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ABSTRACT
The HIPK2 (serine/threonine homeodomain-interacting protein kinase 2) is a 

“caretaker” gene, its inactivation increases tumorigenicity while its activation inhibits 
tumor growth. This report reviews the anti-tumorigenic mechanisms of HIPK2, which 
include promotion of apoptosis, inhibition of angiogenesis in hypoxia, prevention 
of tumor invasion/metastasis and attenuation of multidrug resistance in cancer. 
Additionally, we summarize conditions or factors that may increase HIPK2 activity.

INTRODUCTION

Since being discovered in 1998 by Kim et al. using 
a yeast two-hybrid screen designed to characterize novel 
molecules that bind to homeoproteins, the homeodomain-
interacting protein kinases (HIPKs), have been proven to 
be a tumor suppressor and one of the highly conserved 
factors regulating signaling and gene expressions. They 
control a wide spectrum of biological functions such 
as DNA damage response, apoptosis, hypoxia, cell 
proliferation and invasion [1, 2, 3, 4].

The HIPK family members 1 to 3 are structurally 
similar, with HIPK4 being remotely related to them. 
HIPK1 to 3 were originally characterized as molecules 
that interact with, homeobox transcription factors NKx-
1.2. Approximately 90% of the amino acid sequences 
that make up their kinase domains are conserved 
across HIPK1-3. Additionally, the architecture of their 
noncatalytic regions is also conserved [5, 6]. HIPK2 
inhibits tumor growth through multiple mechanisms: 
promoting apoptosis, inhibiting angiogenesis, tumor 
invasion and metastasis by regulating various genes and 
signaling molecules such as p53 [7], JNK [8], Wnt [9], 
and VEGF [10]. Conditions and factors that lead to HIPK2 
activation, such as ionizing radiation [11], ultraviolet light 
[12] and zinc [13], attenuate caspase-mediated cleavage 
of auto-inhibitory domain and ubiquitination, resulting in 
simulation, acetylation as well as phosphorylation of the 
protein [2, 14]. Scientific consensus suggests, HIPK2 is a 
“caretaker” gene: its inactivation increases tumorigenicity 
[15] and its activation inhibits tumor growth [6]. In this 

review, we discuss the function of HIPK2 and factors that 
may increase HIPK2 activity in order to expand current 
understanding of its anti-tumor effects.

HIPK2 STRUCTURE

HIPK2, a nuclear body localized 1189-amino-
acid protein, belongs to the DYRK serine/threonine 
homeodomain-interacting kinase family [16]. HIPK2 
contains an N-terminal kinase domain, a SUMO (small 
ubiquitin-related modifier) attachment site [17], a protein-
protein interaction region, a homeobox-interacting domain 
(HID), a speckle-retention signal (SRS) domain [16, 18] 
(required for the subcellular localization of HIPK2 to 
nuclear bodies), and a C-terminus abundant in repeats 
of serines, glutamines and alanines (SQA region, also 
called tyrosine/histidine (YH)-rich region) [16, 18]. The 
C-terminus also contains an auto-inhibitory domain (AID) 
with a K1182 ubiquitination site which is ubiquitylated 
by p53 inhibitor mouse double minute 2 (MDM2) [20] 
(Figure 1). When cleaved by caspases on D916 and D977, 
full activation of HIPK2 ensues [19, 21].

FUNCTIONS OF HIPK2

HIPK2 promotes cancer cell apoptosis

It has been reported that HIPK2 is a tumor-
inhibiting factor and DNA damage monitoring kinase 
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by promoting apoptosis through targeting p53 and its 
family members, p73 and p63 [22], anti-apoptotic trans-
repressor C-terminal binding protein (CtBP) [23, 24], 
MDM2 [25], Caspase-dependent processing [14] and the 
scaffold protein Axin [26]. In addition, factors associated 
with the pro-apoptotic effects of HIPK2, such as high 
mobility group AT-hook 1 (HMGA1) and Non-receptor 
tyrosine kinase (Src) overexpression, maintain the nuclear 
localization of HIPK2 and cellular sensitivity to apoptosis 
[26-28]. Human Papillomavirus E6 Proteins (HPV23 E6) 
inhibits HIPK2-mediated phosphorylation of p53 at Ser46 
by disrupting HIPK2/p53 complex [29]. These lines of 
evidence demonstrate that the promoting role of HIPK2 in 
apoptosis involves various signaling pathways.

