of Sargassum
along the coastline of the Mexican Caribbean. Considering the potential damage and the
negative effects of the blooms not only for the tourism, but also for the health of coastal
ecosystems, it is of utmost importance to develop precise methods to detect the algal bloom
events.

From the optical point of view, the oligotrophic waters of the Quintana Roo coasts are
transparent under non-sargasso conditions. In 2015 and 2018 due to the constant arrival
of Sargassum, its decomposition caused murky brown waters, which in turn altered the
nearshore water surface reflectance values (van Tussenbroek et al., 2017).

An Artificial Neural Network (ANN) is a mathematical model inspired by the biological
behavior of neurons and how they are organized. The ANNs are massive parallel systems
with large numbers of interconnected simple processors. A single layer perceptron (SLP)
is a feed-forward network based on a threshold transfer function. SLP is the simplest
type of artificial neural network and can only classify linearly-separable cases (Jain,
Mao & Mohiuddin, 1996). The multilayer Perceptron (MLP) is a generalization of the
simple Perceptron and arose as a consequence of the limitations of said architecture in
relation to the problem of non-linear separability. Minsky ¢ Papert (2017) showed that
the combination of several MLPs could be an adequate solution to treat certain non-linear
problems. Neural networks have had many applications in various areas of knowledge
such as: control systems (Hunt et al., 1992), business (Vellido, Lisboa ¢ Vaughan, 1999),
manufacturing (Zhang & Huang, 1995) and medicine (Baxt, 1991) to mention just a few.

Deep Learning (DL) was presented in Science magazine in 2006. Since then, multiple
algorithms have been developed, including convolutional neural network (CNN), recurrent
neural network (RNN), stacked auto-encoder (SAE) and deep belief network (DBN).
Many variants of deep learning algorithms are a combination of two or more of these
algorithms (Zhang et al., 2018).

DL is a subfield of machine learning inspired by the ANN and is formed by a set
of algorithms that try to model high-level abstractions in data using architectures
composed of multiple non-linear transformations (LeCun, Bengio ¢ Hinton, 2015). In
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DL, a Convolutional Neural Network (CNN) is a type of ANN composed of multiple layers
of convolutional filters of one or more dimensions, and is very effective for tasks of artificial
vision, such as classification and segmentation of images (Schmidhuber, 2015).

Another type of NN widely used in DL is the Recurrent Neural Network (RNN). An
RNN implements a Long Short-term memory architecture (LSTM), which makes RNN
an ideal tool for modeling and classifying time series (Schmidhuber, 2015). Deep Learning
has been used successfully in multiple areas such as biomedicine (Marmoshina et al., 2016),
medicine (Greenspan, van Ginneken & Summers, 2016), time series prediction (Weigend,
2018), speech recognition, computer vision, pattern recognition and remote sensing (Liu
et al., 2017), among others.

Our study arose from the following hypothesis: It is possible that a Deep Neural Network
(ERISNet) learns automatically the relationships among different corrected reflectances
(rhot and rhos) able to detect the presence of Sargassum without the use of existing index
(i.e., NDVI, FAI, AFA], etc.) from a properly labeled dataset. The main objective of this
study is to analyze if we can detect Sargassum along the Mexican Caribbean coastline by
using MODIS data and Deep Learning Networks with an accuracy of more than 80%.
Under this view a new algorithm for Sargassum detection is presented. This algorithm is
based on DL techniques. Hence, our aim was to classify the presence/absence of pelagic
Sargassum along the coastline of Quintana Roo, Mexico using a NN and MODIS data. This
study offers a challenge for remote sensing studies providing a capable tool to determine
variables allowing to detect Sargassum pixel by pixel.

MATERIALS AND METHODS

948 km of coastline of the state of Quintana Roo, Mexico was defined as the study area
to test and to develop the proposed algorithms. Additionally, by using MODIS satellite
imagery, a set of data containing official information about zones and dates with and
without presence of Sargassum was also defined.