The key step for HIPK2 to promote apoptosis is 
phosphorylating and activating p53 at serine 46 [7, 31, 
32]. p53 is a widely studied transcription factor that 
tightly regulates cellular responses to stress signals, via 
modulating expression of certain genes that impact growth 
arrest, senescence, apoptosis and DNA repair [33]. It can 
be inactivated by genetic mutations or deregulated by 
regulatory proteins [34] and other mechanisms, such as 
the up-regulation of its E3 ubiquitin ligase MDM2 [33]. 
HIPK2 is also among the kinases, such as DNA damage 
checkpoint kinases Ataxia telangiectasia mutated (ATM), 
ATM and Rad3-related (ATR) as well as their downstream 
checkpoint effector kinases 1 (Chk1), checkpoint effector 
kinases 2(Chk2), that regulate p53 protein stability, 
activity and target gene specificity, [34, 35]. HIPK2 
induces p53-dependent apoptosis through phosphorylating 
p53 at Ser46 and acetylating p53 at Lys382 [12, 36] 
(Figure 2). MDM2-dependent HIPK2 degradation blocks 
p53 activation to promote cell survival. Apoptosis can 
be initiated by repressing HIPK2 degradation, strongly 
suggesting that HIPK2 is a potential target for cancer 
therapy [37, 38]. Upon sensing DNA damage, HIPK2 
interacts with itself and undergoes autophosphorylation at 
Thr880/Ser882 [39]. The prolyl isomerase (Pin1) serves 

as a necessary auxiliary factor for stabilizing HIPK2 
following DNA damage, hence essential for apoptosis 
induction [39, 40]. Axin mediates interaction between 
Death domain- associated protein 6 (Daxx) and p53. When 
DNA damage occurs due to UV irradiation, the nucleus-
translocated Axin interacts with Daxx and two forms of 
p53 (one bound with Axin, and the other with HIPK2). 
In the Axin-Daxx-p53-HIPK2 complex, activated HIPK2 
induces phosphorylation of p53 at Ser46, which is further 
enhanced by Axin and Daxx. Axin-activated p53 induces 
apoptosis through transactivating target genes such as 
p53 up-regulated modulator of apoptosis (PUMA) [41]. 
Of note, promoting cancer cell apoptosis is the main 
rationale behind the cancer treatment strategies that utilize 
ionizing radiation and chemotherapeutic drugs. HIPK2 
interacts with the C-terminus of p53 to phosphorylate 
the NH2-terminal Ser46 to initiate the p53-dependent 
transactivation of pro-apoptotic genes, such as p53AIP1 
[42], p21Waf1 [43], Noxa [44], Bax [45] and Puma [46], 
leading to cell death [7, 12]. p53 allows caspase-mediated 
cleavage of HIPK2 at D916/D977 (Figure 1). The resulting 
C-terminal truncated HIPK2 demonstrates an elevated p53 
activity and cell apoptosis [19]. HIPK2 can also induce 
apoptosis through caspase-6 activation [47]. Intriguingly, 
more and more evidence supports the novel notion of 
HIPK2 being a key regulator of the NF-kB signaling 
pathway, which often promotes abnormal expression of 
tumor-associated genes that inhibits cell apoptosis and 
increases angiogenesis and tumor metastasis, thereby 
directly promoting the incidence and development of 
malignant tumors [48]. 

HIPK2 decreases angiogenesis in a hypoxic 
environment

Strong evidence demonstrates that HIPK2 plays 
a role in hypoxic response via being a co-suppressor of 

Figure 1: Schematic summary of HIPK2 domain structure. It contains an N-terminal kinase domain, sumoylation site, kinase 
domain, HID, SRS and a C-terminal auto-inhibitory domain (AID) with the K1182 ubiquitination site. 
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hypoxia inducible factor 1α (HIF-1α), a major tumorigenic 
factor transactivating angiogenesis and invasion related 
genes [34]. 

Under hypoxia, repression of prolyl hydroxylation 
leads to the steady accumulation of HIF-1α. In turn, HIF-
1α and HIF-1β dimerize to become the functional HIF-
1 complex to increase the expression levels of cancer-
promoting genes [49]. Thus, inhibiting HIF-1α activity 
may help enhance efficacy of conventional cancer therapy 
[50]. Hypoxia may down-regulate HIPK2 by inducing the 
p53 target MDM2 leading to both suppression of HIF-1α 
activity and p53-mediated apoptosis [51]. Nardinocchi 
et al. [13] used inhibition of HIF-1α by small inhibitory 
RNA (siRNA) to demonstrate that HIF-1α up-regulation 
induced proteasomal degradation of HIPK2. To sum 
up, hypoxia-induced ubiquitin ligases such as Seven in 
absentia 2 (Siah2), Seven in absentia 1 (Siah1) or MDM2, 
induce HIPK2 degradation which effectively inhibits 
therapy-induced p53 apoptotic activity, thereby promoting 
cancer progression [52-55].

Under hypoxia, HIPK2 is degraded in a proteasome-
dependent and Siah1-dependent manner [56]. In 
normoxia, HIPK2 stability is maintained by a number 

of factors, with some HIPK2 proteins associated with 
Siah2. Hypoxic conditions commence marked increase 
in HIPK2/Siah2 association, resulting in rapid poly-
ubiquitylation dependent proteasomal degradation of 
HIPK2. Under hypoxic conditions, Siah1 and Siah2 
mediate the ubiquitination and proteasomal destruction 
of prolyl hydroxylase domain protein PHD1 and PHD3, 
which induces HIF-1α protein stabilization and increasing 
expression levels of HIF-1 target genes, e.g. vascular 
endothelial growth factor (VEGF) [57]. 

There are reports that WD40 domain and suppressor 
of cytokine signaling (SOCS) box protein-1 (WSB-1) is 
not only involved in sensing DNA damage by targeting 
HIPK2 for degradation, but that it is also a target of HIF-
1 [58]. Hypoxia-induced HIPK2 degradation is reversed 
by WSB-1 loss. Inhibition of WSB-1 expression increases 
HIPK2 expression and promotes cell death in hypoxic 
cells [59]. In addition, HIPK2 silencing up-regulates 
HIF-1α and HIF-1 activity, resulting in increased VEGF 
levels, angiogenesis, and chemo-resistance [10, 60]. HIF-
1α and VEGF up-regulation in HUVEC cells correlate 
with increased vascularity of in vivo xenografts and tube 
formation in vitro [10]. Increased vascularity following 

Figure 2: HIPK2/p53 induce apoptosis. UV, IR-induced DNA damage facilitates activation of the DNA damage-activated protein 
kinases ATM and ATR. ATR and ATM in turn phosphorylate/activate downstream checkpoint kinases Chk1, Chk2, and tumour suppressor 
p53. Furthermore, ATM and ATR mediate HIPK2 activation by facilitating its stabilization through phosphorylation of the HIPK2 ubiquitin 
ligase. HIPK2 contributes to p53 apoptotic activation by inducing Ser46 phosphorylation, lysine 382 (Lys382) acetylation and Axin. Pin1 
can induce HIPK2 stabilization and p53 Ser46 phosphorylation, essential for induction of apoptosis. HIPK2-mediated phosphorylation of 
p53 at Ser46 potentiates the activation of pro-apoptotic p53 target genes such as p53AIP1, p21Waf1, Noxa, Bax and Puma, resulting in cell 
death. In addition, HIPK2 can induce apoptosis through direct caspase activation and NF-kB pathway inactivation.
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VEGF up-regulation directs tumor progression [61]. 
In brief, HIPK2 can inhibit angiogenesis by regulating 
VEGF, siah-1, siah-2, WSB-1 and HIF-1 in hypoxia.

HIPK2 suppresses tumor invasion and metastasis

Tumor invasion and metastasis are complicated 
processes with multiple steps. Previous studies have 
confirmed that HIPK2 mediates tumor invasion and 
metastasis [9], alas with undefined mechanisms. 
HIPK2 activation induces Ser422 phosphorylation and 
degradation of CtBP to repress tumor metastasis [24]. 
Increasing body of evidence indicates that CtBP is a 
key promoter of carcinogenesis, especially in cancer 
metastasis [62]. CtBP participates in the down-regulation 
of E-cadherin gene, a marker of epithelial-mesenchymal 
transition (EMT) that contributes to cancer metastasis. 
Therefore, expression of CtBP is critically related to the 
malignant transformation of a number of cancers [63-65]. 

Studies have indicated that HIPK2 is involved in 
tumor invasion by inhibiting various signaling pathways 
[9]. Firstly, data have indicated that the well-studied 
wingless/int (Wnt) signaling pathway has a definite role 
in tumor invasion. Activation of this pathway can alter 
the expression of cell adhesion molecules, proteases and 
angiogenesis factors to promote cell invasion [66-68]. 