Study area

We selected the entire coast of Quintana Roo, located in the eastern zone of the
Yucatan Peninsula, Mexico. One-kilometer-sized MODIS pixels in front of the beach
line were selected (from 21.496124 Latitude, -87.546677 Longitude, to 18.477211 Latitude,
-88.293625 Longitude), bordering the coast of Quintana Roo. This region is the main
vacation destination in Mexico. In addition, the area is located where massive arrivals of
Sargassum were recorded in 2015 (van Tussenbroek et al., 2017) and 2018.

Dataset definition and processing

To build the dataset, three components were developed: (1) A list of sites and dates with
and without Sargassum based on official information compiled by the government of
Quintana Roo (2018) and field work in 2015 and 2018; (2) sets of Aqua-MODIS imagery,
both with and without Sargassum, for the coast of Quintana Roo based on the list of dates
and sites mentioned above; and (3) Software was developed (extract_data.py) to add the
list of sites and images set, which ultimately outputs the data set.
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Area and dates of interest

The list of sites and dates with and without Sargassum used in this study was built as
follows. First, a pixel list of the entire coastal zone of the state of Quintana Roo at a spatial
resolution of 1 km was built. This pixel list included the following parameters: latitude,
length, position on the x-axis, position on the y-axis, township, and date. With the support
of Seadas software (https://seadas.gsfc.nasa.gov/), pixels from an AQUA-MODIS image
with WGS84 projection were selected. These 948, one-kilometer-sized pixels represented
all of the coast of Quintana Roo. Subsequently, based on official information from the state
of Quintana Roo (https://www.qroo.gob.mx/noticias/sargazo) and field work, the pixels
where Sargassum was observed, were labeled. The labeling was done for 29 different dates.
A total of 115 different pixels were found with Sargassum.

Selection of Aqua-MODIS swath imagery

Based on the known Sargassum arrivals in the coastal zone of Quintana Roo, Aqua-
MODIS swath images were also used in the construction of the dataset. The Julian
day and the Universal Time Coordinated (UTC time) of all selected swath images
(with and without Sargassum) were recorded (https://lance-modis.cosdis.nasa.gov/cgi-
bin/imagery/realtime.cgi) and then the PDS files (LO) were downloaded from MODIS
OceanData (https://oceandata.sci.gsfc.nasa.gov/MODIS-Aqua/L0/). In total, 80 PDS files
were downloaded (42 files corresponding with Sargassum dates and 38 files without). After
the processing and re-projection of all files, an RGB composition for each swath image was
made to allow a visual quality check of each image. Due to the presence of clouds in the area
of interest, a total of 19 images were discarded (eight images with Sargassum and eleven
without). Afterwards, 30 files with Sargassum and 29 files without Sargassum remained as
the imagery used in the development of the dataset (MODIS-Aqua, 2018). An example of
these images is shown in Fig. 1. Not all the images were ideal for network training, because
of excessive cloudiness.

Data processing

Data processing started with the swath images (PDS files) downloaded from the ocean
color data website (https://oceandata.sci.gsfc.nasa.gov/MODIS-Aqua/L0/). Based on

the software SeaDAS7. 5. 1, PSD file goes through different processing levels to evolve
from level 0 (LO) to level 2 (L2). First, LO file was processed to obtain the level 1A
file (L1A). After that, the file GEO was created. Based in files L1A and GEO, level

1B file (L1B) was produced. Next, L2 product was created and then re-projected.
Features of MODIS data processing levels can be consulted on the MODIS Nasa website
(https://modis.gsfc.nasa.gov/data/dataprod/). Using latitude and longitude pixel-features
and the in-house computer program (extract_data.py), surface reflectance (rhos) and top
of atmosphere reflectance (rhot) MODIS data corresponding to the coastal zone were
extracted and were used to build the dataset. The wavelength bands selected for this study
were: 412, 469, 555, 645, 859, 1,240 and 2,130 nm. In the Pseudocode 1 the processing
workflow is shown.
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Figure 1 Sample of Aqua-MODIS imagery used in this study, (Day/UTC). (A) From 2015 232/18:55,
from 2018: (B) 92/19:20, (C) 94/19:10, (D) 158/19:10, (E) 200/19:45 and (F) 201/18:50.
Full-size Gl DOI: 10.7717/peer;j.6842/fig-1