Secondly, knockdown of HIPK2 stabilizes β-catenin, 
increases nuclear localization of β-catenin, resulting in 
enhanced expression levels of Wnt target genes and cell 
proliferation in vivo and in vitro. HIPK2 down-regulates 
the c-myb proto-oncogene product by inhibiting the Wnt/
β-catenin signaling pathway [69]. c-Myb is downstream 
effector of Wnt/β-catenin pathway, controlling a variety 
of developmental steps, inhibition of proliferation and 
invasion [70, 71]. Studies also have showed that that 
c-Myb protein is phosphorylated and degraded by Wnt1 
via a pathway involving TGF- β -activated kinase (TAK1), 
HIPK2 and Nemo-like kinase (NLK) [72]. Wnt1 signaling 
activates the mitogen-activated protein (MAP), NLK 
and HIPK2. NLK induces phosphorylation of c-Myb at 
different sites by interacting with c-Myb and HIPK2, 
resulting in the ubiquitination and proteasome-dependent 
degradation of c-Myb. c-Myb regulates proliferation, 
differentiation and apoptosis via affecting transcription 
of target genes [73]. Meanwhile, Tan et al. showed that 
HIPK2 inhibition increased EMT and cell invasion, which 
was probably mediated by Wnt signaling [9]. 

Thirdly, depletion of HIPK2 activates β4 
transcription, leading to a significantly higher level of 
phosphorylation of β4-dependent mitogen-activated 
protein kinase (MAPK) and Akt, and consequent 
promotion of anchorage-independent growth and invasion 
[74]. HIPK2 knockdown also leads to HIF-1-mediated 

Figure 3: HIPK2 inhibits angiogenesis by regulating siah-1, siah-2, WSB-1, HIF-1 and VEGF in a hypoxic environment. 
In hypoxia, HIF-1α dimerizes with HIF-1β to form the active HIF-1 complex, the PHD1/PHD3 mediated ubiquitination and proteasomal 
destruction of ubiquitin ligases Siah1 and Siah2 results in HIF-1α stabilization and activation of HIF-1 targeting genes such as VEGF. 
Hypoxia down-regulate HIPK2 to activate this pathway. 
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cyclooxygenase-2 (COX-2) up-regulation, which has 
been found to promote invasion in many types of cancer 
[75, 76, 77]. COX-2 expression is highly expressed in 
response to inflammatory mediators, growth factors, 
and oncogene activation, suggesting its association with 
cancer invasion and metastasis [78]. But whether HIPK2 
directly down-regulates COX-2 to inhibit invasion and 
metastasis remains to be experimentally elucidated. 
Nodale et al. [79] found HIPK2-mediated vimentin down-
regulation led to suppression of cancer cell invasion. In 
addition, evidence revealed that HIPK2 participated in the 
transforming growth factor beta (TGF-β)-JNK signaling 
dependent up-regulation of invasion and metastasis. RNA 
interference mediated HIPK2 knockdown inhibits TGF- β 
-induced JNK activation [8], and HIPK2 effect on JNK is 
modulated through dynamic SUMO-1 modification [80]. 
JNK signaling pathways are strongly associated with 
tumor progression and metastasis [81, 82]. Therefore, 
HIPK2 may decrease tumor invasion and metastasis 
through its regulation of JNK signaling pathways. 

HIPK2 attenuates multidrug resistance (MDR) in 
cancer

Multidrug resistance (MDR) represents one of a 
variety of mechanisms that cancer cells use to evade 
the cytotoxic effects of various anti-cancer drugs, thus 
decreases the efficacy of cancer therapeutics [83]. 
Inhibition of HIPK2 attenuates the adriamycin-induced 
apoptosis by decreasing pSer46-p53 levels, whilst HIPK2 
overexpression induces apoptosis in chemoresistant 
cancer cells, along with induction of p53 Ser46-target 
gene AIP1 [84]. This conceptual result led to studies 
testing HIPK2 as a therapeutic target of gene therapy for 
chemoresistant ovarian cancer with wtp53 [12, 20, 84]. 
Lin et al. [85] found that HIPK2/Wip1 signaling might be 
a novel mechanism controlling chemoresistance. In detail, 
they confirmed that overexpression of HIPK2 sensitized 
chemoresistant cancer cells to cisplatin by inhibiting 
Wip1 expression. Hypoxia helps cancer cells to resist 
chemotherapy, whereas HIPK2 mediated repression of 
HIF-1α activity confers sensitization of chemoresistant 
cells with drug induced apoptosis [60]. Emerging data 

Figure 4: Factors inhibiting and promoting HIPK2 .
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also indicate that HIPK2 silencing by siRNA impairs p53 
tumor suppressor function, induces chemoresistance, and 
increases in vivo tumor growth [86]. HIPK2 inactivation 
unleashes signaling pathways that result in p53 loss-of-
function and chemoresistance [12, 34]. Other observations 
showed that HIPK2 knockdown induced resistance to 
various anti-cancer drugs even by targeting ΔNp63α in 
p53-null cells [87]. These results suggest that HIPK2 can 
restore chemo sensitivity and inhibit chemo resistance.