Pseudocode 1 Scheme of data processing

1: database < empty

2: for all LO datafiles do
3:  L1A < modis_L1A.py(LO file)
4 GEO <« modis_GEO.py(L1A)
5. L1B < modis_L1B.py(L1A, GEO)
6: L2 < I2gen(L1B)

7. Reprojected < gpt.sh(L2)
8:  Data < extract_data.py(Reprojected)
9:  append_database(Data)
10: end for

11: return database

A database was built with the pixel data of each band for all selected dates. The dataset
included 14 different attributes and 4,515 instances, of which 2,306 corresponded to
presence of Sargassum and 2,209 without. Additional features are shown in Table 1.

ERISNet a deep learning network for Sargassum detection

ERISNet is a deep neural network designed to detect Sargassum along the coastline. ERISNet
is inspired mainly on two types of architectures; Convolutional Neural Networks (CNN)
and Recurrent Neural Networks (RNN). An issue present in virtually all models of Machine
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Table 1 Dataset features.

Number of attributes 14

Data set characteristics Multivariate
Attribute characteristics Real
Associated tasks Classification
Number of instances 4515
Number of clases 2

Number of nistances with Sargassum 2306
Number of instances without Sargassum 2209

Learning is overfitting, therefore during the design of the proposed architecture, special
attention was paid to maintaining the tradeoff between optimization and generalization
of the network by using different mechanisms such as dropout, batch normalization and
weight regularization.

The structure of the convolutional block it is formed by four components: Convolutional
layer, RELU activation function, Batch Normalization, and Dropout operation. The
objective of convolutional blocks is to efficiently extract characteristics or patterns from
the input dataset. The main component of the block is a convolutional layer of 1D
(dimension one). After conducting numerous tests with different filters and sizes, the
decision was made to use a total of [64, 128, 128] filters with a size of [8, 5, 3].

With the aim of avoiding the overfitting, three mechanisms were used: dropout
regularization, weight regularization, and batch normalization. Dropout is one of the
most effective and most commonly used regularization techniques for neural networks and
is used to improve over-fit on neural networks. At each training stage, individual nodes
are either dropped out of the net with probability 1 — p or kept in the net with probability
D> so that a reduced network is left; incoming and outgoing edges to a dropped-out node
are also removed.

Weight regularization is another common way to mitigate overfitting. This involved
putting constraints on the complexity of a network by forcing its weights to take only
small values, making the distribution of weight values more regular. There are two kinds
of weight regularization: L1 and L2 regularization. L2 was used in the convolutional blocks
of ERISNet. In L2 (see Eq. (1)) a “squared magnitude” of coefficient as penalty term to the
loss function is added.

Lz(W)=W12+W22+...+W5 (1)

The convolutional block uses a Batch Normalization operation to increase the network
performance. Batch Normalization (BN), is a technique for improving the performance
and stability of ANN, providing any layer in a neural network with inputs that are zero
mean/unit variance (loffe ¢ Szegedy, 2015). During the learning process, the type of
initialization of weights could cause a digression to gradients, meaning the gradients have
to compensate for the outliers, before learning the weights to produce the required outputs.
BN regularizes this gradient by normalizing activations throughout the network. It prevents
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Figure 2 ERISNet. Sargassum Deep Neural Network. This architecture is made up of nine one-
dimensional convolutional blocks (1D-Conv m x n) with “m” filters whose size is “n”’, two recurrent
blocks (LSTM 64), and finally one Dense (classification) block.

Full-size Gl DOI: 10.7717/peer;j.6842/fig-2

small changes to the parameters from amplifying into larger and suboptimal changes in
activations in gradients.

Another component that is part of ERISNet are the recurrent blocks. The main objective
of these blocks is to provide memory to ERISNet. Recurrent neural networks (RNN) are
a special type of neural network widely used in problems of prediction in time series.
Given their design, the RNN allows information to be remembered for long periods and
facilitates the task of making future estimates using historical records. Unlike traditional
neural networks, LSTM networks have neuron memory blocks that are connected through
layers.These memory blocks facilitate the task of remembering values for long or short
periods of time. Therefore, the stored value is not replaced iteratively in time, and the
gradient term does not tend to disappear when the retro propagation is applied during the
training process.

Finally, as in the case of convolutional blocks, recurring blocks also make use of batch
normalization to improve network performance. As can be seen in Fig. 2, ERISNet consists
mainly of nine convolutional blocks and two recurring blocks.

ERISNet was designed using the programming language Python version 3.7.0 and the
library Keras 2.2.4 with TensorFlow 1.10.0 as backend.

TensorFlow is an open source library developed by the Google Brain Team for numerical
calculation using data flow graphing programming. The nodes in the graph represent
mathematical operations, while the connections or links in the graph represent the
multidimensional data sets (tensors). Tensorflow has various automatic learning algorithms
and other tools that make it ideal for the development of new methods. Keras is a Python
library that provides a clean and simple way to create Deep Learning models on top of
other libraries such as TensorFlow, Theano or CNTK.

All the architectures presented in this work were developed and trained using a Lenovo
Workstation with Intel Xeon EP processor, 64 GB of RAM, NVidia Quadro K5000 GPU
running the Linux operating system Ubuntu 18.04 64 bits.

RESULTS AND DISCUSSION

Statistical analysis with the information of bands was performed to evaluate the behavior
of the current dataset. Next, two algorithms extracted from the literature based on neural
networks and machine learning are investigated; these algorithms have shown good results
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Table 2 Mean of the rhos band. Average values of surface reflectance (rhos), at the different wavelengths (1), used to this study. Units of the wave-
lengths are nanometers (nm).

rhos_412 rhos_469 rhos_555 rhos_645 rhos_859 rhos_1240 rhos_2130
Without Sargassum 0.131517 0.13489 0.141123 0.124477 0.227052 0.207291 0.085164
With Sargassum 0.114489 0.12090 0.133097 0.116607 0.247237 0.233480 0.084166
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Figure 3 Study Area: Coastal zone of Quintana Roo. Represented by 948 pixels of 1 km?, close to the
beach line. (A) Sargassum washed ashore on the coast of Mahahual, Quintana Roo, Mexico on 18 June
2018. For the pixel example AQUA-MODIS rhos values (B) in the case of Sargassum; (C) in the case of ab-
sence of Sargassum. (Figure credit: Holger Weissenberger).

Full-size G4l DOI: 10.7717/peerj.6842/fig-3

when applied to classification problems similar to that of the present research. Finally, a
comparative table is presented with the results of ERISNet and the other competitors.

Basic statistical analysis
When each of the corrected bands (rhos and rhot) of the generated data with and without
Sargassum were averaged, small differences were observed. Only the averages corresponding
to bands 859 and 1,240 nm were higher in the case of the presence of Sargassum. Therefore,
a powerful algorithm-tool is needed to efficiently classify the small differences among the
values of each pixel and thus classify the presence/absence of Sargassum. A basic statistical
analysis of data, shows why 859 and 1,240 nm are the bands which FAI index uses. Table 2
shows the means in the case of rhos bands.