Conditions/factors that enhance HIPK2 activity

HIPK2 can be activated by numerous DNA 
damaging factors, including ultraviolet light (UV light), 
ionizing radiation (IR), genotoxic chemo-therapeutics 
[88], zinc in a hypoxic environment [13] and herbs used 
in traditional Chinese Medicine [89]. 

Ionizing radiation (IR)

Studies have showed that IR induces the 
accumulation and activation of HIPK2.

IR-induced up-regulation of HIPK2 correlates with 
phosphorylation of p53 at Ser46, which is inhibited by 
RNAi mediated HIPK2 silencing. Interestingly, the DNA 
damage checkpoint ataxia telangiectasia mutated (ATM) 
kinase mediates IR induced HIPK2 activation [11] [90].

Ultraviolet light

Upon sensing UV damage, HIPK2 is activated and 
causes Ser46 phosphorylates of p53, which next facilitates 
its acetylation at lysine 382, resulting in p53-dependent 
apoptosis [12]. After exposure to UV or cisplatin, HIPK2 
and JNK1, provoke phosphorylation of CtBP at Ser422, to 
initiate apoptosis [91]. 

Chemotherapy drugs

HIPK2 is activated by various anti-cancer drugs, 
including cisplatin (CDDP), adriamycin (ADR) and 
roscovitin, to form HIPK2/p53Ser46 apoptotic signaling 
pathway. Therefore, HIPK2 is the key factor of p53 
activity in response to chemotherapeutic drugs [92]. 
In chemoresistance, deregulation of HIPK2/p53 Ser46 
signaling occurs. For conceptual novelty, exogenous 
HIPK2 should offer a valuable and promising new 
treatment option to circumvent inhibition of apoptosis for 
women with chemo-resistant ovarian cancer [84]. 

Zinc

In addition to DNA damaging agents, HIPK2 can be 
activated by zinc in hypoxia and in chemoresistance. Zinc 
restored protein levels of HIPK2 and the chemo-sensitivity 
in cancer cells [13]. Zinc up-regulated HIPK2 to inhibit 
COX-2 level, leading to reduced cancer growth [75]. 
Some study even showed that zinc could reactivate HIPK2 
resulting in HIF-1 pathway suppression, thereby restoring 
p53 apoptotic activity [93]. p53 protein misfolding 
in HIPK2 knockdown context was reverted by zinc 
supplementation [94]. Therefore, zinc treatment should be 
used in combination with other anticancer therapeutics to 
restore the HIPK2/p53 apoptotic signaling pathway. 

Herbs used in traditional chinese medicine

The reason Traditional Chinese medicine comes to 
our attention in this review is because of a study revealing 
inhibition of HIF-1 and S100A4 by saponin extracts of 
ginsenoside (Ginsen) and Gynostemma, as well as coix 
polysaccharides, resulting in the suppression of cancer 
cell migration and invasion [95]. Verbascoside (VB), 
extracted from a Traditional Chinese medical plant genus, 
effectively activates HIPK2/p53 signaling pathway in 
human colorectal cancer (CRC), resulting in increased 
CRC cell apoptosis [89].

CONCLUSIONS

HIPK2 is a multi-functional signaling molecule and 
a tumor suppressor that mediates growth, regulation and 
apoptotic cellular responses. HIPK2 induces cell death by 
activating p53-dependent [7, 22, 31, 32] and independent 
pathways (including the JNK signaling pathway) [8, 
80], to promote tumor cell apoptosis. In a hypoxic 
environment, HIPK2 down-regulates the activity of HIF-
1 [34], Siah1 [56], Siah2 [3], VEGF [57] and WBS-1 [59] 
to inhibit tumor angiogenesis [50]. Additionally, several 
studies have shown that HIPK2 can also decrease tumor 
cell invasion and metastasis by Wnt/β-catenin [69], CTBP 
[24], JNK [8, 80-82] and COX-2 signaling pathways [78]. 
HIPK2 can adjust MDR to increases sensitivity of cells 
to chemotherapy drugs [12, 20, 84]. HIPK2 can also be 
activated by DNA damage (i.e. ionizing radiation, UV 
light) [88], anti-tumor drugs (i.e. cisplatin, adriamycin, 
roscovitine) [92], zinc in a hypoxic environment [13], and 
Traditional Chinese medicine [89]. In summary, HIPK2 
inhibits cancer cell tumorigenesis, and promotes pro-
apoptotic gene expression. HIPK2 can serve as a novel 
biomarker in tumors as well as a potential target for anti-
cancer therapies.
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