In Fig. 3 behavior of rhos values used for a pixel example (Latitude 18.71582, longitude
—87.69191), in the presence / absence of Sargassum are shown. Trends in Figs. 3A and 3B
are similar, and differences are not clear between both cases.
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We have chosen a survey (Wang, Yan ¢ Oates, 2017) showing a wide comparison
between different classification algorithms by using more than 40 different classic datasets.
In those studies, authors propose three new classification algorithms based on machine
learning techniques and neural networks showing a good accuracy for the different datasets.

In order to compare the performance of the proposed methodology, we have chosen
two effective algorithms presented by Wang, Yan ¢ Oates (2017).

Multilayer perceptron

The multilayer perceptron (MLP) it is defined as the base algorithm for comparison with
the rest of the proposals. The MLP used is composed of an input layer, three intermediate
or hidden layers, and the output layer. Each of the intermediate layers is composed of 500
neurons that use the rectified linear unit (RELU) as an activation function. To improve
the generalization of the neural network, a “dropout” function with values of [0.2 0.2
0.3] respectively has been inserted at the end of each of the intermediate layers. Dropout,
applied to a layer, consists of randomly dropping out (setting to zero) a number of output
features of the layer during training. Finally, the network has a softmax layer which is
widely used in the Multiclass single-layer classification. Formally, each of the blocks of the
hidden layers is described as shown in Eq. (3).

x :f(dmpout,p) (x)
y=W.x+b (2)
h=RELU(y).

The MLP was used to perform the classification of the whole dataset (4515 MODIS
pixels). The dataset was divided in two groups: a training and test group each with
approximately the same amount of data (see Table 2). The learning process was carried
out during 3000 epochs, presenting 100 data points in each one (batch size). In Fig. 4A,
the result of the learning and test process is shown. On the one hand, the continuous line
shows that the MLP has a good degree of optimization (close to 100%), which is to be
expected given the learning capacity of this type of network. On the other hand, the dashed
line shows the result of the testing process. During the testing process, a set of data which
was never used throughout the training process was presented to the MLP in order to see
the generalization capacity. As shown, the MLP has a good level of generalization, correctly
classifying 83.76% of the test points. There is a wide difference between the optimization
and generalization curves, which is usually an indicator of overfitting.

Fully convolutional network

Convolutional Neuronal Networks have shown a good performance in classification
problems. The fundamental difference between a multilayer perceptron and a convolution
layer is that MLP layers learn global patterns in their input feature space whereas
convolution layers learn local patterns. The basic block of the FCN is composed of a
set of filters that are responsible for the extraction of features from the dataset. RELU
has been used as an activation function. At the end of the block, the FCN incorporates a
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Figure 4 Results comparison. This set of plots shows the behavior for multiple neural networks for Sar-
gassum detection during the training process. (A) A multilayer perceptron behavior is shown (MLP); (B) a
full convolutional neural network (FCN) behavior also is shown; (C) shows the behavior of ERISNet; (D)
depicts a comparison between the three architectures.

Full-size & DOL: 10.7717/peerj.6842/fig-4

new block called Batch normalization (BN). Batch normalization reduces the amount by
which the hidden unit values shift around (covariance shift). To increase the stability of
a neural network, BN normalizes the output of a previous activation layer by subtracting
the batch mean and dividing by the batch standard deviation, getting ten times or more
improvement in the training speed.

The FCN used is composed of three convolutional blocks: the first block of the network
is composed of 128 filters with eight elements each, the second layer is composed by 256
filters with five elements each, and the last block is composed of 128 filters with three
elements each. The objective of this network is to extract from each of the blocks attributes
of the data, from general the particular, thus resulting in a good representation of the
information contained in the data. With this representation of the data, it is possible to
correctly classify information into different classes. Each of the blocks of the hidden layers
are formally described by the Eq. (4).

y=W®x+b
s=BN(y) (3)
h=RELU (s).

Arellano-Verdejo et al. (2019), PeerJ, DOI 10.7717/peerj.6842 11/19


https://peerj.com
https://doi.org/10.7717/peerj.6842/fig-4
http://dx.doi.org/10.7717/peerj.6842

Peer

Like the MLP, the FCN was used to perform the classification of the whole dataset.
With the aim of making a comparison on equal terms, both the dataset and the training
parameters used for this model were the same as those presented in the MLP. Figure 4B
shows the result of the FCN training and testing process. Similarly to the MLP, the FCN
had a fairly high level of optimization and the power of generalization showed good
results, correctly classifying the 86.38% of the data points. However, the difference between
generalization and optimization suggest the possible presence of overfitting in the network
once again.

ERISNet Validation

At present there are multiple validation methods for neural networks where cross-validation
is the most accepted. Cross validation is a statistical method used to estimate the skill of
machine learning models. The cross-validation can be divided mainly into two groups:
Exhaustive cross-validation and Non exhaustive cross-validation. Among the methods
of Exhaustive cross-validation, the following stand out: Leave one out cross-validation
(LOOCYV), Exhaustive cross validation, Leave out of cross validation, while Non exhaustive
cross validation highlights: k-fold cross-validation, Holdout method and Repeated random
sub sampling validation.

Due to the characteristics and size of the dataset used, k-fold was chosen (k =5) as the
cross-validation method of the ERISNet with k = 5. To carry out the cross validation the
data set was divided into k parts of which k — 1 parts were used as a training set, while the
remaining part was used as a validation set. In Eq. (4), the results of the cross-validation are
shown. ¢; expresses the number of correct classes within the dataset while e; corresponds
to the number of classes correctly classified by the model.

MPCE; = =, (4)

ERISNet was trained, tested, and compared with the rest of its competitors. As in the
previous cases, the same criteria were used, that is, the total data set was used by using
k-fold cross validation. The algorithm was trained during 3,000 epochs with a batch size
of 100 data points, the same seed of random numbers used by MLP and FCN was also
used. As can be seen in Fig. 4C, unlike what happened in the case of the MLP and the FCN,
the difference between the capacity of optimization and generalization of the network was
lower, suggesting that there was no overfitting in the network during the training process.
It is important to mention that the level of optimization of the network was less than its
competitors, which suggests that if the network is trained during a higher number of epochs
this could improve and the generalization could be higher. After the network training,
ERISNet obtained a 90.08% success for the classification test points, implying an increase
of 7% with respect to the MLP and 4.1% with respect to the FNC.

Figure 4D shows a comparison on the generalization of the MLP, the FCN, and
ERISNet. As illustrated, the behaviors of the MLP and the FCN are very similar. However,
ERISNet presented an increase in the generalization capacity. As summary, after the dataset
classification by using the methodologies mentioned above, the MLP performance was
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83.76% of accuracy followed by the FCN with 86.38%, and the highest accuracy was reached
by ERISNet with 90.08%. Based on all the previous tests, it is concluded that the proposed
ERISNet algorithm is capable of classifying more precisely new points than other studies.

FAIl index

There are only few studies of Sargassum detection along Caribbean coastlines. Therefore,
there are no algorithms or methodologies that allow us to make a direct comparison
between our proposal and other studies, nevertheless we have calculated the FAI index to
the dataset used in the present study in order to know the behavior of our dataset from the
point of view of this index. Figure 5 shows the boxplot diagram for the FAI index results.
A clear statistical difference can be observed between both datasets. It can be seen that the
median of the pixels FAI in the presence of Sargassum is slightly higher than the median of
the pixels without Sargassum. The median of the pixels without Sargassum is closer to zero.

It is important to note that 50% of the data with Sargassum are less compact than that
of those without Sargassum, which implies a greater distribution of the values within this
50%. The largest difference appears in the lower whiskers of the Sargassum boxplot. This
difference indicates that the Sargassum FAI values reflect a greater bias with respect to
those points without the presence of Sargassum (Fig. 5). Table 3 shows the results for the
computation of the traditional statistical values made to the FAI index on the data set.

Sargassum detection is a complex issue, and for that reason our dataset had to be built
with official information of dates, sites and with field work. Our dataset is significative
to provide remote sensing information about Sargassum, until now not available for this
region. Hence, it is possible to apply the dataset in other methodologies or for training
other algorithms. Thus to compare the classification performance of ERISNet, two effective
algorithms were chosen (Wang, Yan ¢ Oates, 2017). Asshown in Fig. 4D, ERISNet obtained
the best performance.

Sargassum detection along the coastline is a challenge for conventional techniques
used in remote sensing. The presence/absence of Sargassum on satellite imagery along the
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Table 3 FAI index for the dataset. Central trend statistics values of the FAI index, fed with the same
dataset used to train and test ERISNet.

FAI Sargassum FAI without Sargassum

pixels 2306 2209

mean 0.088595 0.072789

std 0.109495 0.081089

min —0.845114 —0.845114

25% 0.001938 0.000794

50% 0.087812 0.051965

75% 0.164528 0.134386

max 0.317351 0.315139

coastline is not as clear as in the open sea, because there are several transitional ecosystems.
Under these conditions the high classification performance of ERISNet allows to observe
the small differences between the values of the bands used for the classification and to
determine the presence or absence of Sargassum in each pixel with a maximum accuracy
of 90.08%. This is highlighted for an ANN, since increase 1% unit in the classification
requires high performance design and implementation.

Traditionally, detection of suspended matter in open waters is accomplished through
satellite products or through well established indexes (Hu, 2009; Hu et al., 2015; Hu et
al., 2016; Cuevas, Uribe-Martinez ¢ Liceaga-Correa, 2018). Therefore, the present study is
innovative, since it has a high classification accuracy of pixels with presence/absence of
Sargassum, using as input data the corrected bands rhos and rhot. The present research
showed that under conditions of high concentration of Sargassum, as those presented
along the coast of Quintana Roo in 2015 and 2018, it was possible to detect Sargassum with
MODIS data.

Although the coast of the Mexican Caribbean has high economic and ecological
importance, there is no monitoring system that contributes to make decisions facing
threats of massive arrival of Sargassum. Therefore, the present work is very relevant for this
region, because it offers the basis for an early warning system design.

ERISNet could be applied to other coastal areas of the Caribbean region, thereby we
propose to design an artificial neural network capable to detect Sargassum in open waters
and to build new training datasets based on satellite products and well established vegetation
indexes.

CONCLUSIONS

Based on CNN and RNN architectures, ERISNet was developed specifically to detect
Sargassum along the coastline of Quintana Roo, Mexico.

To our best knowledge, this is the first method using Deep Learning to detect pelagic
Sargassum along the coastline that considers not only floating but also accumulated
Sargassum. Based on Aqua-MODIS swath imagery and well-known sites and dates with
and without Sargassum along the coastline of Quintana Roo, a dataset was built to train
and test all the algorithms used in this study. After the learning process, ERISNet achieved a
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maximum 90.08% of probability in the classification of pixels with and without Sargassum.
Additionally, using the dataset for the present study the FAI index was calculated. The
measures of central tendency of the FAI index for data with and without Sargassum
are clearly different. However that index does not offer a percentage efficiency value
pixel-by-pixel. Hence, ERISNet goes further as it offers a quantitative value of its own
performance.

Several studies have evaluated the threats that coastal ecosystems of south-
ern Quintana Roo have suffered in the last decades (Alvarez-Filip et al., 2013;
Hernandez-Arana et al., 2015; Arias-Gonzilez et al., 2017). However, there is little
information that analyzes habitat degradation by Sargassum, as it is a relatively new
stressor adding to the threats that already exist in the Caribbean. Therefore, an early
detection system to alert about massive Sargassum arrivals is undoubtedly a challenge for
the research of vulnerable coastal zones in the Caribbean, and for the understanding of the
threats to these coastal ecosystems.
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